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ABSTRACT 
Refecting on stress-related data is critical in addressing one’s men-
tal health. Personal Informatics (PI) systems augmented by algo-
rithms and sensors have become popular ways to help users collect 
and refect on data about stress. While prediction algorithms in the 
PI systems are mainly for diagnostic purposes, few studies exam-
ine how the explainability of algorithmic prediction can support 
user-driven self-insight. To this end, we developed MindScope, an 
algorithm-assisted stress management system that determines user 
stress levels and explains how the stress level was computed based 
on the user’s everyday activities captured by a smartphone. In a 25-
day feld study conducted with 36 college students, the prediction 
and explanation supported self-refection, a process to re-establish 
preconceptions about stress by identifying stress patterns and re-
calling past stress levels and patterns that led to coping planning. 
We discuss the implications of exploiting prediction algorithms that 
facilitate user-driven retrospection in PI systems. 

CCS CONCEPTS 
• Human-centered computing → Empirical studies in HCI. 
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1 INTRODUCTION 
Many college students report experiencing varying levels of stress 
throughout their college lives. Furthermore, they are especially 
vulnerable because they are in the life stage which mental health-
related problems frst appear [33]. Stress can interfere with students’ 
productivity and adversely afect both physical and mental health 
[48, 53]. Exposure to numerous stressors, and the resulting reac-
tions to stress can lead to decreased well-being. However, learning 
about one’s stress reactions can be a challenge. Discovering how 
to change stress-related behavior requires empowering views of 
reality with insights about the current situation [71]. Thus, self-
refection—a process of examining and paying attention to one’s 
cognitive, emotional, and behavioral status—plays a key role in 
managing one’s stress reactions and dealing with situations that 
cause stress, as it can help to calibrate the individual’s actions in 
the future based on data-driven self-insights [79]. 
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Figure 1: The MindScope Application. Stress Prediction Re-
ports (left) and Stress pattern in calendar Overview (right) 

In the human–computer interaction (HCI) feld, personal in-
formatics (PI) systems have proven their efectiveness in manag-
ing diverse health issues by helping users gain insights from self-
refection on past behaviors and suggesting future actions to deal 
with identifed problems [23]. Earlier research reported that users of 
PI systems were able to gain insight about personal health by observ-
ing peaks, trends, and correlations of the health-related data [16]. 
For example, the PI system can facilitate introspection of health-
related problems by visualizing associations between data obtained 
from sensors that refect users’ daily lives and self-reported data 
[28, 40]. The PI system, which aims to collect and refect personal 
information to help users achieve well-being and positive behav-
ior changes, is widely used to manage mental health domains (e.g., 
stress [1], mood [13, 54], and emotion [29]). Moreover, the PI system 
continues to evolve with the development of intelligent technology. 
Recent advances in passive sensing technology using smartphones 
and wearable devices have brought signifcant progress to the feld. 
Enhanced PI systems enable behavioral data collection at a more 
detailed level by combining multiple sensors while reducing the 
user’s data input burden [18, 49, 68]. Moreover, machine learning 
technologies can be incorporated to support users’ health behavior 
changes by extracting insights and patterns from personal data and 
suggesting proper actions in the future [25]. 

However, previous studies on the existing intelligent systems 
augmented by prediction algorithms have mainly focused on ac-
curately detecting and reporting a user’s state instead of assisting 
a user’s self-refection, which the user can subsequently employ 
to change behaviors [59]. Moreover, the current intelligent PI sys-
tem has limitations that make it difcult for users to interact with 
the algorithm or understand its functioning or decisions. In other 
words, users are mainly provided with algorithmic output from the 

system without a full understanding of its decisions, barring users 
from gaining further insights. 

Recent human–AI interaction research has emphasized that in-
teraction opportunities such as Explainable AI (XAI) [20, 44] and 
user feedback [3] positively infuence the user’s experience, as well 
as improve the model’s performance [61]. In addition, it has been 
reported that explainability can help users gain insights from data 
and facilitate learning [41, 63] by allowing users to understand the 
functioning and decision of an algorithm [20]. 

Nevertheless, incorporating algorithm and explainability into 
the PI system requires careful consideration because of the possi-
bility that they might not work as intended (e.g., override personal 
interpretation and trust algorithmic output [29], decreases positive 
impression of the system [46], distracts users’ attention, and vio-
lates expectation [76]) We argue that the algorithm-incorporated 
PI system should assist users’ self-refection by allowing them to 
understand the algorithmic decisions through the appropriate level 
of explainability. Thus, we suggest a research prototype that allows 
us to examine the design spaces of explainability in an algorithm-
incorporated PI system for stress management. 

To this end, we developed MindScope, an algorithm-assisted 
stress management system that determines user stress levels and 
explains how the stress level was computed based on the user’s 
smartphone use and activity, to investigate the use and value of a 
prediction algorithm for user-driven stress self-refection. The data 
collected through smartphones include GPS information, ambient 
noise, app usage, screen status, and accelerometer readings. This 
data is then organized into fve categories: social, location, activity, 
sleep, and phone usages, inferring a stress level. The MindScope 
system includes (1) a 10-day data collection phase that requires a 
user’s input about his/her current stress levels four times a day to 
establish a personalized stress ML model, and (2) a 15-day refec-
tion phase that provides a report about the user’s current stress 
level as determined by the ML model and an explanation of several 
predictors of stress levels four times a day. In examining how the 
explainability of the algorithm afects the user’s understanding of 
stress as well as perception toward the algorithm, we designed and 
evaluated the following three diferent visualization of providing 
prediction information to understand how the level of explainability 
afects the self-refection experience of the PI system. In explana-
tion Type 1, only predicted stress level was provided. In explanation 
Type 2, we supplemented the explanation by highlighting data cat-
egories (phone usage, social activity, movement, physical action, 
and sleep) that had signifcant weight in calculating the prediction. 
In explanation Type 3, we provided a more detailed and granular-
ized explanation, such as major deviations from the norm in each 
datapoint (e.g., using an app more/less than usual) as presented in 
Figure 4. 

This paper reports on how prediction algorithms support college 
students’ stress self-refection based on the 25-day feld deployment 
with 36 college students. In particular, we investigated how expla-
nation of the results of prediction afect users’ perception of the 
system and self-refection experience by providing diferent levels 
of prediction explainability. Our results indicate that the algorithm-
assisted approach helped users understand detailed stress patterns 
and plan stress intervention. Stress prediction with the explanation 
proved useful by reducing ambiguity in the process of recalling 
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past stress levels and related events. While most users rated Type 3, 
the most detailed explanation type, highly for concrete understand-
ings of their stressors and patterns, they often focused on specifc 
activity details that were inconsistent with their memories, which 
lowered the perceived accuracy of the system. The explanations 
provided at the category level for stress prediction provided an 
opportunity to understand stressors in a user-led way. 

Our contributions are as follows: We developed MindScope, a 
mobile app that predicts user stress levels with personalized stress 
prediction algorithms based on smartphone data, allowing users to 
understand and cope with stress. MindScope also generates predic-
tion and explanation in three diferent ways using varying levels 
of explanation to explore the impact of explainability in the PI do-
main. We validate the efectiveness of MindScope in stress reduction 
through empirical fndings on how participants use the algorith-
mic stress prediction and explanation for their stress management. 
More importantly, we report on the ways the explainability of stress 
prediction afected users’ self-refection and algorithmic perception. 
We discuss the design consideration when creating the visualization 
of predictive information in the PI system to promote self-refection. 
Furthermore, we summarize the design suggestions that a designer 
should consider to improve the user experience of the PI System 
using the prediction algorithm. 

2 RELATED WORK 

2.1 Personal Informatics for Mental Health 
Technologies that collect and refect personal information for well-
being and behavioral changes continue to proliferate [23]. Li et 
al. [43] defned these as PI systems that “help people collect per-
sonally relevant information for the purposeof self-refection and 
gaining self-knowledge.”, and suggested fve stages of PI systems: 
1) preparing to collect data, 2) collecting data, 3) integrating, 4) re-
fecting, and 5) acting. Later, Epstein et al. [24] extended this model 
to better refect the diverse motivations and use of the PI system 
in terms of "Lived Informatics". In this model, collecting, integrat-
ing, and refecting are not separated stages, but are considered as 
practices that can occur simultaneously in the process of "Tracking 
and Acting". The scope of PI has broadened, covering numerous 
domains such as physical activity, chronic condition [25], sleep 
[15], and productivity [38]. Among these domains, mental health 
is a signifcant social issue facing many people in contemporary 
society [34]. As a result, there have been growing studies of digital 
technology to understand and address mental health issues. Early 
HCI research for mental health focused on replicating traditional 
therapeutic strategies (e.g., workshop sessions provided in elec-
tronic formats [4]) to support limited capacity and availability of 
treatment services [78]. Recent research has been expanded to the 
feld of mental well-being promotion, and various works have been 
conducted on the system for a strong sense of self [73], mindful-
ness [88], and social well-being [81]. From the point of view of PI 
research, it is worth noting that: technology has ofered people 
the possibility to facilitate understanding, observation, and refec-
tion about themselves based on their recollection of the past. For 
instance, Bardram et al. presented a personal monitoring system 
MONARCA, which enabled monitoring with feedback through data 
visualization and triggers to support the treatment of bipolar [5]. 

As the use of mobile phones and wearable technologies provides 
potential of continuous tracking and personalized intervention,the 
development and assessment of PI systems in mental health has 
accelerated [6, 12]. However, accurate tracking of mental states 
has proved much more challenging than physical health studies 
because of mood instability and variations between individuals 
[54, 75]. By virtue of technological advances in passive sensing 
with smartphones and wearable devices, many eforts have been 
made to track mental aspects through an algorithmic approach. 
Morshed et al. useda user’s self-reporting system, Ecologically Mo-
mentary Assessments (EMA), with passive sensing to predict mood 
instabilities [54]. Sarker et al. designed a system that detect stress 
episode using physiological, GPS, and activity data [66]. Many PI 
research in the mental health domain aim to detect and report on 
the user’s status, thereby putting efort into efectively collecting 
tremendous amounts of emotional data to improve the accuracy 
of predictions. However, there is a potential risk that users over-
ride personal interpretation and instead trust algorithmic output 
[29, 72, 84]. Hollis et al. revealed that some participants defer to 
system feedback trusting afect detection algorithms to be more 
accurate than their own intuitions [29]. In addition, publications 
have discussed the importance of refection stages and subsequent 
links to practical action. For example, research has identifed that 
the performance of stress interventions after indication and predic-
tion of stressors can lead to signifcant stress reductions [42]. Thus, 
we need to examine the design of the intelligent PI system that 
promotes users’ self-understanding and behavior change rather 
than unconditionally receiving algorithm output. 

