
MyDJ: Sensing Food Intakes
with an Attachable on Your Eyeglass Frame

Jaemin Shin
KAIST

Daejeon, Republic of Korea
jaemin.shin@kaist.ac.kr

Seungjoo Lee
KAIST

Daejeon, Republic of Korea
seungjoo.lee@kaist.ac.kr

Taesik Gong
KAIST

Daejeon, Republic of Korea
taesik.gong@kaist.ac.kr

Hyungjun Yoon
KAIST

Daejeon, Republic of Korea
hyungjun.yoon@kaist.ac.kr

Hyunchul Roh
DYPHI Inc.

Seoul, Republic of Korea
roh@dyphi.com

Andrea Bianchi
KAIST

Daejeon, Republic of Korea
andrea@kaist.ac.kr

Sung-Ju Lee
KAIST

Daejeon, Republic of Korea
profsj@kaist.ac.kr

ABSTRACT
Various automated eating detection wearables have been proposed
to monitor food intakes. While these systems overcome the forget-
fulness of manual user journaling, they typically show low accuracy
at outside-the-lab environments or have intrusive form-factors (e.g.,
headgear). Eyeglasses are emerging as a socially-acceptable eating
detection wearable, but existing approaches require custom-built
frames and consume large power. We propose MyDJ , an eating de-
tection system that could be attached to any eyeglass frame. MyDJ
achieves accurate and energy-efficient eating detection by captur-
ing complementary chewing signals on a piezoelectric sensor and
an accelerometer. We evaluated the accuracy and wearability of
MyDJ with 30 subjects in uncontrolled environments, where six
subjects attached MyDJ on their own eyeglasses for a week. Our
study shows that MyDJ achieves 0.919 F1-score in eating episode
coverage, with 4.03× battery time over the state-of-the-art systems.
In addition, participants reported wearing MyDJ was almost as
comfortable (94.95%) as wearing regular eyeglasses.

CCS CONCEPTS
• Human-centered computing → Ubiquitous and mobile de-
vices; • Applied computing→ Health informatics.
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1 INTRODUCTION
Food journaling is an effective method that is widely recommended
by clinicians and dietitians for maintaining healthy eating habits.
Writing a food journal brings awareness of the food intake and
leads to a healthy choice of food and effective weight and chronic
diseases management [33, 51, 52]. While there are tools that fa-
cilitate interactive food journaling, such as web or mobile food
logging apps [23, 38, 60], the manual effort involved in the journal-
ing process often results in losing habit in the long-term [19, 20].
To address such difficulties, a significant amount of research has
been contributed to developing wearable automatic eating detection
systems to assist in monitoring eating habits.

For wide deployment and practical use, a wearable eating detec-
tion system should be accurate even in uncontrolled settings and
energy-efficient [44, 66, 74, 86]. Wearable eating detection systems
use various wearable form factors such as headgear [13], neck-
lace [17, 84], neckband [68, 82], and wristband [22, 72, 78]; however,
they fail to achieve high accuracy over prolonged eating sessions or
have limited social acceptability due to their distinctive form factors.
A promising approach is using eyeglasses [7, 18, 27–29, 67, 83], as
users’ familiarity and comfort with eyeglasses make them a socially
acceptable alternative to other wearables. Furthermore, the close
proximity of the eyeglasses to the mouth is an ideal condition for
correctly detecting and identifying eating events. However, exist-
ing proposals require custom-built frames [7, 83] to accommodate
numerous sensors, resulting in reduced usability and hindering
the adoption among users who wear non-instrumented eyeglasses.
Moreover, some proposals are shown to be energy-inefficient or
inaccurate in practical settings — for example, an accelerometer-
based approach [29] is inaccurate for users who are not aggressive
chewers.

We propose MyDJ (My Dietary Journalist), an eating detection
system attached to eyeglasses. Unlike previous eyeglass eating de-
tection methods, 1) MyDJ achieves accurate and energy-efficient
eating detection by leveraging a combination of a piezoelectric
sensor and an accelerometer that are low-power and capture com-
plementary chewing signals on eyeglasses. Moreover, 2) our sensor
placement design on eyeglasses does not require custom-built eye-
glass frames and thus easily integrates with any design of eyeglasses.
To assess our system, we prototyped MyDJ on a custom-built cir-
cuit, attached it to a commodity eyeglass frame, and collected 237
hours of data from 24 participants in uncontrolled environments.

https://doi.org/10.1145/3491102.3502041
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MyDJ achieves an average accuracy of 0.984 and an F1-score of
0.919 in eating episodes detection while achieving 4.03× battery life
improvement over a previous eyeglass eating detection system [7].
To evaluate the long-term accuracy and wearability of MyDJ , we
collected 477 hours of data from six participants, who attached
MyDJ on their own eyeglasses for a week in uncontrolled environ-
ments. Throughout the week-long study, MyDJ detected 111 out of
120 meals or snacks. Furthermore, our user survey shows that the
comfort level of wearing glasses with MyDJ attachable is 94.95%
compared with wearing own eyeglasses.

This paper contributes to the field of HCI as follows: We present
(1) a design and implementation of an attachable eating detection
system that easily integrates on any eyeglass frames; (2) an evalua-
tion based on a week-long in the wild data collection in which users
attach MyDJ on their eyeglasses. Our data collection is quite exten-
sive as the longest data collection from previous eating detection
eyeglasses was for two days [7].

2 BACKGROUND AND RELATEDWORK
We first define eating and eating episode, then survey eating detec-
tion systems in the form of eyeglasses and other wearable devices.

2.1 Definition of Eating and Eating Episode
We use the definition of eating and eating episode from Bi et al. [13]
throughout this paper. Eating is defined as “an activity involving
the chewing of food that is eventually swallowed”. We thus exclude
the detection of drinking or chewing gums. Eating episode is de-
fined as “a period of time beginning and ending with eating activity,
with no internal long gaps, but separated from each adjacent eating
episode by a long gap”, where a gap is a period in which no eating
activity occurs, and where long means a duration greater than a
specified parameter. In this paper, we used 15 minutes as a parame-
ter to specify the long gap between the eating episodes, as in [13].
Note that the shortest eating episode on our system is 15 seconds,
which allows the detection of most eating episodes, including short
snacking events.

2.2 Eating Detection on Wearable Form Factors
Other Than Eyeglasses

Wearable eating detection systems have been proposed for vari-
ous form factors. Bi et al. proposed a form of headgear [13] and
headband [12] that both utilize piezoelectric sensing on a mastoid
bone for capturing chewing signals. While accurate and energy-
efficient, wearing headgear or headband is socially unacceptable in
various situations. Neckbands [25, 68, 82] that use acoustic sensing
to capture chewing and swallowing sounds have limited usability in
warm weather due to the sweat between the band and the neck [75].
Moreover, constant audio sensing could lead to privacy concerns.
Necklaces [2, 17, 39, 74, 84] utilizing proximity sensing to track
jaw movements or piezoelectric sensing to capture the throat vibra-
tions are also popular. While necklaces are common and socially
acceptable to wear, these form factors are not widely accepted as
a survey reports that 45% of people would never wear such form
factors [5], whereas 64% population of the US wear eyeglasses on
a daily basis [29]. Moreover, proximity sensing on the necklace is

prone to error under direct sunlight or user movements while eat-
ing [17, 62]. Other systems that leverage in-ear proximity sensing
on an earpiece [9, 10], acoustic sensing on a Bluetooth headset [31],
or surface pressure sensing on a cap [87] could be unacceptable in
a social dining situation. Lastly, smartwatch-based eating detection
systems [22, 43, 72, 78] perform hand-to-mouth gesture recognition
and require users to wear it on their dominant hand for eating
detection. It is also shown that such a system suffers from high
false positives in uncontrolled settings [17].

In summary, the performance of the surveyed eating detection
wearable form factors degrades in uncontrolled, real-life settings.
Moreover, certain wearables could be inappropriate to wear in
social dining situations. We believe eating detection on eyeglasses
could be a viable option as it could be easily worn during any
dining experience and could also achieve high accuracy due to close
proximity to the chewing location [41]. We now review previous
research on eating detection using eyewear.