2.2 Intelligent Computing in Personal 
Informatics 

Intelligent computing aims to bring the elements of intelligence, rea-
soning, analysis, and information gathering to systems [9]. Recently, 
in the PI feld, a system that helps people understand personal data 
by utilizing intelligent computing has been proposed for physical 
[25, 46] and mental well-being [28, 59]. Furthermore, due to the 
recent advances in artifcial intelligence (AI) technologies such as 
machine learning, the system goes beyond assisting in automating 
repetitive tasks to even collaborating with users in complex tasks 
such as collaborative drawing [58] and writing [32]. Ohlin and 
Olsson proposed the concept of cooperative action orchestration 
in which intelligent computing systems and humans repeatedly 
infuence each other [59]. This approach emphasizes that users and 
computers do not unconditionally accept each other’s decisions but 
rather work together and infuence each other to attain the goal of 
personal refection. For example, EmotiCal [73], a PI system that ac-
curately forecasts individual mood, reported that user participation 
and evaluation was able to signifcantly improve the system’s pre-
dictive power. In addition, users perceived the beneft of intelligent 
computing in the PI system, which supplements users’ subjective 
and intuition-based judgment by utilizing long-term objective data 
[50, 72]. For example, EmVive [29], which predicts personal stress 
based on EDA sensor data, was evaluated as a useful system to 
gain self-insights from users who considered their self-awareness 
level insufcient. Previous studies show that intelligent comput-
ing can make the user’s self-refection process more concrete and 
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persuasive by using objective and quantifed data about users with 
the algorithms. Further, computing systems and people can build 
cooperative relationships that can positively infuence each other 
and enable better personal refection [36, 59]. We were inspired by 
these results that reveal the benefts of intelligent computing for 
mental health. 

2.3 Explainability of Intelligent Computing 
and PI Systems 

Explainable AI (XAI) refers to an intelligent system that allows 
users to understand a system’s functions and decisions. The goal of 
explainability is to enhance a system’s user experience by increas-
ing users’ trust in the algorithm’s decisions [3, 20]. Furthermore, it 
has been reported that explainability can help users gain insights 
from data and facilitate learning [41, 44, 63]. However, the efects of 
explainability are not always positive [44]. Studies have found that 
transparency lowers user trust by inducing users to question the 
system and that complex descriptions increase the user’s excessive 
cognitive load, ultimately negatively afecting the perception of 
algorithms [46, 76]. When the system behaves appropriately but 
presents a low certainty, intelligibility notably reduces the user’s 
impression of the system [46]. In addition, more transparency may 
distract a user’s attention or violate a user’s expectations by em-
phasizing the relatively unimportant or specifc elements of ex-
planation [76]. In particular, unintended consequences can be a 
critical problem in systems dealing with health issues (e.g., afect-
ing users’ emotions negatively [67] or unintentionally encouraging 
negative behavior [22]). Therefore, possible risks should be care-
fully examined early in the design process by rethinking potential 
assumptions and unintended consequences [39]. In the PI domain, 
Woźniak et al. [85] revealed that providing both the ftness goal 
generated by the algorithm and explaining how this goal was cal-
culated improved users’ trust in the suggested goal. This increased 
trust led to enhanced goal commitment. However, in the study 
of the E-meter [75], which rates the emotion of written text that 
contains the user’s emotional experience, excessive explanations 
negatively afected the user’s view of the system’s reliability and 
his/her satisfaction. The above studies collectively suggest that the 
efects of explainability are complex and depend on the setting and 
purpose of the interactions. Furthermore, there is a high possibility 
that explainability can work diferently than the designer intended. 
This is because, so far, the development and application of XAI 
have been based on a technology-oriented solutionism approach 
rather than on the situated needs of the intended user of the system 
[20, 27]. 

In this study, we frst examine the user experience and perception 
of intelligent PI systems that predict a user’s stress levels and inves-
tigate how this algorithmic output afects the user’s self-refection. 
In particular, we focus on investigating whether explaining how 
stress predictions are computed by the algorithm can afect users 
in their self-refection and stress management, which have not yet 
been sufciently addressed in an intelligent PI system for mental 
health. To this end, we developed a stress management PI sys-
tem—MindScope—that can determine a user’s stress level with a 
personalized prediction algorithm. The system was also designed to 
provide stress prediction in three ways with three diferent levels of 

explanation. Through a feld study, we wanted to understand how 
the level of explainability afects users’ understanding of stressors 
and patterns, intervention planning, and overall perception of the 
PI system. 

3 SYSTEM DESIGN 
We developed MindScope, an app that predicts users’ stress levels 
based on smartphone sensors and usage data. The use of the Mind-
Scope app is designed to operate in two phases: a 10-day modeling 
phase and a 15-day prediction phase (see Figure 2). While the main 
functionality regarding stress prediction and algorithmic interac-
tion is centered on the prediction phase, we wanted to ensure that 
a sufcient volume of data was collected to produce more reliable 
predictions. Thus, we emphasized the importance of the modeling 
phase and the creation of a personalized stress prediction model 
for each individual participant based on the correlation between 
the two types of data [82]. 

3.1 Iterative Design Process 
We used an iterative design process that examined multiple proto-
type versions and conducted a pilot study with 30 college students 
to identify core usability issues and interesting usage patterns wor-
thy of further investigation. The initial concept was designed by 
referencing earlier works on the model of the PI system [23, 43]. 
Our system supports the data collection by utilizing passive mobile 
sensor data collection, along with the user’s self-reported stress 
levels. For the data integration, and refection, the prediction algo-
rithm was used to provide users with data-driven insight concerning 
understanding and managing stress by delivering stress level predic-
tion and explanation. We selected the data category based on earlier 
works that revealed the relationship between passive sensing data 
from mobile phones, including social activity, movement, physical 
action, sleep, and phone usage (app usage) with mental health out-
comes such as depression, stress, and loneliness [8, 51, 65, 82, 83]. 
Additionally, the system was designed to supports users’ stress 
relief based on microtask suggestions, which are known to be ef-
fective in stress management [42]. Based on this initial concept, we 
developed the system through an iterative design process. In this 
section, we focused on the design process of predictive information 
visualization, which is the main contribution of this study. 

3.1.1 Designing Visualizations of Predictive Information. We ini-
tiated the design work of the predictive information interface by 
applying XAI grounded on earlier fndings that explainability can 
help a user gain insight from the data [41, 44, 63]. Our iterative de-
sign process repeats prototyping and conducting internal validation 
within the research team regarding technical feasibility and user 
experience. We designed our visualization styles with the following 
considerations based on earlier research on human-centered XAI 
[19, 44] and algorithm-mediated self-refection system [7, 25, 28]: 
(a) whether visualization can provide insight into self-refection 
and actionable behavior change to increase well-being [7, 25], (b) 
whether the design of predictive information is appropriate regard-
ing the amount of information and cognitive burden given the usage 
context of MindScope, which is frequently used in daily life [75], 
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Figure 2: System user interaction fow of MindScope 

and (c) whether the visualization contains any confusing or mis-
leading expressions so that people without background knowledge 
in AI or data science can easily understand [44]. 

The design space we frst considered was the needs for explain-
ability. We referenced Liao’s XAI Questioning Bank, which provides 
an overview of the type of explainability needs [44]. Through in-
vestigating this design space, we could made a decision on “what 
to explain” (i.e., content of an explanation) [21]. Our system was 
designed to provide a stress level prediction within a certain period 
(e.g., stress level during 1 ∼ 5 pm) to help users’ refect on stress-
related information. In particular, our system needs to go beyond 
simply providing users with accurate stress predictions and pro-
vide them with opportunities to refect on stress prediction results. 
Therefore, providing explanations on why this prediction was made 
was needed, such as “what data (feature) led the system to make 
this prediction?” Based on this consideration, we decided to provide 
an explanation of a single prediction (i.e., local) to provide insight 
into users’ self-refection. 

The design space also considered user type [21]. When design-
ing explainability, users’ AI knowledge and experience should be 
considered. We were able to set the direction for “how to explain” 
a problem based on investigating this design space [21]. One of the 
factors we mainly considered while iterating the prototype was 
the solutions for explanation (e.g., UI element, graph, and textual 
explanation). Our initial two prototypes were designed to visualize 
the SHapley Additive exPlanations (SHAP) values, a XAI technique 
that calculates the infuence of each feature on prediction results 
[47], using radar and bar charts (see Figure 3). Regarding the vi-
sualization medium, we found quantitatively visualizing features’ 
importance in graphs could confuse and mislead users because 
it requires advanced experience and knowledge in a related feld 
(e.g., AI or data science) [19]. Moreover, quantitatively presented 
explanations are expected to be inappropriate for systems that aim 
at actionable behavior change through refection. For example, the 
following questions were reported during our internal validation: 
“What does it mean to have an activity feature located on the outer 
edge of a radar chart? Does it means I walked too much or I have to 
walk longer?”, “At what level does feature importance become mean-
ingful?”, and “On what basis can we determine that a particular 
feature is important but another is not important?”. Furthermore, ear-
lier work on algorithm technology refection systems also utilized 
natural language to deliver the algorithmic output and positively 
reported their efcacy [7, 25]. Therefore, we delved deeper into 
how natural language such as words or sentences can be used to 
explain predictions for ease of understanding. 

We further considered the level of detail in explanation [75]. The 
explanation in our system was used to support the user to examine 
and refect on information related to his or her stress level based 
on the data. However, relatively few studies have investigated the 
level of explainability related to self-refection, which is also our 
motivation for the study. We frst considered the context of using 
MindScope, which is ‘everyday’ PI system [21]. Because users fre-
quently encounter our system more than four times a day, we tried 
to minimize the cognitive burden that excessive information can 
induce [75]. In addition, earlier work on the algorithm refection 
system reported that providing insight that can support users’ be-
havior change in an actionable way is important [25, 28]. Based 
on the above points of view, we developed an explanation method 
providing a limited number of behavior-level explanations (Type 
3). In designing the prototype of Type 2, we considered the earlier 
fndings that providing a detailed level of analysis may lead a user 
to ignore their interpretation of stress prediction [29]. From this 
point of view, we developed the explanation Type 2 with a lower 
level of detail than was used Type 3. Through an iterative design 
process, we fnalized three prediction visualization methods that 
vary in the degree of detail of the explanations. Detailed stress 
prediction visualizations are described in Section 3.3.1. 

3.1.2 Pilot Study and System Design Iteration. We conducted a pi-
lot study with 30 college students using the initial version of the 
prototype. The initial prototype provided a single view of stress 
prediction visualization, which is the most detailed and granu-
lar explanation, such as major deviations from the norm in each 
data point (e.g., using an app more/less than usual). We did this 
to conduct an initial evaluation of MindScope’s core feature while 
reducing the complexity of our pilot study. Further, this decision 
was made to verify the technical feasibility and usability of the 
system using the most complex explanation type, which generates 
the most diverse explanation outputs that have high potential for 
unexpected output or errors. As the previous work reported that 
output complexity is a major design challenge for AI products [86], 
we wanted to ensure that the prediction information and explana-
tory properties are adequately generated in real-world deployment. 
The rest of the system’s primary functionality was consistent with 
the complete system while minor details were slightly diferent. We 
will further explain the modifcation made after the pilot study in 
the next section. During the pilot study, the researchers used a chat 
service to communicate with the participants at any time to collect 
reports on bugs, errors, questions, and concerns related to the study. 
We also conducted follow-up interviews with ten participants. 

Our pilot study revealed several usability and logistics issues. 
For instance, the pilot system provided the last questionnaire to 
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Figure 3: Prototypes created during the design process. 

participants at 11 pm, and we limited the response time to two 
hours. However, it was difcult for those who went to bed earlier 
than 11 o’clock to answer the questionnaire. Based on this problem, 
we changed the fnal system design to have participants answer the 
last questionnaire by 7 am the following day. In addition, we found 
the 2-hour time limit, which is the available time to answer the ques-
tionnaire when they receive the stress report, put a burden on users 
to participate in the study. In our fnal system, participants could 
check the report and input their stress level up to 30 minutes before 
the following report is provided, thereby reducing the restriction of 
the reporting activity. Participants complained of boredom during 
the EMA process during the initial 10-day modeling phase, which 
could negatively afect the user experience and data collection pro-
cess for model building. In the fnal system, we added self-refection 
features, such as a calendar view and a journaling feature to sup-
port users review and refect on their past stress, in the modeling 
phase to improve the user experience during the frst phase, which 
would naturally connect with the self-assessment–related features 
of the second, prediction phase. These measures were important 
for designing the user experience of MindScope, a data-driven al-
gorithmic PI system where the data collection process is critical. 

We also found that the way prediction results are explained could 
signifcantly infuence users’ perception of MindScope. For exam-
ple, some participants’ reliability and evaluations were lowered due 
to discrepancies between specifc stress-explanation content and 
their perceptions. Overall, consistent with earlier fndings [46, 76], 
participants reported that the contents of the explanation had a 
signifcant infuence on their perception and expectation of Mind-
Scope. However, few studies examine the efect that the level of 
explanatory detail can have on self-refection in an intelligent PI 
system. Therefore, we felt the need to observe whether the users’ 
experience of self-refection varied depending on the level of analy-
sis. Based on the pilot study, we expanded the fnal study design to 
encompass diverse levels of explainability to investigate further the 
efects of explainability on user experience during self-refection. 
We note that the design of this app was intended to facilitate and 
observe the way people might interact with an algorithmic system 

in terms of their perceived utility or emotional reactions. Therefore, 
our primary task was not improving the accuracy of predictions 
or technical precision when building the prediction algorithm. The 
section below details the complete MindScope system by explaining 
the modeling phase and prediction phase. 

3.2 Modeling Phase 
3.2.1 Setup for Data Collection. During the modeling phase, we 
collected extensive records of each participant’s mobile phone us-
age for stress prediction. The collected data categories included 
activity information based on accelerometer and GPS data, app 
usage, app type, and noise levels in the surrounding environment. 
When users frst sign up for MindScope, users are asked to register 
commonly visited locations (e.g., home, workplace, school, etc.) 
to add context information to the collected data and improve the 
model performance. 

3.2.2 Self-Assessment and Logging of Stress. In addition, we col-
lected user stress data through ecological momentary assessment 
(EMA) surveys conducted four times during the day at four-hour 
intervals. Participants would receive push notifcations at 11am, 
3pm, 7pm, and 11pm to nudge them toward answering. We adopted 
this high-granularity approach to account for the daily and regular 
life routines, which are highly dependent on the time of day and 
day of the week. In each survey, participants responded with their 
perceived stress level among low, moderately high, and high (see 
Figure 4-(D)). 

If there was any qualitative information that they wanted to 
record in correlation to their stress levels, they were able to record 
a set of hashtags to provide more context regarding their current 
situation. Their recorded stress levels, as well as the logged data, 
were organized into a calendar view where the users could review 
their stress trends and events on specifc days. The use of calendar 
view was intended to provides users with the beneft of being 
efective in understandability in an familiar format [40]. In the 
calendar view, the average stress level of each day was provided as 
a summary, and the dates were color-coded for the visualization. 
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3.3 Prediction Phase 
After the modeling phase, participants moved on to the prediction 
phase. In this phase, we provided two main features to aid in stress 
management: 1) personalized stress reports and 2) intervention 
through microtasks. 

3.3.1 Personalized Stress Prediction Reports. In the prediction phase, 
we considered how presenting the results of predictions would be 
the most helpful to users when providing algorithm-based predic-
tion services in the feld of mental health. In addition, our pilot 
study results confrmed that explainability of prediction and its 
visulization seemed to have a signifcant impact on user percep-
tion and reliability of MindScope system. Accordingly, we felt the 
need to observe whether the user response varied depending on 
the level of analysis when the model’s accuracy was imperfect (see 
Figure 4-Upper row). 

We divided the interface into three diferent types according 
to the level of explanation: 1) Type 1: No explanation, 2) Type 2: 
Categorical explanation, and 3) Type 3: Detailed explanation. In all 
types, the user received a summarized stress prediction of either 
low, moderately high, or high. In Type 1, only this information was 
provided (see Figure 4-(A)). In Type 2, we organized the data into fve 
categories (phone usage, social activity, movement, physical action, 
and sleep) and highlighted data categories that had signifcant 
weight in calculating the fnal prediction (see Figure 4-(B)). In Type 
3, we provided more detailed and granularized context such as 
major deviations from the norm at each datapoint (e.g., using an 
app more/less than usual). We selected the fve data points that were 
considered the most signifcant (those given the highest weight in 
the fnal prediction calculation) and showed them to the user (see 
Figure 4-(C)). 

As in the modeling phase, users received four reports each day 
and were able to retrospectively check the patterns and data in the 
calendar view (see Figure 1-(Right)). After receiving each report, 
the user was asked to confrm whether the prediction was correct 
by logging their actual perceived stress level. In Type 2 and 3, 
detailed information was provided procedurally after confrming 
the prediction result. They were also asked whether they found 
the explanation useful. To collect the causes of the prediction error, 
every three times a user responded that the explanation was not 
useful, they were given a survey asking them to identify the issue(s) 
they had with the explanation. 

3.3.2 Stress Interventions through Microtasks. To promote user re-
sponses to perceived high-stress situations, we also implemented 
an intervention system. MindScope employs a stress intervention 
scheme in which users can confgure one microtask to relieve stress 
and the system alerts a user to perform their microtask at oppor-
tune moments [31]. Microtasks ofer the advantage of requiring 
little time and efort to perform while also providing the user with 
a sense of agency (see Figure 4-(E)). The system detects opportune 
moments to perform the microtask and sends a push notifcation to 
suggest the intervention’s execution at that moment (see Figure 4-
(F)). In MindScope, we defne an ‘opportune moment’ as a short 
period of time when a user is available for the execution of a mi-
crotask intervention. We used habitual phone usage as a proxy for 
detecting availability. Our rule for detecting habitual phone usage 

is based on the short duration, isolated, and reward-based (SIRB) 
concept introduced by Oulasvirta et al. [60]. Based on these fnd-
ings, we sent a notifcation when the user would use their phone 
for a short period of time (<30 seconds) with an interval of >10 
minutes from the previous session. 

We populated an initial set of 147 microtasks with responses 
from a survey deployed to online university forums which is also 
our target group. Respondents of the survey were asked to suggest 
microtasks that they like to use in everyday life to resolve or mit-
igate stress. The survey responses were iteratively examined by 
four researchers to determine inclusion of the microtasks in our 
system regarding its appropriateness. 

When the push notifcation arrives, the user can either perform a 
stress intervention that they have set up or receive a new suggestion 
from the intervention list until the method the user wants pops 
up by pressing "Do something else". The user also can defer the 
performing the intervention (see Figure 4-(F)). The system also 
allows users to search for stress interventions from the list on 
the intervention setting page (see Figure 4-(E)). We included these 
features since a previous work found that the users valued viewing 
interventions created by others when it is challenging to fnd one 
suitable [42]. Users could log their completion of a microtask either 
in the app or through the push notifcation, and the history of 
completed microtasks was shown with timestamps (Figure 4-(E)). 