2.3 Eating Detection on Eyeglasses
Eating detection on eyeglasses could offer accurate eating detec-
tion thanks to the sensor placements close to the mouth and jaws
(i.e., where chewing and swallowing happen) while simultaneously
providing a socially acceptable wearable form factor [41].

Previous approaches on eyeglasses, however, mostly require
custom-built eyeglass frames for specific sensor placement, which
limits their adoption to users who wear non-instrumented com-
modity eyeglasses. Some of the proposals were uncomfortable to
wear or failed to achieve accurate or energy-efficient eating detec-
tion in real-world deployments. The system by Zhang et al. [83],
for instance, requires personalized frames to place electrodes to
the human skin for Electromyography (EMG) sensing. Its accuracy
suffers when sweat or hair get in between the electrodes and the
user’s skin [1]. Some methods require placing piezoelectric sen-
sors [27, 28] directly in contact with the skin using medical tape,
which hinders comfort. Systems solely based on accelerometer [29]
are inaccurate for users who are not aggressive chewers (as we
discuss in Section 3 and 5). FitByte [7] utilizes sensor-fusion with
gyroscopes, an accelerometer, and a proximity sensor placed on the
eyeglasses frame. However, it drains a battery in less than a day
(with the same battery as recent commodity smart eyeglasses [80]).
It also requires the eyeglasses temple to be built with flexible ma-
terials to ensure a snug fit to improve IMU readings. Rahman et
al. [67] and Chung et al. [18] proposed using inertial sensors and
load cells respectively, but the accuracy of both of their design was
evaluated only in controlled lab settings. Mirtchouk et al. [57, 58]
used a combination of inertial and acoustic sensing on eyeglasses,
smartwatches, and earbuds. However, wearing earbuds is typically
not an acceptable social behavior and their reported eating detec-
tion F1-score was lower than those by other approaches using only
eyeglasses.

Unlike previous approaches, MyDJ overcomes the aforemen-
tioned limitations by achieving both accurate and energy-efficient
eating detection with a new sensing design on eyeglasses. We also
believe the design of MyDJ as an attachable to eyeglass frames
enables comfortable usage and deployability.
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Figure 1:MyDJ prototype.

3 MYDJ DESIGN
We present the design overview of MyDJ (Figure 2). We first illus-
trate the hardware and sensing design of MyDJ that reports the
raw data signals from sensors when a user is chewing. We then
describe each component of the eating detection framework that
processes the sensor data in real-time. Finally, we demonstrate the
implementation of our prototype, built on a custom printed circuit
board (PCB).

3.1 Design Goals
Our design has the following goals:

• Design a sensing system that could easily integrate
with existing eyeglass frames: As users select different
eyeglass frames based on their own style and need [15, 35], a
desired eating detection system should be available for most
existing frames. It should not require specific materials or
the shape of an eyeglass frame to sense food intake.

• Use low-power sensors and optimized data process-
ing pipeline for energy-efficiency: Energy efficiency of
a wearable eating detection system is a critical factor for
its usability [13]. The system should utilize low-power sen-
sors and effectively minimize its computational overhead in
sensor data processing (e.g., feature selection).

• Capture complementary eating-related signals for ro-
bust and accurate sensing: Eating detection systems should
be robust to different users or environmental changes [66].
Multimodal sensing with different signals enables the system
to work even when one source of the signal is weak [61].

• Place sensors for accurate sensing without sacrific-
ing user comfort: An eating detection wearable should
be comfortable to wear [79]. Sensor placements should not
cause user discomfort to achieve accurate sensing (e.g., in-
ear canal [3]). We aim to place sensors that achieve both
high accuracy and user comfort.

3.2 Overview of Hardware and Sensing
We use a piezoelectric sensor and an accelerometer onMyDJ , which
operates in relatively low-power than other transducers [50, 69].
We designed each sensor to capture two complementary chewing
signals, as shown in Figure 3. Note that these are not the only
eating-related signals available on eyeglasses; other signals such
as the chewing sound of mastication muscle activation could also
be leveraged [3, 83]. However, we do not consider other signals as
robust sensing of such signals is limited in the presence of loud
background noises or requires more power-consuming sensors [6].

3.2.1 Piezoelectric Sensor. We use a piezoelectric sensor to capture
the temporalis muscle contraction (Figure 3a) that elevates the
mandible (the lower jaw) on chewing. This muscle contraction
generates huge mechanical dynamics on its skin, which is easily
noticeable even with our fingers.

Piezoelectric sensors require firm contact with human skin for
better sensing quality. Previous studies used form factors such
as headgear [13] and headband [12] or used medical tape [28] to
attach the sensor. We chose a novel design of piezoelectric sensor
placement on eyeglasses that is comfortable and achieves accurate
sensing. We place the sensor on the inner side of the eyeglass frame
near the ear, where the sensor’s contact with human skin could
be naturally provided. Figure 1b visualizes the placement of the
piezoelectric sensor on our prototype. This location near the ear is
where the temporalis muscle is located beneath the skin. Our sensor
placement could monitor chewing activity without causing user
discomfort. Our design is also readily applicable at most eyeglass
frames, as eyeglasses are commonly designed to be placed on ears.

3.2.2 Accelerometer. We use an accelerometer to capture the prop-
agation of mechanical vibrations (Figure 3b), which occurs when
chewing food — primarily caused by the crunched food and by
clenching the teeth. These mechanical waves propagate onto the
eyeglass frame via the locations near the nose and the ear, where
the eyeglasses are in contact with the human skin. We placed the
sensor on the eyeglasses temple, which is shown in Figures 1a
and 1b. As we place the small sensor on an eyeglasses temple, it is
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Figure 2: System Overview of MyDJ .
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Figure 3: FL on two datasets with different deadline configu-
ration methods: (a) Temporalis contraction. (b) Mechanical
waves propagation.

comfortable and easy to wear and could be integrated into various
eyeglass frames through simple adjustments.

3.2.3 Hardware Implementation. Our prototype is powered by
nRF52840, a 32-bit ARM Cortex-M4 MicroController Unit (MCU) by
Nordic Semiconductor, with a floating-point unit running at 64MHz,
1MB flash memory, and 256kB RAM. The MCU is connected to
LDT0-028K piezoelectric sensor and ADXL313 3-axis accelerom-
eter via a 12-bit Analog-to-Digital Conversion (ADC) interface
and I2C serial communication interface, respectively. We used an
MDBT50Q-P1M module that encapsulates the MCU connected to
a trace antenna for Bluetooth Low Energy (BLE) communication
and mounted it on our custom PCB (1.6 cm × 4.1 cm), alongside
with ADP3301 3.3V regulator, micro-USB connector, and micro SD
card connector. Figure 1 shows the example of a custom PCB being
attached to a commodity eyeglass frame with the 220mAh battery
inside a plastic housing.

3.3 Combining Raw Signals from Two Sensors
Using our MyDJ prototype, we capture the raw sensor responses
from both sensors and illustrate how each sensor captures unique as-
pects of the chewing signals when eating. We also explore whether
the sensor responses of eating could be distinguished from other
human activities. The sensor responses discussed in this subsection
used 256Hz and 400Hz sampling rates for a piezoelectric sensor and
an accelerometer sensor, respectively. We also use these sampling

rates in our eating detection framework in Section 3.4, which are
chosen to be minimal but sufficient to capture chewing signals after
multiple iterations of testing on different configurations.

First, we observe the raw time-domain signals on both sensors
when a user is chewing.We provide the raw data in two cases where
1) a user is chewing without head motion and 2) a user is chewing
and moving his head. The purpose of performing the second case
is to assess both sensors’ stability on MyDJ while a user is freely
moving one’s head while eating in a natural setting. In this scenario,
the person with MyDJ horizontally shakes the head at 0.5Hz while
chewing. Figure 4 shows the raw sensor responses of both sensors
for both cases.