3.4 Implementation Details 
MindScope builds a personalized stress prediction model through 
the modeling phase and continuously updates it based on user feed-
back during the prediction phase. Figure 5 shows the MindScope 
system constructing a personalized stress prediction model, gen-
erating prediction information, and updating the model. Below, 
the technical details are explained in terms of data collection and 
processing, and machine learning for stress prediction algorithm. 

3.4.1 Data Collection for Stress Prediction. Recent studies report 
on the relationship between passive sensing behaviors from mobile 
phones including social activity, movement, physical action, sleep 
and phone usage (app usages) with mental health outcomes such as 
depression, stress, loneliness, and fourishing [8, 51, 65, 82, 83]. To 
gauge social activity, MindScope collects the number of incoming 
and outgoing phone calls, call duration, and missed calls, based on 
timestamp. The app also records audio loudness (ambient noise) in 
decibels every 20 minutes for fve seconds where the silence thresh-
old is set to -65 dB. For the movement, MindScope periodically 
checks if the user has changed location by more than a certain num-
ber of meters. We set a 5-minute periodic check-up and 10 meters 
for the threshold. For sleep, MindScope tracks SCREEN_ON_OFF state 
data. From 6:00 pm to 10:00 am (i.e., potential hours of sleep), the 
app collects screen of durations and then the maximum duration is 
considered the amount of sleep. For physical action, MindScope col-
lects data from Google’s Activity Recognition and Transition API1, 
detects changes in the user activity (STILL, WALKING, RUNNING, rid-
ing a BICYCLE and on a VEHICLE activity), and records the duration 
of each activity in seconds. Finally, for phone usage, MindScope 
checks the user’s screen status and collects the duration of screen 

1https://developer.android.com/guide/topics/location/transitions 

https://1https://developer.android.com/guide/topics/location/transitions
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Figure 4: Upper row: A personalized stress prediction reports: (A) Type 1-No explanation, (B) Type 2-Categorical explanation, (C) 
Type 3-Detailed explanation, Lower row: (D) Stress Assessment (EMA) during Modeling phase, (E) Planning stress intervention, 
(C) Intervention notifcation. 

unlocked. When the screen is unlocked, MindScope records the gRPC, MindScope can directly call a method on a server, and light-
usage frequency and duration of other apps that are categorized weight and fast data transmission is made between the mobile app 
under 12 groups (e.g., Entertainments/Music, Games/Comics, So- and the server. 
cial/Communication, Health/Wellness, Education), defned based 

3.4.2 Machine Learning for Stress Prediction Algorithm. With the on the Google Play Store. Overall, MindScope collects a total of 
data received from the smartphone, the gRPC server starts data 29 data features. MindScope sends the collected data to the gRPC 
preprocessing, including data manipulation (e.g., remove missing server every 60 seconds, and the server operates modeling. Using 
rows, duplicates), synchronization (by timestamp), and normaliza-
tion (min-max normalization was used). We used XGBoost [14], 
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Figure 5: A technical overview of the prediction algorithm 
used in MindScope 

an ensemble algorithm that combines multiple decision trees, for 
our model development. Our model yielded reasonable perfor-
mance (68% f1-score) comparable to previous studies that used 
other machine-learning algorithms, such as logistic regression and 
decision tree [26, 56]. The model returns a stress prediction result 
(low, moderately high, and high) with feature importance. 

To measure feature importance, we used SHapley Additive ex-
Planations (SHAP) [47], one of the XAI techniques that use the 
independence between Shapley values and features. The SHAP 
values can be expressed numerically by how much each feature 
contributed to the overall performance. The contribution of each 
feature can be expressed as the degree of change in overall perfor-
mance when that contribution is excluded. Based on this concept, 
the SHAP values for each feature are obtained from the model 
result, which can be either positive or negative. A positive value 
means that the feature has a positive efect on the prediction, and 
vice versa. We considered only the feature in the case of a positive 
value. Through these processes, MindScope delivers information to 
a user during the prediction phase. It presents one of the three types 
of stress prediction reports (Figure 4-(A-C)). For Type 1, it displays 
only a model prediction result without any further explanation. For 
Type 2, it displays a model prediction result and a category that 
consists of the features with the positive SHAP value. For Type 3, it 
displays a model prediction result with detailed explanation of the 
fve most signifcant features which correspond to top fve SHAP 
values. After the user checks the report, he or she can give feedback 
to the model by confrming or adjusting the stress level. The stress 
level determined by the user will be used as the updated test data 
for model retraining. As this process continues, the model becomes 
customized to the user. 

4 METHOD 

4.1 Field Study 
We conducted a 25-day feld deployment study with 36 participants 
using MindScope to examine how personalized stress prediction 
algorithms afect stress management. In particular, in this exper-
iment, we further investigated how model explainability afects 
stress management. To this end, we designed the experiment so 
that all participants could test all three types of explanations. We 

set the order in which the explanation was presented in three dif-
ferent ways, from the perspective of randomized assignment to the 
app use. Each explanation type lasted for fve days. This experi-
mental design allowed participants to better evaluate each design’s 
features, pros, and cons by comparing them with the others. The 
study was composed of three parts: (1) a 30-minute introductory 
session to provide the background for the study and introduce 
MindScope; (2) a 25-day MindScope usage study in the feld; and 
(3) a 40-minute follow-up interview to elicit user feedback on the 
perceived impact of stress management using MindScope. The 25-
day app usage period consisted of a modeling phase for the frst 
10 days and a prediction phase for the subsequent 15 days (Details 
are documented in the 3. System Design section). Our study was 
approved by a university’s IRB, and informed consent was obtained 
from each participant. Since our study required careful measures 
in that our system collects participants’ personal information, we 
provided detailed information on data collection and used it in the 
informed consent provided before participation in the study, based 
on the advice from the IRB. In the introductory session, we informed 
the following contents in detail: 1) the types of collected data, 2) 
the granularity of the collected data, and 3) the data management 
method. We also provided a Q&A session for participants with 
questions. After we distributed the app, the researchers used a chat 
system where participants could ask questions or concerns about 
the system. Before analyzing the data, we removed personally iden-
tifable information from the collected data and used anonymized 
code names to preserve the participants’ privacy. 

4.2 Recruitment 
We recruited university undergraduate and graduate student partic-
ipants who use Android smartphones. For conducting 25-day feld 
study, we have specifed the following requirements and restric-
tions for participation: 1) Those who cannot use their smartphones 
for more than two days during the experimental period forcibly, 2) 
Those who have difculty participating in the required experimen-
tal process (online introductory session, pre-and post-survey), 3) 
Those who cannot install MindScope and, who plan to change their 
smartphone model during the study. Recruitment announcements 
were posted across six Korean universities’ online communities or 
via batch email. All experiment processes including recruitment, 
orientation, and post-interview were conducted by video meetings 
to comply with necessary safety guidelines in the COVID-19 pan-
demic. Notices and inquiries were handled through an online group 
chat. We compensated each volunteer $25 USD for their participa-
tion, which entailed an introductory session and 25 days of usage. 
Additional $20 USD compensation was provided to people who 
were willing to attend a follow-up interview. To induce users to 
participate continuously, the accumulation system was used for the 
honorarium. $0.25 USD was set aside for each survey completed 
for the modeling phase, and for each stress report in the prediction 
phase. 

4.3 Data Collected 
4.3.1 Perceived Stress Scale (PSS). To measure the impact of Mind-
Scope on stress, we used PSS—a widely used psychological instru-
ment—to measure stress perception [17]. PSS consists of ten items, 
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each of which is scored on a scale of 0 to 4. The result is calculated 
as the sum of the ten items’ scores where higher results indicate 
greater stress. In the case of PSS, evaluation was conducted before 
the experiment (Pre), after the 10-day modeling phase (Mid), and 
at the end of the study (Post). 

4.3.2 User Experience Qestionnaire. To evaluate the user experi-
ence with MindScope, we selected 15 UX-related items from user 
experience and usability studies [2, 58]: 1) useful, 2) easy to use, 3) 
easy to learn, 4) efective, 5) efcient, 6) comfortable, 7) friendly, 
9) consistent, 10) fulflling, and 11) fun. Users evaluated each item 
using a seven-point Likert scale ranging from strongly disagree to 
strongly agree. For the User experience and Algorithm perception 
questionnaire, participants were asked to complete a questionnaire 
when the explanation type changed (there were three question-
naires over 15 days in total with fve-day intervals). 

4.3.3 Algorithm Perception Qestionnaire. To measure the user’s 
perception on the algorithm of MindScope, we included additional 
questionnaires. Six items were designed for assessing level of trust, 
perceived accuracy, and explanation meaningfulness [57, 87]. Level 
of trust was measured by using a seven-point Likert scale (1: "I 
didn’t trust it at all", 7: "I fully trust it"). Perceived accuracy was 
measured in two ways, using questions asking a numerical estimate 
of the system’s accuracy on the scale of 0 to 100 percent and using a 
seven-point Likert scale (1: "not accurate at all", 7: "very accurate"). 
To understand the evaluation of explanation, we used seven-point 
scales asking the usefulness, convincingness, and sufciency of the 
prediction explanation. 

4.3.4 Application Usage Log. To measure the user behavior in the 
MindScope app, we embedded a tracking code as part of the devel-
opment process. In this study, we analyzed and reported log data 
on the individual user’s self-report, and stress interventions for 
understanding user engagement of the system. In addition, we col-
lected both stress levels from the algorithm initially predicted and 
user-entered stress levels for further analysis on users’ agreement 
on system output. 

4.3.5 Follow-up Interview. After participants completed the 25-day 
deployment feld study, we conducted a semi-structured interview 
to understand users’ detailed experiences on stress management 
using MindScope. The interview lasted between 40 minutes and one 
hour and was conducted via a Zoom-video meeting. The interview 
mainly covered the following four themes: 1) Understanding par-
ticipants’ motivation to participate in the experiment and existing 
stress-management skills, 2) How MindScope afected participants’ 
understanding and perception of stress, 3) How participants ac-
cepted and understood MindScope’s algorithm, 4) Overall usability 
and user experience evaluation. 

4.4 Analysis 
In quantitative analysis, we frst aimed to investigate MindScope’s 
stress management efect through PSS scores. Then, we investigated 
how the diferent types of explanations afected the user experience 
and algorithm perception. We analyzed the results from question-
naires using one-way repeated measures ANOVA (RM-ANOVA) 
with Greenhouse-Geisser correction. Tukey’s HSD was used as a 

post-hoc analysis to provide further understanding by pairwise 
comparison. The test was performed using GraphPad Prism version 
9.0 2. In qualitative analysis, we analyzed the qualitative data from 
interviews by conducting open coding with thematic analysis [11]. 
All interviews were transcribed for analysis. Three researchers in-
dividually read the interview transcripts and generated open codes. 
The open codes were discussed among research team members 
to resolve disagreements and identify patterns and we then gen-
erated themes from these open codes. We identifed statements 
that revealed how MindScope supported users’ stress management 
behavior and how users perceived the MindScope system provid-
ing stress prediction information and then structured the themes 
around understanding 1) efect of algorithmic stress prediction on 
stress management 2) user perceptions and reactions on the algo-
rithmic stress prediction, and 3) efect of explainability on algorithm 
perception and stress understanding. 

5 RESULT 
In this section, we frst summarize the descriptive statistics results 
to illustrate how participants engaged in MindScope. Then, we 
present statistical fndings showing the efect of using MindScope 
for stress management. In the discussion of the qualitative fndings, 
the efects of MindScope in stress management, user perception of 
the stress prediction algorithm, and the efect of explanation type 
on stress management are summarized. 

5.1 Descriptive Statistics 
Thirty-nine students across six universities signed up as poten-
tial candidates during the recruitment period, but three of them 
dropped out at the introductory session. We fnally selected 36 
participants who fulflled our requirements. Among them, 16 par-
ticipants identifed as male and 20 as female. The age range of the 
participants was 19–33 years (mean = 25.3). There were no cases 
of participants dropping out during the course of the experiment. 
Follow-up interviews were held by voluntary participation, and 34 
participants ultimately completed an interview. 

5.1.1 User Engagement. During the modeling phase, participants 
were asked to answer a stress-level EMA survey, four times a day, 
for 10 days. Participants answered a total of 1,123 out of 1,440 sur-
veys, an average of 31.19 times per user (Min = 2, Max = 39) at 
an average response rate of about 78%. For the prediction phase, 
users were provided stress reports where they could either con-
frm or correct the prediction made by the stress prediction model 
through self reports. They submitted 1,842 self-reports out of 2,160 
possible instances, averaging at 51.16 submissions per user (Min 
= 19, Max = 58) and at a 85% average response rate. We note the 
users consistently managed a high rate of engagement despite the 
repetitiveness and demanding quality of the tasks. We will revisit 
the possible explanations for participants’ engagement later in the 
qualitative result section. 

For the stress intervention feature in the prediction phase, 31 
users (86% of all users) used this feature at least once, either through 
registering a microtask or actually executing it. Users performed 
stress intervention tasks a total of 751 times (Min = 2, Max = 56), 

2https://www.graphpad.com/scientifc-software/prism/ 

https://2https://www.graphpad.com/scientific-software/prism
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Figure 6: The stress prediction model performance changes 
over 15 days of the prediction phase. 

with each unique intervention being used an average of 4.94 times. 
In addition, users committed to 152 unique interventions including 
examples like ‘stretching’, ‘watch a short Youtube clip’, ‘text a 
friend’, and ‘organize my schedule’. Of the 751 cases, 146 of them 
were in response to a push notifcation from the app, and 605 of 
them were logged independently, implying that the users preferred 
to execute stress interventions of their own volition rather than 
being prompted by the app. Users also spent a lot of time searching 
for other things to do, evidenced by the fact they clicked on the 
‘Do something else’ button a total of 2,563 times when choosing 
a microtask for their stress intervention, which was more than 
any other type of engagement in the stress intervention feature 
group. Consistent with earlier fndings [42], users found browsing 
a list of microtask interventions created by others valuable because 
it provides a new perspective on stress relief. Overall, we found 
that our participants were highly engaged in the day-to-day stress 
intervention execution in their own way. 

5.1.2 Stress Level Changes Recorded on MindScope. Stress levels 
were recorded on MindScope using a three-level scale. When re-
sponding to a stress level assessment question, users were asked to 
choose an appropriate stress level between Low Stress, Moderate 
Stress, and High Stress. We organized the aggregation of stress 
levels that our participants have reported through the study period. 
The majority of the self-reported stress levels were low in both 
phases, increasing slightly in the Prediction phase (56.3% in the 
Modeling phase, and 61.5% in the Prediction phase). Similarly, the 
total ratio of reports where participants reported having high stress 
levels decreased slightly across the two phases, from 8.5% in the 
Modeling phase and 5.8% in the Prediction phase. While receiving 
system reporting predictions with explanation Type 2 and Type 3, 
participants were also given the chance to review the accuracy of 
the analysis provided. When a participant would respond that it 
was not accurate, they were prompted to complete a survey ev-
ery third report asking why it was inaccurate. We received 118 
responses in total, with duplicate responses recorded. The majority 
of the cases reported that the analysis was incorrect (100 responses, 
84.75%), or that the analyzed result was unrelated to their percep-
tion of stress (89 responses, 75.42%). Other cases mentioned that 
the results were unclear (40 reponses, 33.90%) or that they were too 
trivial (5 responses, 4.24%). 

5.1.3 Changes in Prediction Model Performance. In the Prediction 
phase, participants were provided an algorithm-generated stress 
report of their stress levels, and were given the chance to confrm 
or adjust the system’s prediction by responding with their own per-
ceived stress level. Through the log data analysis, we were able to 
check whether the prediction was correct or not by comparing the 
initially reported value by the system with the user’s self-reported 
stress level. Out of the 1,842 cases, 1,177 cases (63.89%) were consis-
tent with the users’ self-reported stress level, and 665 cases (36.1%) 
were adjusted by the user. Meanwhile, the mean score of perceived 
accuracy was 59.97% (SD = 17.7). This result was measured using a 
questionnaire asking, “How accurate do you think the system is?”. 
Out of the 665 cases which user corrected the stress level, 506 cases 
(27.47%) predicted a lower stress level than the participant actually 
experienced, and 159 cases (8.63%) predicted a higher stress level 
than the participant’s self assessment. 

To supplement this data, we further investigated how the per-
formance of our model changed throughout the study period (See 
fgure 6). First, we noted that during the Prediction phase, we found 
an increase in the average model performance from 61% to 68%. 
Within that 15-day phase, the model performance would usually 
rise above 68% on the eighth day, but would then be saturated and 
not improve further. The algorithm conducted a retraining process 
based on the confrmed stress level we received from the users. 
As retraining continued, the average performance converged to 
the overall average (68%) stated above, which can be considered 
the efect of stabilizing the stress prediction models based on user 
feedback. There were no signifcant group-wise diferences based 
on the explanation type. 

5.2 Statistical Findings 
In this section, we summarized fndings from the statistical analysis 
conducted on the questionnaire responses. First, we investigated the 
efect of using MindScope for stress management. The result shows 
signifcant reductions in stress after a 25-day feld study. From 
the analysis of questionnaires on user experience and algorithm 
perception (i.e., user trust and perceived accuracy), we frst found 
that algorithm perception positively correlated with the system’s 
usefulness and efectiveness. We then found that providing expla-
nations were useful but found no diferences between categorical 
explanations and detailed explanations. 

5.2.1 Stress Significantly Reduced first, then Persisted. To inves-
tigate the stress management efect of MindScope, the perceived 
stress level was measured before (Pre), during (Mid), and after the 
experiment (Post). ‘Pre’ was measured before participants started 
using MindScope, ‘Mid’ was measured after participants completed 
the 10-day Modeling phase, and ‘Post’ was measured after the 25-
day feld study was completed. We frst confrmed a signifcant 
diference in the participants’ stress levels at the three diferent 
time points through the RM-ANOVA test (F (1.968, 68.86) = 10.00, p 
= .0002) (See fgure 7-(A)). Using Tukey’s HSD as a post-hoc test, 
pairwise comparison was performed. We found signifcant stress 
reduction in Pre vs. Mid (p = .0034, 95% C.I. = [0.9051, 5.039]), and 
Pre vs. Post (p = .0010, 95% C.I. = [1.388, 5.890]). There was no 
signifcant change in perceived stress level in Mid vs. Post (p = 
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Figure 7: (A) Changes in Perceived Stress. ‘Pre’ was measured before participants started using MindScope, ‘Mid’ was measured 
after participants completed the 10-day Modeling phase, and ‘Post’ was measured after the 25-day feld study was completed. 
(B) Evaluation of explanation usefulness and sufciency depending on explanation type. Statistically signifcant results are 
reported as *<0.05, **<0.01, ***<0.001 

.7047). This result indicates that reduced stress during the early 
stage of Mindscope persisted until the later stage. 

5.2.2 The More Accurate It Is Perceived, the More Useful It Is. Since 
user perception factors such as trust are a critical factor in the 
adoption of systems and their outcomes [64], we aimed to investi-
gate the relationship between the efectiveness of MindScope and 
users’ algorithm perception (i.e., user trust and perceived accuracy). 
To this end, we analyzed the correlation between user trust and 
perceived accuracy vs. user experience scores. We adjusted the 
p-values for multiple inference using Holm’s method [30]. The re-
sults showed that users’ overall algorithm perception positively 
correlated with the usefulness and efectiveness of the MindScope 
system (See fgure 8). We found a moderate correlation on user 
trust vs. useful (r = .681, p = .0007). and efcient (r = .690, p = .0005). 
and showed a strong correlation between user trust and efective (r 
= .799, p ≤ .0001). Users’ perceived accuracy also showed a similar 
correlation (accuracy vs. useful (r = .674, p = .0010); accuracy vs. 
efcient: (r = .626, p = .0003); accuracy vs. efective: (r = .699, p 
= .0064). However, no signifcant correlation was found in other 
user experience indicators. These results imply that the more users 
perceive an algorithm to be accurate and trustworthy, the more 
likely they will appreciate the system’s usefulness, efectiveness, 
and efciency. 