We observe that each sensor captures unique signals distin-
guished from the other. The sensor response in Figure 4a shows
clear peaks at chewing by both sensors. The boxes in the figure
indicate the sensor-specific patterns of peaks observed with each
chewing activity. The piezoelectric sensor response shows a pattern
of low-frequency peaks of relatively long duration that starts with
the Jaw Elevation Start (JES) and ends after the Jaw Elevation End
(JEE). Such response pattern around JES and JEE matches with
the temporalis activity at the chewing cycle. On the other hand,
the accelerometer response shows high-frequency peaks of short
duration after the JEE. These high-frequency peaks are generated
from the interference of multiple mechanical waves propagated
from the chewing impulse.

When a user is chewing while moving his head (Figure 4b),
similar patterns are visible for both sensors, which indicates that
our design with these two sensors is robust to the motion noise.
Note that the y-axis range of Figure 4b is wider than in Figure 4a.

In Figure 5, we visualize both sensors’ responses with a sequence
of various human activities; walking, being stationary, eating, and
talking. It is shown as a time-domain raw data (top) and as a spectro-
gram that shows the frequency domain response over time (bottom).
From both sensors’ responses, eating is distinguished from other
activities in both the time and frequency domains. While walking
and eating seem to have similar high-frequency peaks at the time-
domain response of an accelerometer, their spectrogram response
shows distinct patterns, especially at the frequency range over
50Hz. The spectrogram of eating and talking in the piezoelectric
sensor shows distinct patterns, even though both activities include
jaw movements. This distinction stems from the fact that eating
involves more regular and intensive jaw movements than talking.
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Figure 4: Raw data signals from two sensors when chewing. The bottom images in Figure 4a are from the video recorded during
the experiment for demonstration. JPS, JES, JEE, and HMS stands for Jaw Protraction Start, Jaw Elevation Start, Jaw Elevation
End, and Head Moving Start. Boxes indicate the distinctive signal patterns of each sensor that appears with chewing. The
piezoelectric sensor shows low-frequency peaks of longer duration while the accelerometer shows short high-frequency peaks
after JEE, which indicates that these two sensors are sensing the different sources of signals from chewing activities.
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Figure 5: Time/frequency domain sensor responses at the sequence of different human activities.

3.4 Eating Detection Framework
3.4.1 Data Preprocessing. A piezoelectric sensor and an accelerom-
eter equipped on MyDJ continuously generate raw data stream
at 256Hz and 400Hz sampling rates, respectively. As we use a 3-
axis accelerometer that outputs X, Y, and Z values per sample, we
calculate the root sum squared of each value and use it as an ag-
gregated acceleration of the sample. Both streams of input data are
segmented into non-overlapping windows of three seconds, which
was chosen based on the previous work [12] that experimented
with varying window sizes for eating detection. We use the same
size of windows for both sensors to extract features from the same
window and determine whether a user is eating at the window,
which is further aggregated to detect eating episodes as illustrated
in Figure 3.4.3.

3.4.2 Feature Extraction and Selection. We apply feature extraction
and use extracted features as an input to the classification model.
While recent sensor-based applications use complex neural layers
(e.g., CNN, autoencoders) for artificial feature engineering [59, 70],
we use extracted features to minimize the power and memory

consumption. Note that we run our eating detection framework on
board of MyDJ to preserve user privacy without transmitting the
raw data externally.

By applying reflection padding at both ends, a three-second win-
dow is divided into 24 frames each, with 75% overlapping and a
one-second duration. On each frame, we extract three types of
frame-level features: Short-time Fourier transform (STFT), Mel-
Frequency Cepstral Coefficients (MFCCs), and Root-Mean-Square
(RMS). We chose STFT since the spectrogram response of eating
is visually differentiated from other human activities, as shown in
Figure 5. The MFCCs, which are widely used in automatic speech
recognition systems, were selected as they apply a discrete cosine
transform at mel-scale filter banks that mimic the human ear per-
ception of sound [32, 71]. STFT and MFCCs use the sampling rate
of each sensor as the number of FFT points. Lastly, we used RMS
to capture the mean power magnitude of the input signal.

Once we extract the features, We further statistically aggregate
frame-level features on each frequency to generate window-level
features as in BodyBeat [68]. In total, we extracted 1,500 features
(1,290 for STFT, 200 for MFCCs, and 10 for RMS) from each sensor
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Figure 6: Eating Episode Frames (EEFs) and eating episodes
generation from three-second windows.

on a three-second window. We further normalized these aggregated
features per person.

We performed feature selection on the extracted features to find
the minimal but optimal set of features for accurate eating detection.
We used Joint Mutual Information Maximisation (JMIM) [11] for
feature selection, which finds the optimal set of features that has
maximal Mutual Information (MI) with the label. According to the
benchmark study of various feature selection methods [14], JMIM
achieves the best median accuracy among all filter methods with
the selected set of features when it is tested on 16 large classification
datasets.

3.4.3 Window Classification and Eating Episode Detection. For
the classification of each three-second window, we used a fully-
connected Deep Neural network (DNN) classifier as in previous
approaches with the same type of sensors [26, 46]. While some
studies [13, 83] used lightweight linear classifiers such as Logistic
Regression (LR) or Linear Discriminant Analysis (LDA), we used
DNN as it shows superior performance in various domains [4],
including eating detection [24, 31], by capturing nonlinear separa-
tion within data. Other approaches [7, 8] used ensemble classifiers
such as Random Forests (RF), but their configuration with 100 trees
might result in large memory footprint (∼ 700KB) on wearable
microcontrollers. We used only one hidden layer with 50 hidden
nodes for our DNN, which consumes only 10.61KB of memory.

As the window-level classifier could output false-positive results,
MyDJ determines a user is eating based on the detection of eating
episodes.MyDJ detects eating episodes with a similar strategy from
a previous work [13]. Five consecutive three-second windows are
used to detect Eating Episode Frame (EEF) of 15 seconds, as shown
in Figure 6a. If there are more than two windows classified as eating,
the five windows are aggregated as EEF. Once the EEF is detected,
MyDJ determines that a user is eating.

We use 15 seconds for EEF to capture short instances of eat-
ing, such as snacking, instead of 1 minute used by the previous
work [13]. The rationale of using 15 seconds is to use multiple three-
second windows and to detect eating episodes that contain only
one chewing episode, which has 13 seconds of mean duration [65].

EEF becomes a building block of longer eating episodes, and
Figure 6b shows how multiple EEFs are aggregated into longer
eating episodes. Aggregated EEFs with an interval shorter than 15
minutes are considered as a single eating episode, as defined in
Section 2.1.

3.4.4 Software Implementation. Weused Python toolkit librosa [55]
for the extraction of all features and analysis on the server and used
R package praznik [42] for JMIM feature selection. We implemented

the DNN classifier with PyTorch [64] for the evaluation in Sec-
tions 5.2 and 5.3. For the evaluation of MyDJ ’s poweconsumption
in Section 5.4, we implemented the extraction of selected features
on our prototype in embedded C with nRF5 SDK provided by the
Nordic Semiconductor. We implemented DNN inference on our
prototype using matrix multiplication from CMSIS DSP Software
Library [49] that comes with the ARM Cortex processors.

4 DATA COLLECTION
We conducted two IRB-approved data collection studies with differ-
ent lengths and user constraints. From the first study, we collect our
training data where users’ behavior is precisely captured with the
camera. Since the primary goal of MyDJ is long-term real-world
usability, we collect the training data from the outside-the-lab en-
vironments for a day-long period. With this data, we train the
classification models for MyDJ to evaluate the accuracy of MyDJ
for a longer duration. To this end, we perform the second study
where we collect week-long data where more realistic and diverse
user behavior is captured without the camera. We interviewed the
participants of both studies on the experiences of wearing MyDJ
to assess the usability of the device.