5.2.3 It Is Beter Than No Explanation, but More Doesn’t Make It 
Useful. Then, we performed further analysis to see whether there 
was a signifcant diference in user experience and algorithm per-
ception according to the explanation type. We confrmed that there 
was a signifcant diference between the three types when evalu-
ating the usefulness and sufciency of the prediction explanation 
(usefulness: (F (1.724, 60.35) = 5.738, p = .007), sufciency: (F (1.779, 
62.25) = 6.664, p = .003) (See fgure 7-(B)). As a result of observing 
the diference from a pairwise point of view through the post-hoc 

test using Tukey’s HSD, both evaluation of the usefulness and suf-
fciency showed a signifcant diference between Type 1 vs. Type 
2 (usefulness: p = .042, 95% C.I. = [-1.476, -0.02445], sufciency: 
p = .017, 95% C.I. = [-1.433, -0.1229]), and Type 1 vs. Type 3 (use-
fulness: p = .023, 95% C.I. = [-1.830, -0.1140], sufciency: p = .013, 
95% C.I. = [-1.864, -0.1920]). However, no signifcant diference was 
found for Type 2 vs. Type 3 (usefulness: p = .642, sufciency: p = 
.618). This result implies that the participants evaluated the Type 
2 and Type 3 as more useful and efective than Type 1, but there 
was no signifcant diference between Type 2 and Type 3. No sig-
nifcant diferences were found in other questionnaires on user 
experience and algorithm perception. In our qualitative fnding 
section, we described how the participants evaluated the pros and 
cons of each explanation type and how explanation type afected 
their self-refection. 

5.3 Qualitative Findings 
5.3.1 The Impact of Algorithmic Stress Prediction and Explainability 
on Stress Management Practices. Our participants reported that the 
algorithm-assisted approach helped them understand detailed stress 
patterns and plan interventions to cope with stress. In addition, 
they responded that the stress prediction information lowered the 
ambiguity in the process of recalling their past stress levels. Over-
all, MindScope’s method of analyzing one’s stress level received 
positive feedback from participants. Many of our participants re-
ported that being regularly provided with predictive information 
about oneself was the most interesting part of the MindScope expe-
rience. Further, The intimacy established through interacting with 
MindScope allowed the users to engage in the system actively. 

Identifying Stress Patterns through a Data-Driven Approach: 
Overall, our participants reported that MindScope enabled a con-
crete understanding of stressors and patterns that they could not 
clearly understand in the past because they thought that the system 
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Figure 8: (A) Scatter plots representing the correlation between the user trust and the three user experience score (useful, 
efectiveness, efcient) (B) Scatter plots representing the correlation between the perceived accuracy and the three user expe-
rience score (useful, efectiveness, efcient) ‘r’ = Pearson’s correlation coefcient. Statistically signifcant results are reported 
as *<0.05, **<0.01, ***<0.001 

Table 1: The Multiple Comparisons Table of the Explanation Usefulness and Explanation Sufciency Score. 

Pair Mean Diference Std. Error Adjusted P-Value 
95% Confdence Interval 
Lower Bound Upper Bound 

Tukey HSD 

Explanation Sufciency 
Type1 vs Type2 -0.7778∗ 0.2676 0.017 -1.433 -0.1229 
Type1 vs Type3 -1.028∗ 0.3415 0.013 -1.864 -0.1920 
Type2 vs Type3 -0.2500 0.2654 0.618 -0.8995 0.3995 
Explanation Usefulness 
Type1 vs Type2 -0.7500∗ 0.2965 0.042 -1.476 -0.02445 
Type1 vs Type3 -0.9722∗ 0.3507 0.023 -1.830 -0.1140 
Type2 vs Type3 -0.2222 0.2460 0.642 -0.8241 0.3797 

objectively determined one’s stress level using mobile sensor data. 
“In my case, I found that I get really stressed when I don’t follow my 
daily routines like, exercising in the morning or having my meals 
at the right time. I also found that I get stressed when I chat with 
my friends” (P2A). In addition, MindScope’s stress report provided 
an opportunity to re-establish users’ preconceptions about stress. 
Some participants responded that they already had a rigid stereo-
type about how their daily activities correlated with their stress 
levels (e.g., physical activity would help reduce stress). However, 
participants mentioned that they would re-establish their mental 
model about stress when they received a stress report contradicting 
their previous assumption. “My stress level was lower on days I didn’t 
walk much compared to the days I walked a lot. I used to think that 
I’d become less stressed by outdoor activities, but now I’ve learned 
that I rather become less stressed when I rest in my room doing my 
things then busily walking around” (P28C). 

Supporting Reminiscence with Data about the Past: The 
stress prediction information helped participants recall their past 
stress levels and related events. Our participants reported their 
stress levels throughout the study, without any prediction infor-
mation for the frst 10-day modeling phase and with the received 

stress prediction for the next 15 days. By using a MindScope stress 
report as a reference, participants were able to think about what 
they actually did, and what their stress was like during the last 
three hours. Participants reported that this process helped them 
recall stress levels and related events with less ambiguity. “The 
frst (Modeling phase) was done by prediction without any standards, 
and was subjective. Things went ambiguous then but the app started 
predicting from the mid-late period. The prediction made me wonder 
if I really was at the state when, let’s say when I got a rating of high. 
I wondered and came to agree that I might have been highly stressed” 
(P4A). 

Planning Actionable Stress Intervention to Ofset Identi-
fed Stressors: MindScope’s stress report with explanation about 
the context of the current stress level encouraged participants to 
establish detailed, actionable stress interventions. Our participants 
utilized the explanation describing possible factors afecting the cur-
rent stress level (e.g., decreased social activity, increasingly seden-
tary) to plan an intervention specifcally designed to remedy the 
problem prescribed by MindScope. A participant said that he scru-
tinized MindScope’s stress reports especially when his stress level 
was rated low, then he strategically selected an activity he actually 
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showed in the report as his own stress-reduction method. “I began 
to think about things that relieve my stress. It showed some activities 
and I thought about the things that make my stress rates lower, and it 
was when I listen to music a lot. And when I move from place to place 
frequently, I guessed that walking while listening to music relieved my 
stress” (P15B).. Contrary to the example above, some participants 
found activities they performed in the past when stress was high 
were not working to relieve stress. They then would hypothesize 
that they might be able to reduce stress if they did the opposite. 
“Then, if I change my pattern of behavior, like, I thought I could fnd a 
way to relieve my stress through this (device). If you see here, when it 
says you become highly stressed when you spend a lot of time walking, 
I think about experimenting myself to see if my stress rates are lower 
when I only move by car.” (P28C). 

5.3.2 User Perceptions Toward Stress Prediction Algorithms. We 
found that the participants’ background knowledge of AI-related 
subjects impacted their perception and interaction patterns with 
prediction algorithms. We also found that the time period of inter-
acting with the algorithm (i.e., introductory session, initial setup 
phase, prediction phase) and the level of model explainability (i.e., 
Type 1: no explanation, Type 2: categorical explanation, Type 3: 
detailed explanation) had an impact on users’ awareness of data 
collection and privacy concerns. In addition, because the character-
istics of stress provide highly personal data, participants wanted to 
provide feedback on the stress prediction model. 

AI Literacy and Algorithm Perception: Our participants ranged 
from people with no experience (73%) or to those who were rela-
tively knowledgeable about AI (19%) to experts such as those who 
had worked on AI projects in academia or industry (8%). The level 
of such background knowledge acted as a factor in determining 
how participants reported their perceptions of the algorithm. First, 
regardless of the level of knowledge of AI, most participants were 
aware that the more data input, the better the prediction accuracy. 
Such background knowledge served as a motivation for participants 
to actively engage in data input processes but in order to receive a 
more accurate prediction. “I think there was something like ‘proper 
analysis comes from plentiful answers’. I actively participated for 
more specifc analysis” (P15B). On the other hand, a participant who 
has considerable knowledge in machine learning, recognized the 
limitations of the algorithm in detail compared to others. “I gave 
rather plain answers because there weren’t enough events during the 
10-day analysis, which is a shame because it made the analysis dif-
cult for the algorithm. In fact, balanced results of data are needed for 
an accurate analysis but I never chose ‘high’ during my experiment, 
so I think this made the analysis difcult” (P3A). In the follow-up 
interview, rather than criticizing the performance of the system, he 
reported that the fact that he had always inputted a uniform stress 
level during the modeling phase served as a limitation. 

Challenges in Data Collections: The participants reported 
privacy concerns caused by personal data collection and the limi-
tation that the data used in MindScope were insufcient to refect 
users’ stress levels. First, in relation to privacy concerns, we found 
that the duration of usage and the level of explainability afected 
users’ perceptions of data collection and privacy. At the introduc-
tory session, we ran a Q&A session to provide a detailed description 

of data collection and processing methods. This session was impor-
tant in addressing participants’ data-related concerns. For example, 
one participant expressed concerns about how the system collects 
and stores “ambient noise” data without continuous recording. The 
researchers were able to address participants’ concerns by showing 
the captured image of our database to confrm the user’s actual 
data stored and labeled. However, over time, the efect of providing 
information initially did not last because some participants usually 
forgot the information provided in the initial session. The initial 
access permission process during the setup for the app was also 
a point where participants raised concerns about data collection. 
“I was worried when I constantly had to click grant data collection 
rights” (P5A). The level of explainability in the algorithm was also 
been reported as a factor infuencing participants’ awareness of 
data collection. “At frst I thought it didn’t collect much, but as it 
went on (providing more explanation) showing what it has analyzed, 
such as my amount of phone calls or the radius of my movements, I 
was amazed rather than uncomfortable” (P9A). 

5.3.3 The Level of Explainability and Self-Reflection for Managing 
Stress. In the section below, we report on how the level of explain-
ability afected users’ self-refection ability, which is critical in man-
aging one’s stress. First, we examine how participants evaluated the 
three types of explainability options ofered by MindScope. We then 
investigate how participants understood and utilized MindScope’s 
explanations. 