4.1 Day-long Data Collection with
Ground-truth Collection Camera

We recruited 24 participants (13 males; 11 females; aged 20-46).
Twenty-one were university students and the rest were a nurse, a
homemaker, and an office worker. Nine users wear eyeglasses daily,
13 had worn eyeglasses in the past but were no longer wearing (i.e.,
got Lasik operations), and two had no experience of daily wearing
eyeglasses. Each participant participated for a day and got compen-
sated $50. Eighteen participants collected data on a weekday, while
6 participants collected on a weekend. On the day of the study, each
participant visited the laboratory in the morning to get equipped
with MyDJ-attached eyeglasses and left to collect data throughout
the day. We used one type of commodity eyeglass frames to attach
MyDJ for this study, which is shown in Figure 1. Note that we asked
the participants who wear eyeglasses on their daily lives to instead
wear contact lenses and then wear the MyDJ-attached eyeglasses
that we provide during the study. Participants were encouraged to
do any activity of their choice, including their regular daily routine.
Participants were allowed to take off eyeglasses when they were in
a situation that required it (e.g., swimming), but we asked them to
limit such time to a maximum of two hours. They returned to the
lab in the evening to return the device and be interviewed for the
experience of wearing MyDJ .

A total of 237 hours of data (9.88 hours on average per participant)
with 94 eating episodes (48 meals and 46 snacks) were collected.
Participants consumed various types of food, including meat (pork,
beef, and chicken), sandwiches, fried rice, hamburgers, noodles,
tonkatsu (pork cutlet), pizza, salad, cake, chocolate chips, etc. The
data also include diverse non-eating activities such as brushing their
teeth, riding a bicycle, driving, cooking, washing dishes, attending
a conference, playing drums, exercising in a gym, walking with a
dog, knitting, etc.

Ground-truth collection & annotation: To collect ground-
truths, participants were asked to carry a smartphone throughout
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Table 1: Specification of participants’ eyeglass frame and head.

Participant Id P25 P26 P27 P28 P29 P30

Frame

Image

Material Metal+Plastic Metal Metal Metal Plastic Plastic
Weight 21.8 18.5 21.4 14.9 20 33.6
H/W/D 47/129/137 46/135/146 33/128/133 42/133/132 45/132/138 44/137/144
T2T/E2E 140/113 142/99 132/113 133/96 130/136 158/162

Head O2O/HL 160/235 155/215 155/220 155/235 165/240 175/245
Units are given in g for weight and mm for length. The weight of MyDJ is 9.7g.

(a) Camera setup. (b) Screenshots from the collected videos.

Figure 7: Example of camera usage for ground-truth label col-
lection from the day-long study with various user activities;
eating, working at a desk, conducting a chemical experiment,
exercising at a gym, etc.

the day and record themselves with a front-facing camera. We
additionally provided a supplementary phone battery and a portable
smartphone flip stands for day-long recording. Figure 7 shows how
the camera and the experiment setup were used in the experiment,
along with example screenshots. We recorded the video without
sound. We asked the participants to record themselves as much as
possible, including the eating moments. We allowed them to cover
the lens when they were not eating and wanted to avoid the video
recording; however, with the participant’s approval, such data were
not erased and were simply annotated as non-eating. To assess our
camera system’s impact on participants’ data collection during the
study, we conducted a survey that asks how participants perceived
the camera system and report it in Section 6.4.

To synchronizeMyDJ sensors and the video, we asked the partic-
ipants to tap the temple of the eyeglasses nine times in front of the
camera at the beginning of the study. This created a unique sensor
signal pattern that allowed us to identify the exact synchronization
moment on both the video and the sensor data.

The annotation from the video was manually done by three of
the authors. One annotated the entire data, while the remaining
two divided the data into halves and annotated each, making two
sets of annotated labels. For the labels that conflict between the two
sets, each set’s annotators had a discussion session to determine
the final label for the data. We annotated the label in every second
of the data as one of the following: eating and non-eating. We
determined a second as eating if a participant chews food at least
once. Otherwise, a second was determined as non-eating. Thus,
drinking was not labeled as eating. Furthermore, for each of the
three-second windows, we determined a window as eating if any
of the three seconds was annotated as eating. Otherwise, the three-
second window was annotated as non-eating. We calculated the
intercoder reliability using Cohen’s Kappa [45] based on previous

Height 
(H)

Width (W)

Temple-to-temple
distance (T2T)

Earpiece-to-earpiece
distance (E2E)

Depth (D)

Obs-to-obs
distance (O2O)

Head Length
(HL)

Figure 8: Illustration on the metrics of eyeglass frame and
head of participants that are used in Table 1. Obs-to-obs is the
straight-line distance between the left and right otobasion
superius, which is the point of attachment of eyeglasses near
the temporalis muscle [54].

study [8]. Our annotation resulted in Kappa (𝜅) = 0.846, where
𝜅 > 0.8 represents almost perfect agreement [56].

4.2 Week-long Data Collection with MyDJ
Attached on Participants’ Eyeglasses

The goal of this data collection study was to evaluate the long-term
accuracy and usability of MyDJ when it is attached to users’ own
eyeglasses. We recruited six participants (four males; two females;
aged 25-51) who have their own eyeglasses and did not participate
in the prior study. Four were university students, and the rest were
a homemaker and a lecturer. The specification of participants’ eye-
glasses frame and head are shown in Table 1, and the metrics used
for the measurement are illustrated in Figure 8. Four users always
wear eyeglasses except when sleeping, and two users wear them
for few hours a day for specific purposes (e.g., driving, blue-light
protection). We asked participants to continuously wear eyeglasses
during the study. Each participant participated for seven days and
got compensated $150.

On the first morning of the study, each participant came to the
laboratory and we attached MyDJ on the participant’s eyeglasses.
Participants left to collect data and visited the lab on the evening of
the seventh day of the study to return the device and be interviewed.
The battery life of MyDJ performing data collection is longer than
a day; with average power draw of 22.95mW, it lasts 35.43 hours
on a 220mAh battery. Thus, we asked participants to charge MyDJ
once a day with a given micro-USB charger before going to bed,
to ensure that MyDJ is operating properly during the study. The
battery was not replaced during the study.

A total of 477 hours of data (11.34 hours on average per day
per participant) with 136 eating episodes (93 meals and 43 snacks)
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were collected. The data includes multiple eating episodes and
activities that are more diverse than the previous study. While
participants ate most types of food from the previous study, they
also ate new types such as dumplings, squid sashimi, peach, avocado,
fish and chips, soba noodles, grilled duck, lotus root, and shrimp.
Participants went to their ownworkplaces where they gave lectures,
conducted chemical experiments, etc. They also went to multiple
public places and social meetings, where they used various modes of
transportation (e.g., driving, riding a bus, subway, or bicycle). One
participant even went on a date with MyDJ-attached eyeglasses.
We conducted a survey that asks how participants perceived the
social acceptance of MyDJ at different places (Section 5.5).

Ground-truth collection&annotation: We removed the smart-
phone camera from this study to minimize the constraints on the
participant’s behavior. Instead, we collected the ground-truth via
a mobile messenger app (KakaoTalk [21]) as shown in Figure 9.
During the study, the participants were asked to send information
to the authors about their food intake in real-time. The information
includes (1) start and end time of the food intake at a minute-level,
(2) types of food that are being consumed and its image, (3) whether
it is snack or meal, and (4) whether a participant is confident about
the time of the food intake. The confidence was collected as partic-
ipants occasionally forgot to send messages in time; participants
were instructed to send their best guess on the time of the food
intake when they were not confident. Out of 136 eating episodes,
120 were replied as confident in this data collection study, and we
excluded non-confident eating episodes from the evaluation.

5 EVALUATION
We evaluate MyDJ to answer the following key questions: 1) How
accurate is MyDJ in eating detection? 2) How much power does
MyDJ consume? 3) How is the user experience of wearing MyDJ?

5.1 Experiment Settings & Procedures
We preprocessed the collected data and trained the eating detection
model to assess if MyDJ performs well in the wild. We evaluate the
eating detection accuracy of MyDJ in both studies by comparing
different types of input features on the metrics as follows.

5.1.1 Input Feature Types. To understand the effectiveness of fus-
ing two different types of sensors onMyDJ , we show our evaluation
results on each following input feature types: Piezo, Accel, and Com-
bined. Piezo uses only the features from the piezoelectric sensor
on MyDJ , Accel uses only the features from the accelerometer on
MyDJ , and Combined uses the input features from both sensors,
representing the performance of our design with MyDJ .

5.1.2 Evaluation Metrics. We use the following metrics to evaluate
the eating detection accuracy of MyDJ :

• Accuracy / F1-score / Precision / Recall:We measure these
metrics on the eating episode coverage. We mainly focus on
F1-score as eating, and non-eating data are highly unbalanced
(1:19.75 in our day-long study dataset). Figure 10 shows an
example of how the eating episode coverage is processed to
calculate each metrics. TP, TN, FP, and FN are all used to
calculate accuracy, F1-score, precision, and recall.

• Undetected eating episodes / False alarms: We count the
number of ground-truth eating episodes without true pos-
itives as undetected eating episodes to evaluate how often
eating episodes MyDJ would miss. Moreover, we count the
number of detected eating episodes without true positives as
false alarms to evaluate how often false alarms MyDJ would
trigger. We also provide analysis on each occurrence of un-
detected eating episodes and false alarms to better understand
under what circumstances MyDJ works and fails.

• Coverage ratio / Duration difference / Delay: We addi-
tionally measure the metrics that were widely adopted in
other eating detection approaches [7, 8, 13]. The coverage
ratio is defined as the percentage of the correctly recognized
duration of an eating episode. Note that the recall and the
coverage ratio are equivalent on an eating episode, but we
report the recall by averaging it per person, while we report
the coverage ratio by averaging it per episode. The duration
difference is defined as the absolute duration difference be-
tween an eating episode and corresponding detected eating
episode, and the delay is defined as the elapsed time from
the beginning of an eating episode which the system starts
to detect it.

5.1.3 Method. For each input feature type, we processed the data
and extracted features following the method presented in Sec-
tion 3.4. For the day-long study, we applied the Leave-One-User-Out
(LOUO) methodology to study the performance of MyDJ when de-
ployed to a new user. We divided the 24 users into one test user
and 23 training users and performed feature selection on the 23
training users. From the feature selection result, we used top-K
selected features for training a DNN for window-level classifica-
tion. DNN was trained with 23 training users, and we explored the
impact of K from the following list: 5, 10, 20, 50, 100, 500, and 1,500.
The motivation for using different numbers of selected features
is to assess MyDJ’s accuracy with a smaller number of features,
as the number of input features is a crucial factor for the power
and memory consumption of the system. We split the test user’s
data into two chunks by dividing it in half without shuffling, which
ensures at least one meal to be included in each chunk. We tested
each test user twice and averaged the results, with configuring
one chunk as the validation data and the other as the test data,
and vice versa. After training the window-level classifier, we infer
the window-level label of the test data chunk and perform eating
episode detection based on the method described in Section 3.4.3.
We repeat the above process 24 times with configuring each of the
24 users as a test user and report the average accuracy and per-user
accuracy. For each training process, the model was trained for 50
epochs with a learning rate of 0.001.

For the week-long study, we utilize a pre-trained model that is
trained while evaluating the day-long study to infer the window-
level label and perform eating episode detection. We chose a model
for each Piezo, Accel, and Combined, which have shown the highest
F1-score onwindow-level classificationwith each input feature type
on the day-long study dataset. Moreover, we perform fine-tuning
on the pre-trained model of Combined to generate a personalized
model on each user to validate if MyDJ performs better when
trained with the target user data. From seven days of data on a
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ID Day Time confidence Type Details

P27 Aug 
18th

22:07-
22:40 False Snack ice cream, 

cookie

P29 Aug 
21th

09:10-
09:43 True Meal

salmon, salad, 
onion, avocado, 

kimchi, rice, apple

Figure 9: Ground-truth label collection during the week-long study.
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Figure 10: An example of eating episode coverage calculation.
TP, TN, FP, and FN stand for True Positives, True Negatives,
False Positives, and False Negatives respectively.

user, we use the data from a single day to fine-tune the pre-trained
model and evaluate on the remaining six days, which we repeat the
process seven times for each user with utilizing each day for fine-
tuning. To generate the personalized model, the pre-trained model
was additionally trained with smaller epochs (=5) and learning
rate (=0.00001), as common practice for fine-tuning [47]. From the
evaluation, we exclude eating episodes in which participants did
not reply “confident” for its start and end times.

5.2 Day-long Study Results
Figure 11 shows the performance of MyDJ with a different num-
ber of selected input features from the day-long study. Figure 11a
shows the average F1-score in eating episode coverage. The Com-
bined outperforms both Piezo and Accel by up to 0.136 in the mean
F1-score. The mean F1-score of Combined stays consistently high
even with decreasing number of input features, with >0.890 mean
F1-score in eating episode coverage at all number of selected fea-
tures. In contrast, with a number of features less than 100, a mean
F1-score of <0.840 could be achieved using only a single sensor.
Compared with the 1,500 features case, Combined could achieve a
99.7% reduction of input feature space with five features, sacrificing
only 0.037 in mean F1-score. The Accel shows a comparably high
mean F1-score at 500 selected features, but the usage of both sen-
sors in Combined produces high performance with a low number of
selected features, which is critical in maintaining low computation
and memory consumption of the system.

Figure 11b and 11c each depicts the averaged counts of unde-
tected eating episodes and false alarms from 24 participants on a

different number of selected features. Combined shows fewer unde-
tected eating episodes than Piezo and Accel at all number of selected
features. Combined maintains ≤3 over all number of selected fea-
tures while Piezo and Accel yield as high as 22 and 11 undetected
eating episodes. This result suggests that the fusion of both sensors
reduces occurrences of undetected eating episodes. For false alarms,
Accel shows the least count with features less than 20, while Com-
bined shows the least count otherwise. We suspect that Accel with
a small number of features reliably classifies non-eating data but
also classifies some borderline eating cases as non-eating, as it has
higher precision than recall (e.g., 0.901 vs. 0.831 with 15 features).

Based on our experiments, we recommend to use 50 input fea-
tures for MyDJ . While decreasing the number of input features
would reduce computation overhead, we also aim to achieve high
eating episode coverage with fewer undetected eating episodes and
false alarms. We chose 50 input features as MyDJ achieves 0.919
F1-score in eating episode coverage while it drops to 0.917 and 0.916
with 20 and 100 input features, respectively. MyDJ achieves >0.920
F1-score with 500≥ features, but we use 50 features as it requires
10× feature processing for only 0.005 F1-score improvement. 50
input features also yield the lowest false alarms and comparably low
undetected eating episodes (=2). Our recommended model for MyDJ
achieves 0.984 accuracy, 0.919 F1-score, 0.923 precision, and 0.925
recall in eating episodes coverage while detecting 92 out of 94 eating
episodes only with 12 false alarms from the day-long experiment
with 24 participants. It also achieves a 92.0% coverage ratio and 121.4
seconds of duration difference for each eating episode, with 11.9
seconds of delay in detecting the beginning of the episode. Note
that it shows a 0.794 F1-score in window-level classification, which
is comparable with a state-of-the-art system [13] that performs
window-based eating detection.

Two undetected eating episodes were less than a minute long,
where participants had a mini Oreo and tapioca balls in the bubble
tea. We suspect MyDJ could not detect the short episodes with
these small-sized snacks, as it is primarily trained on meal data. We
found that false alarms mostly occurred in unusual circumstances,
such as when a participant fiercely scratched her head or walked
unsteadily with irregular steps. 10 out of 12 false alarms have a
duration of 15 seconds, which is a length of an eating episode frame.
Ones with longer durations (164 and 494 seconds) happened when
a participant was exercising in a gym or walking outside. We expect
such occurrences will be reduced when the MyDJ is trained with a
larger and more diverse set of real-world data.
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(a) Eating episode coverage F1-score.
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(b) Undetected eating episodes.