The more detailed, the more useful, but the more sensi-
tive to the reliability of the prediction: In the follow-up inter-
view, 62% of participants answered that they preferred a Type 3 
report, which provided the most detailed prediction information. 
They mentioned that it might be useful to understand their stress 
by providing the most specifc information related to stress. In ad-
dition, the provision of such detailed predictive information was 
highly rated in that it could guide users to take a specifc action 
to mitigate stress. “Since it shows ‘you use facebook when you are 
stressed,’ it makes me think about what I should do next.” (P6A). Fur-
ther, participants reported that they reconstructed their past based 
on the descriptions of the contextual information provided in detail 
in Type 3 reports and used it to infer their stressors. 

However, some participants who preferred Type 3 reports noted 
that the accuracy should be guaranteed. Because Type 3 reports 
almost directly showed feature variables of the stress prediction 
algorithm, users often recognized that the features composed of 
sending data from various channels often did not represent what 
they actually did. These user reactions seem to be related to the 
fndings of previous studies that the provision of excessive infor-
mation to ensure the transparency of intelligent systems can lead 
to lower evaluations of user trust [74]. In particular, these reactions 
were predominant in the group of participants who encountered 
Type 3 reports in the beginning of the prediction phase. Due to the 
cold-start problem, MindScope often showed a message, “I am not 
able to generate a stress report due to insufficient 
data.” for the users who received Type 3 reports frst. These users 
also pointed out inaccurate explanations about stressors. The fact 
that the model’s accuracy was inevitably low at the beginning of the 
experiment and increased as the study progressed made participants 
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more sensitive to the model’s performance and the algorithm’s ca-
pability for Type 3 reports, which reveal the performance of the 
prediction model in more detail than other types of reports. 

In contrast, some participants (27%) valued Type 2, which pro-
vided only the category of data. We found that Type 2 reports 
allowed proactive refection by deeply investigating specifc stress-
related activities and events individually. “If it says ‘social activity’ 
I start to think about the kinds of social activities I’ve done, so I think 
this type of report [Type2] is more useful for the process of metacogni-
tion of stress” (P2A). “I think type2 was useful. Type3 might seem most 
useful, but type 2 gave me the opportunity to make a hypothesis and 
draw a conclusion by myself” (P32C). Moreover, in terms of the trust, 
the participants also rated Type 2 higher than Type 3, because Type 
2 allowed for their own interpretation and understanding often 
leading to self-experiment. These participants also reported that 
even a categorical level explanation is useful enough to identify 
one’s own stressors and patterns. 

Participants who preferred Type 2 reported that because the 
amount of data was smaller than that of Type 3, the efort required 
for analyzing the information was less. Based on this advantage, 
Type 2 was efective in situations where a smartphone could be 
checked only briefy, such as while on the move or in class. About 
10% of the participants answered that they wanted to continue 
using Type 1, which only provides predictive values of the stress 
level. Similar to the preference for Type 2 reports, the reason for 
the preference for Type 1 was that it was easy to analyze the data 
provided because it contains the least amount of information. 

Explainability Uncovered the Reasoning Process: Provid-
ing detailed explanations allowed users to observe the reasoning 
process for how stress is predicted in the system. For example, 
observing how the system interpreted specifc user behavior into 
stress level while using explanation Type 3, users discovered that 
the algorithm behaves diferently from their perception of stress. 
This disparity negatively afected users’ evaluations of the model’s 
trust and reliability. For example, some participants reported that 
it was difcult to understand that certain behaviors afected stress 
in certain directions (e.g., lack of sleep or staying in one place for a 
long time increases stress). “The relationship between sleep and stress 
is ambiguous because. . . people could sleep late doing something fun, 
or doing their work. So I’m not sure if this could work as a method 
to predict stress.” (P5A). Other participants further noted that the 
algorithm’s stress reasoning was not convincing, seeing that the 
same activity items were presented as an explanation even when 
predicting diferent stress levels. 

6 DISCUSSION 
MindScope is a system to assist participants in collecting and re-
fecting on their stress levels and patterns by utilizing a prediction 
algorithm that can complement the limitations of the existing PI 
system [25, 43]. A 25-day deployment of MindScope allowed users 
to experience the overall stress management process, including the 
data input process for modeling a personalized stress model, the 
refection process through stress prediction and explanation, and 
the process of intervention planning and execution. We observed 
how participants used predictive information and its explanation 

for self-refection. Consistent with previous works on algorithm-
mediated refection, our qualitative fndings revealed increased 
self-understanding and self-awareness based on the algorithmic ap-
proach [7, 28]. The observation of algorithmic output allowed users 
to build more specifc and detailed behavior changes or interven-
tions [25, 28], and users positively evaluated the scientifc nature 
of the data-driven approach [28]. Our study identifed additional 
fndings that users employed predictive information to reconstruct 
past stressful experiences as well as related information by sup-
plementing their subjective reasoning. In particular, designing and 
deploying a system that generates prediction and explanation in 
three ways led us to add new fndings to the earlier works on 
technology-mediated refection. Our study reports the infuence 
of visualization of predictive information for the PI system. While 
users highly evaluated both categorical and detailed explanations 
as more useful than presenting only stress prediction level was, we 
discovered that the use of explanation data and its infuence on 
system perception difered based on the level of explainability. 

Our study result can be extended to the system that explainability 
plays a pivotal role. Consistent with work on user-centric XAI re-
search, our qualitative fndings revealed no meaningful diferences 
in users’ evaluation of Type 2 and Type 3 explanations [75]. The 
preference for Explanation varied depending on the individuals’ 
needs [52]. Some users preferred the most detailed explanation for 
gaining specifc insight from the data, whereas others preferred the 
categorical explanation for the ease of checking the explanation. In 
our study, we identifed that the categorical explanation Type 2 (i.e., 
a medium level of explanation but not too detailed) can generate a 
meaningful user experience by creating space to explore algorith-
mic outcomes in a user-driven way. We also discovered that as the 
level of explanation increases, the user expectation of the system 
could be violated [75]. For example, observing how the system in-
terpreted specifc user behavior to determine stress levels led users 
to discover that the algorithm behaves diferently from their per-
ception of stress. Drawing upon refections on our feld study, we 
frst propose high-level guidance on how the prediction algorithm 
should be utilized in the PI system to support self-refection. Based 
on our fndings, we discuss aspects that should be considered when 
applying explainability to an algorithm-incorporated PI system for 
self-refection in the following section. 

6.1 Prediction for Retrospection: Exploiting 
Algorithms to Facilitate Technology 
Mediated Refection 

Through the MindScope study, we investigated how the prediction 
algorithm can be exploited in the PI system for self-refection. Based 
on the study result, we identifed a design possibility of utilizing the 
prediction algorithm to support the user’s retrospection process, 
which is diferent from the primary goal of the current prediction 
algorithm aimed at performing accurate classifcation and regres-
sion [45]. The core components of PI consist of data collection of 
personal information and refection. [43]. Accordingly, we summa-
rize below how an algorithmic stress management system such 
as MindScope can aid in data collection and refection through PI 
systems for mental health [43]. 
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6.1.1 How Can an Algorithm Help Data Collection? The data input 
methods of mood, afect, or other mental health-related topics in 
the existing PI system largely rely on the participants’ self-report. 
However, this approach is likely to cause recall bias and accuracy 
reduction [35, 55]. To complement this method, EMA was proposed 
to help users input data through repeated evaluation in the con-
text of an event [69]. However, this approach relies on the user’s 
subjective evaluation and judgment. Therefore, it may be a difcult 
process for users who lack self-awareness. Technical approaches 
such as mood detection [80] and algorithmic sensor feedback [80] 
using passive sensing technology can address the memory bur-
den issue. However, there are concerns about the adequacy of the 
automatic tracking method in collecting the user’s subjective and 
personal emotional state [62]. For example, in accepting algorithmic 
results for personal information, people often uncritically accept 
the results of algorithms by overriding their own interpretations or 
understanding [84]. 

MindScope ofers a stress data collection method that combines 
data-based stress prediction information and user-driven stress level 
input. Field study results showed that this data collection method 
could efectively recall and track past stress levels in a user-driven 
manner. When comparing the modeling phase where participants 
report stress using an EMA process and the prediction phase where 
participants report their stress level with the prediction information, 
participants in the prediction phase utilized data-driven, objective 
algorithmic decisions to supplement their subjective, abstract, and 
intuition-based judgments, resulting in a less vague recall of the 
past. Further, participants used the explanation displaying the data 
related to stress prediction to reconstruct their own past stress-
related events and to help with more detailed recall. Through these 
fndings, we identifed the possibility that the predictive algorithm 
could be used as a device to help individuals reminisce and analyze 
past events. 

6.1.2 How Can an Algorithm Help Data Reflection? Many existing 
data-driven PI systems serve as data visualization that is mainly 
used for data analytics. However, the limitation of this approach is 
that it requires data literacy of the users [25]. AI-infused products or 
services–which often automatically generate insights and provide 
recommendations based on the data collected–have been found 
to be valuable for general users. A recent study reported that the 
ML model built on personal data (e.g., meal, blood sugar level) was 
efectively used to suggest actionable health behaviors [25]. In line 
with the studies, MindScope acted as an experimental platform 
for examining the role of algorithms that can generate actionable 
insights for stress management. 

The deployment study also helped us determine an appropriate 
level of explainability to facilitate self-refection. We confrmed 
that providing an explanation was more useful and efective than 
providing only prediction value. Our participants reported that the 
most detailed explanation enabled them to understand the context 
of the current stress level and generate concrete, actionable plans 
to ofset the stressors identifed. Explanations providing only cat-
egory level information were also rated positively because they 
provided an opportunity for speculation and inspection at a glance 
in a user-driven way. However, we also determined that as the 
level of explainability increased, users became more sensitive to 

the accuracy of the system Based on our fndings, we discuss what 
should be considered when applying the explainability for algo-
rithm incorporated PI system for self-refection in the following 
section. 