5 10 15 20 50 100 500 1000 1500

Num of Selected Features

20

30

40

F
a
ls

e
a
la

rm
s

piezo

accel

combined

(c) False alarms.

Figure 11: Averaged results on a different number of selected features from the day-long study.
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Figure 12: Episode-level F1-score per participant from the day-long study.

In Figure 12, we report the per-participant F1-score of the eating
episode coverage. In both cases, we observe that Combined consis-
tently shows higher F1-score for every participant compared with
Accel and Piezo. The lowest F1-score of Combined among all par-
ticipants is 0.671, which outperforms the lowest F1-score of Accel
(0.221, P23) and Piezo (0.0, P18). Our results suggest that eating de-
tection systems with a single accelerometer on glasses could result
in low accuracy for some users — such as P3, P15, and P23 in our ex-
periment. Some users (P12, P18) show extremely low performance
with Piezo; we suspect that their eating data on the piezoelectric
sensor is distinct from others, as the classifier trained on other users
classifies most of the eating data as non-eating. For participants P1,
P7, and P23 who had low Combined F1-score (< 0.8), we suspect
that their chewing styles were different from the majority of users.
We believe their performances could be further improved by model
personalization as we introduce in Section 5.3. In summary, Com-
bined (i.e.,MyDJ) consistently provide the highest F1-score on each
participant for most of the cases (14 out of 24), providing at least
> 0.671 F1-score on all users even if the single-sensor approach
outperforms.

5.3 Week-long Study Results
Figure 13 shows the per-participant performance of MyDJ from
the week-long study. For each participant, Figure 13a depicts the
F1-score in eating episode coverage, while Figures 13b and 13c show
the number of the undetected eating episodes and the false alarms, re-
spectively. Between the pre-trained models, Combined achieves the
highest mean F1-score of 0.777, while Piezo and Accel achieve 641
and 651, respectively. The lowest F1-score of Combined among all

participants is 0.626 (P30), which outperforms the lowest F1-score
of Piezo (P29, 0.381) and Accel (P26, 0.185). In addition, the mean
coverage ratio of Combined is 0.894, which outperforms Piezo (0.703)
and Accel (0.703). This result suggests that multimodal sensing of
Combined provides a high F1-score and coverage ratio on most users
with different types of eyeglass frames.

Moreover, the total count of undetected eating episodes of Com-
bined is nine, which is less than Piezo (26) and Accel (27). Every
undetected eating episode from the pre-trained Combined model
were snacking episodes, except for one meal episode, which was
only three minutes long. This does not mean that MyDJ cannot de-
tect short eating episodes; 12 of 17 eating episodes that are less than
or equal to three minutes long were detected. Participants were
having eggs, banana, peach, ice cream, grapes, or fried onion when
eating episodes were undetected; however, MyDJ detected other
eating episodes with these foods (e.g., MyDJ detected a participant
having ice cream for seven minutes). The total count of false alarms
of Combined is 91, which is more than Accel (57) but less than
Piezo (132). While Accel results in the least count of false alarms,
it results in more false alarms than other input types on one user
(P26). Combined consistently shows ≤23 false alarms on each user,
with less undetected eating episodes than single-sensor approaches
on all users. Among the false alarms on the pre-trained model of
Combined, 63 out of 91 were less than a minute long. The longest
false alarm was 33 minutes and 44 seconds long. As we did not
use a camera at the week-long study, we asked participants what
they were doing when the false alarm happened. For the long false
alarms, participants replied that they were wearing a headphone, a
VR headset, or a safety goggle, whichmight have physically adhered
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Figure 13: Per-participant results from the week-long study. All subgraphs share the same legend of Figure 13b.

with MyDJ and affected the sensors. Participants also replied that
they were working out at a gym when false alarms were detected.
We expect these false alarms could be resolved when the model
is trained with more diverse real-world data. Some participants
replied that they were chewing straws with iced drinks at the false
alarm moments, which indicates that MyDJ detected chewing as
designed for such occasions.

The pre-trained model of Combined further improves with the
fine-tuning process. The mean F1-score increases by 0.072 on the
personalized model (0.777 to 0.849), with the lowest F1-score in-
creasing by 0.154 (0.626 to 0.780). While there exist users (P26 and
P27) whose F1-score decreases with the personalized model, their
F1-score drop (0.002 and 0.025) is significantly lower compared
with the user who gained the most F1-score after fine-tuning (P30,
0.229). Moreover, the personalized model results in 12.4 undetected
eating episodes and 37.4 false alarms on average of seven iterations
of fine-tuning. The count of false alarms decreased more than twice
after fine-tuning on most users, while the number of undetected
eating episodes only increased by 0.5 per user. The mean coverage
ratio decreased after fine-tuning (89.4% to 84.5%), but it still shows
≥72.6% coverage ratio on all users. In a nutshell, the personalized
model improves the F1-score and reduces false alarms, especially
on users with low performance on the pre-trained model. As gen-
erating the personalized model requires a user to provide labels as
in our week-long study, we interviewed the participants on their
experience of labeling and further discuss it in Section 6.3.

5.4 Power Consumption
We used Monsoon Power Monitor (FTA22D) [36] to measure the
power draw of our prototype on performing real-time eating detec-
tion. We divided the functionality of MyDJ into three categories;
raw data sensing, feature extraction, and classification. Starting with
the idle state of the device that does not perform any functionality,
we added each functionality one by one to measure the power con-
sumption of each. For each measurement, we measured the power
draw by averaging the results from five minutes of execution. We
used a 3.7V voltage supply of the power monitor.

The results reported in Table 2 show that the total power draw
of MyDJ is 26.06mW, which results in 66 hours and 38 minutes of
operation time with the same battery of recently released commod-
ity smart eyeglasses (470mAh, Vuzix Blade Upgraded [80]). This
is 4.03× longer battery time compared with the reported battery
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Figure 14: User experience questionnaire scores onMyDJ and
regular eyeglasses.

time of the state-of-the-art eating detection system on glasses [7].
We observe that most of the power was drawn by the raw data
sensing with two sensors. We also note that the power consumption
of the classification is noticeably small. We conjecture that this is
due to the small size of the neural network (50×50×2 nodes) and
the power-efficient matrix multiplication APIs of ARM.

5.5 User Experience Survey
To assess the comfort level of wearing MyDJ in uncontrolled en-
vironments, we first asked two questions to the 24 subjects (P1 -
P24) who participated in the day-long study: (Q1) How convenient
was it to put on the wearable device? (Q2) Would you wear this
device in your daily life? Questions were answered with a 0-10
point scale, where 10 indicates the highest comfort. Moreover, to
further understand the user experience of wearing MyDJ at a long
term, we surveyed six subjects (P25 - P30) who participated in the
week-long study. We asked how much do participants agree with
the following statements, where each describes a different impres-
sion of wearing a device in their daily life: (Q3) I could wear this
device for more than a week in my daily routine. (Q4) Wearing this
device made it difficult to carry out my daily life. (Q5) I do not feel
secure and safe wearing the device in my daily life. Participants
answered each statement with a 0-10 point scale, where 0 indicates
“strongly disagree” and 10 indicates “strongly agree”. In addition, we
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Table 2: Power measurements ofMyDJ on each functionalities.

Functionalities Average Power Draw(mW) Battery Life1

Idle 10.76 161 hrs 20 min
Raw data sensing with two sensors +8.73 89 hrs 11 min

Feature extraction +6.38 67 hrs 7 min
Classification +0.19 66 hrs 38 min

Total 26.06 66 hrs 38 min
1 Battery life is calculated based on the 470mAh battery of recent smart eyeglasses, Vuzix Blade Upgraded [80].

interviewed the six users’ experience of wearing MyDJ in the long
term, in terms of its social acceptance and frame weight unbalance.

We additionally asked Q1, Q2, and Q4 on regular eyeglasses to
understand the participants’ personal preference on eyeglasses-type
wearables. For the questions on regular eyeglasses, participants
answered based on their personal experiences or perceptions of
wearing eyeglasses.

Comfort: Figure 14a shows the box plot graphs of the survey
scores. For Q1, MyDJ scores 6.58 ± 2.15 and the regular eyeglasses
score 7.13 ± 1.90 from 24 participants. For Q2, MyDJ scores 6.54
± 2.45 and the regular eyeglasses score 6.70 ± 2.42. Moreover, we
conducted a paired t-test (𝛼=0.05) on Q1 and Q2, as both results
are found to be following normal distribution on the Shapiro–Wilk
test [73]. For Q1, the p-value ofMyDJ is 0.02009, indicating that both
results are statistically distinguished and the regular eyeglasses are
found to be more comfortable than MyDJ for our participants. For
Q2, however, MyDJ shows a p-value of 0.76, where participants are
willing to wear MyDJ at a similar level compared with the regular
eyeglasses. We noticed that there were users who were not willing
to wearMyDJ , regardless of its functionality. Nine participants who
wear eyeglasses daily gave a higher score to MyDJ (Q1: 6.78 ± 1.64,
Q2: 6.89 ± 2.09) than others (Q1: 6.46 ± 2.44, Q2: 6.33 ± 2.69), which
indicates that users who do not usually wear eyeglasses prefer
less to adopt MyDJ .However, most users replied that the overall
experience of wearing MyDJ was comfortable, that MyDJ scored
94.95% of the regular eyeglasses on average: “I found no difference
of wearing MyDJ with wearing regular eyeglasses. As I’m wearing
eyeglasses daily, I would be happy to wear them with some additional
functionalities.” (P5, P8).

Long term wearability of MyDJ:. Figure 14b shows the box
plot graphs of the Q3-Q5 scores. For Q3, participants gave a score of
8.33 ± 2.25, where they mostly agreed to wear MyDJ for more than
a week. We additionally asked the maximum duration that each
user could wearMyDJ . Four out of six participants replied that they
could continuously wear MyDJ , and one other participant replied
“1 year”. A remaining participant who replied “1 week” explained
that the difficulties with the currentMyDJ prototype: “As the device
externally exposes the circuit board and the wires, I was worried that
the device could be broken when I played sports or got caught in the
rain.” (P29). We believe that this problem could be easily handled by
encapsulating and protecting each component of MyDJ in future
prototypes. While our study lasted for only a week, this result
suggests that MyDJ with durable prototype could be accepted on
most users for more longitudinal study.

For Q4, MyDJ (3.5 ± 2.43) and the regular eyeglasses (1.67 ±
1.03) score below 5 on average, indicating that both wearables do
not significantly disturb users in their daily routine. A participant
who gave the largest score difference (MyDJ 8, regular eyeglasses 3)
implied that it is due to the pain from the prototype’s piezoelectric
sensor film: “I could continuously feel the sharp edges of the film
sensor on my skin” (P30). Again, we expect this would be resolved
in the next prototypes of MyDJ by switching the sensor with a soft
and stretchable design [76] or packaging it with soft silicon-based
protection [16]. We also asked whether the participants changed
their schedule because of the fact that they are wearing MyDJ , and
all the participants replied they were able to go through a week as
scheduled:“The eyeglasses feel mostly the same with and without the
attachable device, and there was nothing that I couldn’t do because of
the device.” (P25, P27).

For Q5, participants gave a score of 1.00 ± 1.10, where most of
them felt safe and secure while wearing MyDJ . One participant
mentioned that the narrowed-down vision could become a problem:
“The battery part of the device blocked my sight, and that felt slightly
risky when I was working out or jogging.” (P25). We believe that this
could be resolved by placing the battery at different locations (e.g.,
on the circuit board) or using a narrower battery that fits the width
of the eyeglass frame.

Social acceptability: To understand how the physical appear-
ance of MyDJ impacted the users in the long term, we asked par-
ticipants if they were worried about how they look with MyDJ .
Four out of six participants replied that they were completely fine
with their appearance while wearingMyDJ . Other two participants
replied that they felt unnatural to put an additional device on the
eyeglasses: “I felt that the device attachment on my eyeglasses make
them look different from ordinary eyeglasses, and this made me worry
about what others would think.” (P28, P29). However, both partici-
pants reported that the main problem arose from the appearance of
the current prototype, where a circuit board and wires are exposed.
They both agreed that the problem would be resolved if the next
prototype ofMyDJ has electronics housing. Moreover, a participant
mentioned that wearing MyDJ would be much easier if it becomes
a mainstream wearable: “We all laughed at Airpods when it first
came out, but we all wear it now. Just like that, I think wearing this
device will no longer make me nervous when many others are wearing
it.” (P29).

Additionally, we asked participants how the others reacted when
they wore MyDJ . Most of the participants replied that they were
frequently asked multiple times about what the device was, but
they haven’t received any negative comments about the device.
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Table 3: A comparison with the previous eating detection studies. We compare the following metrics: F1-score, Undetected
Eating Episodes (UEE), False Alarms (FA), Power Draw (PD) in mW, Battery Capacity (BC) in mAh, and RunTime (RT) in hours.

Year Study Wearable Sensors1 F1 UEE FA PD2 BC RT

2015 Thomaz et al. [78] smartwatch S1 0.76 - - - - -
2016 Farooq et al. [27] eyeglasses S4 1.004 - - - - -
2017 Bedri et al. [8]3 outer-ear flap S1-S3 0.80 1 out of 16 (0.06) 2 - - -
2017 Chung et al. [18] eyeglasses S6 0.944 - - - - -
2018 Bi et al. [13] headgear S4 0.78 2 out of 26 (0.08) 12 14.47 110 28.10
2018 Chun et al. [17] necklace S5 0.75 - - 82.22 400 18
2018 Farooq et al. [29] eyeglasses S1 0.86 - - - - -
2018 Zhang et al. [83] eyeglasses S7 > 0.77 1 out of 44 (0.02) - - - -
2019 Zhang et al. [84] necklace S1-S3, S5, S8 0.77 13 out of 76 (0.17) - 81.96 350 15.80
2020 Bedri et al. [7]3 eyeglasses S1, S2, S5 0.89 6 out of 28 (0.21) 4 105.08 900 31.68

2022 MyDJ eyeglass attachable S1, S4 0.92 2 out of 94 (0.02) 12 26.06 220 27.83
1 S1-accelerometer, S2-gyroscope, S3-magnetometer, S4-piezo, S5-proximity, S6-load cell, S7-EMG, S8-light
3 Power draw values are calculated assuming the 3.7V powered system.
3 These studies tried multiple combination of wearables and sensors, and here we report what they recommended for the real-world usage.
4 These studies report the F1-score from the in-lab study.

Some participants even replied that the people they meet daily (e.g.,
family, friends, colleagues, etc.) mostly haven’t noticed a difference
while MyDJ was attached: “My family did not know the presence of
the device for days until I explain it first.” (P27), “Most of my colleagues
did not notice it at first glance. Later, some of them asked me if I have
got a new pair of eyeglasses.” (P25, P30). One participant mentioned
that others questioned if MyDJ contains a camera: “Some of my
colleagues asked if the device is recording video. After I explained the
type of sensors on the device and how it worked, they were fine with
it.” (P28). This indicates that the device could be initially viewed
privacy invasive, but our MyDJ design without such sensors (e.g.,
camera) make it less concerning.

We asked if it was difficult to go to public space or social meet-
ings with MyDJ . Five of six participants found it not difficult to
wear MyDJ in such contexts. It is also shown in what participants
reported during the week-long study that they have been to malls,
gyms, restaurants, lectures (as a lecturer), and dates while wearing
MyDJ . One participant who opposed others replied that it is mainly
due to others asking frequently: “I become more nervous as others
ask what the device is, and that made me avoid going to the public
places.” (P29). We envision this problem to be resolved with smart
eyewear being more widespread and common.