6.2 Explainability for Supporting 
Self-Refection in the Algorithm-Assisted 
PI System 

In this study, we explored the role of explainability in algorithm-
mediated self-refection, which difers from the general goal of 
explanation that increases the acceptance and trust of algorith-
mic output [3, 20]. Our study results confrmed that explainability 
could be helpful in self-refection by helping users reconstruct past 
stressful situations and plan stress intervention based on objec-
tive data-driven insight. We also found that giving a more detailed 
explanation is not always the best approach, consistent with the 
previous study [75]. In this section, we discuss considerations when 
designing an explanation for self-refection in the PI system based 
on our research results. 

6.2.1 Stress Prediction Visualization for Promoting User Initiative 
and Behavior Change. We have confrmed that the level of expla-
nation can afect a user’s initiative in the self-refection process. 
Compared to providing detailed behavior-level Type 3 explanations, 
the Type 2 data-category-level explanations helped users infer and 
recall past stressors more proactively. Conversely, this fnding also 
suggests detailed explanations might reduce users’ initiative in the 
process of looking back on the past and gaining insight through 
it. Therefore, the explainability of the algorithm output for self-
refection should be designed in consideration of how much the 
user will take the initiative in the self-refection process. 

Consistent with the previous study on algorithmic self-refection 
systems [25, 28], users planned specifc and actionable behavior 
changes using the algorithm output and explanations. Consider-
ing one of primary goals of self-refection is to infuence future 
behaviors and attitudes based on retrospection, we believe the ex-
planation for the algorithmic output in a PI system should focus on 
information that can help users change their future behavior. For 
example, global feature importance and decision tree approxima-
tion are known to be efective XAI methodologies for explaining 
how a model behaves [44], but they could be too complex and ab-
stract to plan specifc behavioral changes for users. On the other 
hand, although not explored in our study, an explanation from the 
“how to be that” perspective can be efective in answering how a 
specifc behavior or instance needs to change to obtain diferent 
stress prediction results. 

6.2.2 Open-Ended Algorithmic Stress Prediction Visualization for 
Promoting Self Reflection. In this study, we found the possibility 
that the prediction algorithm and its explainability can be used to 
help users better recall and refect on stress-related data. Mean-
while, we also found that the level of explainability should be care-
fully considered as it can negatively afect users’ system reliability 
and overall perception [44]. Therefore, we suggest presenting pre-
dictive information in an open-ended way that promotes users’ 
self-understanding and refection, rather than decisively diagnos-
ing the user’s stress level. For example, the interaction between a 
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user and an algorithm can be designed to assist the user in under-
standing himself or herself in a cooperative way. We can imagine 
a system’s framing in this way: “Today, I (system) guess you 
are experiencing some stress. What do you think?” This 
would ask users for their own retrospection rather than mindlessly 
accepting the system’s output. We further identifed that observing 
how the system interpreted specifc user behavior into stress levels 
led users to discover that the algorithm behaves diferently from 
their perception of stress. Accordingly, excessive explanation could 
reveal this disparity and lower trust in the system [75]. In particu-
lar, the reasoning process of identifying stressors and patterns can 
be fundamentally diferent between people and machines because 
of the highly subjective nature of mental health. Therefore, when 
providing explanation in stress prediction algorithms, the system 
needs to provide cues implying that people and machines infer 
stress diferently to prevent a reduction in the perceived reliabil-
ity of the system. Furthermore, explainability should be designed 
to allow users to examine their past events and status in a non-
decisive manner, rather than providing technical explanations of 
the prediction results. 

6.3 Design Suggestions for Algorithm-Assisted 
Self-Refection in PI systems 

We proposed in the above section the general implications of how 
the prediction algorithm and explainability should support the 
user’s self-refection. In the following section, we summarize the 
concrete suggestions of design elements that should be considered 
to improve the user experience of the PI System using the algorithm. 

6.3.1 Adjusting the Level of Explanation According to Stages of In-
teraction. While most users preferred the most detailed explanation, 
providing such detailed explainability in the early stage of inter-
action, especially when an algorithm provided an inaccurate or 
insufcient explanation, might decrease trust in the system. There-
fore, careful consideration is required to determine the appropriate 
level of explanation provided, because the higher the level of expla-
nation, the more likely the model’s performance will be revealed 
in detail. MindScope was also not free from early stage accuracy 
problem (i.e., the cold-start problem) in which the system could not 
draw any inference for users about which it has not yet gathered 
sufcient information, which in turn negatively afected the user 
experience. [10, 36]. To alleviate this defciency, the system can 
adjust the levels of explainability corresponding to the amount of 
data collected and the accuracy of the model. Our study revealed 
that the level of explainability infuenced participants’ perception 
of the algorithm’s accuracy. Therefore, we suggest interface designs 
that progressively improve explainability as the interaction with 
the system increases and the model is trained sufciently. 

6.3.2 Building Co-performing Relationships. MindScope can be 
positioned as an intelligent PI system augmented by a prediction 
algorithm built upon users’ self-generated data including EMA and 
smartphone usage data. Recent studies on user-algorithm inter-
action in intelligent computing systems emphasize establishing 
a cooperative and reciprocal relationship, known as building a 
co-performing agent [37]. In our study, some participants often 
perceived MindScope as a health partner that keeps learning about 

them. MindScope’s 10-day data collection and modeling period 
without providing algorithm-generated stress reports allowed users 
to build a relationship and trust the system. Accordingly, our par-
ticipants actively engaged in data input to train their models for 
better predictions. We also found that an interactive, anthropomor-
phized persona applied to the system (e.g., a bubble changes its 
color corresponding to a user’s stress level) further helped users 
perceive the system as more of a co-performing agent. For instance, 
our participants noted that they were tolerant of the errors the 
system made and motivated by input data required to make the 
MindScope’s agent intelligent. We also found that our participants 
appreciated that they received an opaque stress level every three 
hours. They said that waiting for a stress report and anticipating the 
algorithm’s prediction was a particularly pleasant experience. Mind-
Scope’s unique feature—delivering information about one’s stress 
at regular intervals—was a lever for building a positive relationship 
with the algorithm. Our results emphasize that a co-performing 
relationship between a user and an algorithmic system is critical 
for an intelligent PI system where an individual’s participation in 
the entire process of data collection and refection is required [43]. 
Providing a pleasant user experience through interaction with a 
co-performing agent can be particularly benefcial to the domain 
of PI systems that deal with mental health issues such as stress, 
anxiety, and depression. 

6.4 Limitation 
Our study presents limitations related to experimental design and 
system design. Participants were able to interact with each type of 
explanation for only each fve days chunk which could be relatively 
a short period to examine the impacts and diferences between 
each explanation type. A longitudinal study should be done to 
compensate for the limitation. We did not have a control group to 
clearly distinguish the efects of the prediction and explanation on 
stress reduction and management. In addition, the order in which 
the three diferent explanations were provided is not strictly coun-
terbalanced. To complement our result, we conducted in-depth 
interviews with most of the participants (n=34) to reveal their lived 
experiences on stress management and perception of prediction 
algorithm. This study was conducted not to present clinical, quanti-
tative evidence of MindScope on stress management but to explore 
new possibilities and gain insights into the design of the future PI 
system utilizing a prediction algorithm for self-refection. There-
fore, we circumvented complexities and kept the feld study to a 
reasonable size to focus on providing users with a seamless system 
experience for eliciting user experiences close to the real world. Be-
cause we conducted this study with college students, our research 
results may be difcult to generalize to a broader population. For 
example, the level of background knowledge in AI and data that 
university students have may difer from that of users with other 
demographic backgrounds, which can afect their perception of al-
gorithmic output [77]. Future work could be done to compensate for 
this limitation by enrolling diverse participants. Our system design 
has room for improvement. We acknowledge that some microtask 
methods could be problematic (e.g., inducing excessive YouTube 
watching). However, rather than limiting the type of microtasks at 
the researcher’s discretion, we focused on providing an opportunity 
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for users to freely choose their interventions from a list or create 
their own interventions. We decided on this design because the 
most appropriate and efective intervention for each individual may 
difer. Also, planning their own interventions can provide a sense of 
agency in managing stress. Regarding the model’s performance, we 
expect there will be room for improvement through additional data 
and extension of the experimental period. We acknowledge that 
model performance could afect the user experience and efcacy 
of the system. However, although highly subjective, stress matters, 
and it is infuenced by various factors and is difcult to predict. 
In this work, rather than focusing on the technical contribution 
to improving the model’s performance, our main objective was to 
understand how users and prediction algorithms interact and the 
ways the visualization and explainability of prediction information 
afect them. Lastly, because our study focuses on how diferent lev-
els of explainability afect a user’s self-refection, providing users 
with specifc navigating interactions techniques (e.g., zoom, flter, 
details on demand) in the predictive information goes beyond the 
scope of our study. Nevertheless, these techniques allow users to 
efectively fnd the content they want in complex data as needed 
[70] and also can bring a positive user experience in the provision 
of an explanation of the algorithmic output [76]. Therefore, we sug-
gest future work that allows users to explore the level and content 
of an explanation based on their needs and goals. 

7 CONCLUSION 
This paper addressed the design opportunities for utilizing predic-
tion algorithms and explainability in the PI system for supporting 
users’ retrospection. A MindScope is an algorithm-assisted PI sys-
tem designed to explore how people perceive and utilize the predic-
tion algorithm for their refection on stressors. Through a 25-day 
real-world deployment study, we provided empirical fndings on the 
impact of algorithmic stress prediction for self-refection. In partic-
ular, we report how the explainability of stress prediction afected 
users’ self-refection and algorithmic perception. Our fndings indi-
cate that prediction could be used as a device to help individuals 
reminisce on past stress levels and related information by supple-
menting the user’s subjective reasoning. The detailed explanations 
were used to reconstruct and understand stress-related events, while 
categorical explanations support users in understanding stressors 
in a user-led way. Drawing upon refections on our feld study, we 
propose exploiting a prediction algorithm for supporting users’ ret-
rospection with open-ended algorithmic prediction that promotes 
the user’s self-understanding and refection, rather than decisively 
diagnosing the user’s stress level. 
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