Weight imbalance: Five of six subjects replied that the weight
imbalance of eyeglass frame due toMyDJ attachment did not make
them uncomfortable. This includes the participant with the lightest
eyeglass frame (P28, 14.9g). Nevertheless, participants generally
reported that they could sense the weight imbalance when MyDJ
is attached. A participant who replied that the weight imbalance
was uncomfortable said that the problem is temporary: “I initially
found it disturbing, but soon I got used to it. It feels like wearing a
new eyeglass frame and adapting to it.” (P29). While participants
replied that the weight imbalance problem does not cause long-term
discomfort, this could also be handled by attaching a similar weight
at the other side, after minimizing MyDJ at the next prototypes.

Battery management: Five of six participants reported that
they had no problem with chargingMyDJ once a day. A participant
mentioned “I always chargemy phone and smartwatch before going to
bed, and it was no hassle to add one more device.” (P25). A participant
with a different opinion from others replied “I usually charge my
electronics during daytime, but I had to additionally charge this device
while I was asleep, because I cannot see anything while it’s charging.”
(P26). The participant further expressed that the problem would
be resolved if MyDJ could be easily attached and detached from
eyeglasses, which would allow it to be charged during daytime.
This is part of our plan in developing the next prototype of MyDJ .

6 DISCUSSION
6.1 Comparison with Previous Methods
Table 3 compares the F1-score, undetected eating episodes, false
alarms, and battery life of MyDJ with the previous eating detec-
tion studies reported by each work. Chung et al. [18] and Farooq
et al. [27], which evaluated their system in lab settings showed
higher F1-score than other approaches with in-the-wild evaluation
methods. MyDJ achieves the highest F1-score among the studies
with in-the-wild experiments, with the least ratio of undetected eat-
ing episodes to the total eating episodes. Compared with Farooq
et al. [29] that used one accelerometer placed on the eyeglasses,
MyDJ reports higher F1-score due to the multimodal sensing of
MyDJ with additional piezoelectric sensor. Note that a comparison
of results reported by each different paper is not ideal, as each
study used the data collected from different group of people and
environments. Nevertheless, we believe that such comparison gives
insights in understanding the performance of MyDJ over prior
studies.

MyDJ also shows 4.03× less power consumption than the state-
of-the-art system on eyeglasses (Bedri et al. [7]), due to the use of
less number of sensors with lower sampling rate (400Hz vs 4kHz
on an accelerometer). While Bi et al. [13] achieves the lowest power
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draw, MyDJ achieves less ratio of false alarms to the total eating
episodes with a runtime over a day on a 220mAh battery.

6.2 Performance on Different Eyeglass Frames
While we have demonstrated the performance of MyDJ on various
eyeglass frames in Section 5.3, one might wonder how different
eyeglass frames could affect the performance of one person. Three
of our lab colleagues performed a pilot study where they wore three
types of eyeglass frames with MyDJ for three days, wearing each
frame for a day. We chose a frame from three major categories
of eyeglass frames [48], which are rimless, semi-rimless, and full-
rimmed. None of the three participants were authors. We used
the model trained in Section 5.2 to infer the collected data. The
results show thatMyDJ performs ≥0.886 F1-score in eating episode
coverage regardless of the frame type on the participants. The
largest F1-score difference between eyeglass frames on each of the
three participants were 0.084, 0.095, and 0.038. The semi-rimless
eyeglass frame shows the highest F1-score (0.987, 0.981, 0.954) on
all participants, while the rimless eyeglass frame shows the lowest
F1-score (0.903, 0.886, 0.916) on all participants. We believe the low
performance of certain frames could be improved with fine-tuning
as in Section 5.3, or using a model that is trained on data from
various frames.

6.3 User Experience on Providing Labels for the
Model Fine-tuning

We observed that the personalized model shows improved perfor-
mance for a portion of participants in Section 5.3. As it requires
the user to manually label their eating episodes for a day, we asked
participants if conducting such a task is feasible for better perfor-
mance. All of the six participants replied that they could provide
such labels for one or two days: “It was not really a burden for me,
as I usually take a picture of everything I eat.” (P26). However, par-
ticipants mostly agreed that the labeling process should be eased,
rather than entering plain text on a mobile messenger app: “It would
be much easier with a fixed-form entry, as it was hard to recall the
things that I should record each time.” (P30), and “I expect this process
to be challenging for elderly, as they are not all familiar with using
keyboards on smartphones.” (P27). Based on the feedback, we believe
the model personalization on newMyDJ users could be done, but it
requires a simpler method of label entry. We leave this as our next
step of research.

6.4 Impact of the Ground-Truth Collection on
Smartphone Camera

We conducted a qualitative study on participants to assess the im-
pact of our ground-truth collection system on the day-long study.
We asked the participants if the smartphone camera system gen-
erally affected their movement or eating activity. Few participants
replied that their behavior has changed due to the presence of a
video-recording smartphone in proximity: “I unusually wiped out
my mouth multiple times while eating, as I could see myself from
the smartphone screen.” (P24) and “At the beginning of the study, I
felt weird because of the feeling of being watched. However, I soon
got used to it.” (P12). Nevertheless, most participants replied that
they did not feel any change: “I did not care the camera at all while

eating.” (P17). We asked the participants if they had changed their
daily schedule because of the smartphone camera system, and all
participants replied that there was no change in their schedule.

6.5 Limitations
Eyeglass form factor: One clear limitation of MyDJ is that it

cannot support eating detection on people who do not desire to
wear eyeglasses. As shown in Section 5.5, there are users who do
not want to wear eyeglasses, where one of the primary reasons is
the societal perceptions that wearing eyeglasses is unattractive [40].
However, as discussed in Section 2.2, eyeglasses are familiar to more
users than other eating detection form factors (e.g., necklaces). We
believe that eyeglasses could gain popularity with various smart
glasses and AR glasses appearing with numerous functionalities [34,
37, 53, 77, 81, 85].

Data collection on multiple glass frames: While MyDJ is
designed to be attached to any eyeglass frame, we collected our
training data on a single eyeglass frame. While our model success-
fully detected most of the eating episodes on the participants’ own
eyeglasses, we expect our model could be more robust to different
eyeglass frames when it is trained on the data from various frames.
This is part of our future work.

6.6 Use Cases of MyDJ
We expect user application of MyDJ could be helpful for real users
in the following ways. First, whenMyDJ detects the eating moment
of a user in real-time, the system could provide Just-In-Time Adap-
tive Interventions (JITAI) to provide feedback based on the user’s
eating activity. For example, a system could be designed to prevent
overeating, providing real-time interventions when a user is spend-
ing too much time eating [84]. Second, when a user wears MyDJ
long-term, aggregated result of detected eating episodes could be
used to provide personalized feedback on the user’s eating activ-
ity. For example, if there are a number of detected eating episodes
around nighttime, the system could suggest users to have fewer
midnight snacks. We believe that designing the appropriate user
application with MyDJ could potentially help 1.9 billion and 650
million overweight and obese people worldwide, respectively [63],
and 70 million patients with eating disorders [30].

7 CONCLUSION
WeproposeMyDJ , an accurate and energy-efficient eating detection
system that could be attached to any eyeglass frame. Our sensing
fusion of a piezoelectric sensor and an accelerometer on an eyeglass
temple achieves accurate sensing in uncontrolled environments,
as each low-power sensor captures the distinct source of chewing
signals. We collected a total of 714 hours of data with 30 partici-
pants from uncontrolled environments, where six of them attached
MyDJ on their eyeglasses for a week. MyDJ reaches 0.984 accuracy
and 0.919 F1-score in eating episode detection outside-the-lab, with
a 4.03× battery time improvement over the state-of-the-art eating
detection glass system. Our survey on the comfort level of wearing
MyDJ shows a 94.95% score compared with wearing regular eye-
glasses. We believe realizing high accuracy, energy efficiency, and
user comfort is the right step toward developing automated eating
detection systems in practice.
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