
Amuse: Human-AI Collaborative Songwriting
with Multimodal Inspirations

Yewon Kim∗

KAIST
Republic of Korea

yewon.e.kim@kaist.ac.kr

Sung-Ju Lee
KAIST

Republic of Korea
profsj@kaist.ac.kr

Chris Donahue
Carnegie Mellon University

United States
chrisdonahue@cmu.edu

Abstract

Songwriting is often driven by multimodal inspirations, such as
imagery, narratives, or existing music, yet songwriters remain un-
supported by current music AI systems in incorporating these mul-
timodal inputs into their creative processes. We introduce Amuse,
a songwriting assistant that transforms multimodal (image, text,
or audio) inputs into chord progressions that can be seamlessly
incorporated into songwriters’ creative process. A key feature of
Amuse is its novel method for generating coherent chords that
are relevant to music keywords in the absence of datasets with
paired examples of multimodal inputs and chords. Specifically, we
propose a method that leverages multimodal LLMs to convert mul-
timodal inputs into noisy chord suggestions and uses a unimodal
chord model to filter the suggestions. A user study with songwriters
shows that Amuse effectively supports transforming multimodal
ideas into coherent musical suggestions, enhancing users’ agency
and creativity throughout the songwriting process.
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1 Introduction

Across creative pursuits, artists draw inspiration from awide variety
of concepts and experiences, relying on intuition to find connec-
tions between sometimes seemingly unrelated modalities. Within
music, for example, Modest Mussorgsky composed Pictures at an

Exhibition with direct inspiration from a series of paintings, and
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Björk’s album Biophilia was inspired by ruminations on the rela-
tionships between music, nature, and technology. Increasingly, AI
systems are capable of modeling such multimodal relationships,
i.e., to understand not only concrete relationships between data
modalities (e.g., what objects are in this painting?) but also more
abstract ones (e.g., what music might fit with this painting?). Conse-
quently, these systems are being applied across a growing range
of creative pursuits, such as illustration [59], creative writing [18],
and video editing [97].

Within the context of AI support for musical creativity, recent
research has centered around two key pathways. First, AI systems
have become capable of generating music audio from text descrip-
tions [1, 21, 28, 36, 50, 82], leveraging the particularly intuitive
multimodal relationship between music and text to offer users a
compelling new form of musical control. However, because these
systems output completed songs in audio rather than reusable mu-

sical elements (e.g., sequences of notes or chords), they are not
particularly supportive to musicians who view iteration as cen-
tral to both the creative process and to their sense of ownership
over the outcome [67]. In contrast, symbolic music generation sys-
tems [30, 49, 76, 86, 92] are increasingly being incorporated into
music editors to aid musicians in iterative composition workflows
by generating reusable musical elements that agree with the sur-
rounding musical context [32, 40]. While musicians find these types
of systems helpful, these systems fall short in incorporating mul-
timodal sources of inspiration, as they only take the surrounding
musical context as input. Accordingly, musicians remain unsup-
ported in incorporating multimodal sources of inspiration into their
iterative creative processes.

In this work, we bridge this gap by building a generative musical
support tool that can both incorporate multimodal inputs and facil-
itate creative iteration. Specifically, we present Amuse (Figure 1),
a songwriting assistant that transforms multimodal user inputs
(images, text, audio) into reusable musical elements (chord progres-
sions)1. Motivated by a formative study with eight songwriters,
Amuse comprises two key functionalities: Chord Generator and
Chord Transcriber. In the Chord Generator, we adopt a two-step
chord generation approach where we (i) extract music keywords
from user multimodal inputs and (ii) generate chord progressions
that align with the given music keywords. The Chord Transcriber
allows users to transcribe chords from a specified range of audio
sources. Amuse is seamlessly integrated into Hookpad [42], a music
editor that assists songwriters in the composition of the chords and
melody that together characterize the basic essence of a piece of
music. In combination with Aria [32]—a contextual and unimodal

AI songwriting assistant already integrated into Hookpad—Amuse

1Sound examples and code are available at: https://yewon-kim.com/amuse
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Figure 1: Amuse transforms multimodal (image, text, or audio) inspirations into reusable musical elements (chord progressions)

that songwriters can seamlessly incorporate into their creative process. Amuse consists of two functionalities: Chord Generator

(Left) and Chord Transcriber (Right). In the Chord Generator, user can generate music keywords from image/text inputs and

generate musically coherent chord progressions based on the music keywords. These suggestions are generated by rejection-

sampling the LLM-generated chord progressions using a unimodal chord model. The Chord Transcriber allows users to

transcribe chords from a specified range of audio.

can support songwriters by incorporating multimodal sources of
inspiration in addition to existing musical context.

A key challenge in developing Amuse is the lack of obvious
sources of training data consisting of paired multimodal inputs and
reusable musical elements (i.e., chords). Text-to-music systems are
trained on large corpora of text captions and music audio; however,
to the best of our knowledge, no such corpora exist that include
reusable musical elements as opposed to music audio. To build such
a system without paired training data, we leverage the general capa-
bilities of multimodal large language models (LLMs) by instructing
GPT-4o [71] to generate chord progressions that might correspond
to multimodal inputs. However, we find that chord progressions
from GPT-4o are not musically coherent enough to directly serve
users. Equipped with a unimodal dataset consisting only of human-
composed chord progressions, we train a language model prior
over chords, which we use to filter out unrealistic chords generated
by GPT-4o through a rejection sampling procedure. Through both
quantitative and qualitative evaluation, we show that our method
can generate diverse chord progressions that are relevant to user
keywords and musically coherent.

To understand how Amuse supports the songwriting process,
we conducted a within-subjects study with 10 songwriters, where
participants wrote 8-bar choruses based on songwriting prompts.
Participants engaged in two conditions: one where they used both

Amuse and Aria, and another where they used Aria alone. Our
study revealed that Amuse effectively supports the transformation
of multimodal inspirations into concrete musical elements, with
participants feeling more guided and aligned with their creative
goals than Aria alone. Notably, although Amuse was designed for
early-stage use, participants employed it across various stages of the
songwriting process, demonstrating diverse usage patterns. With
Amuse, participants experienced enhanced agency and creativity
throughout the process. Overall, these findings suggest that Amuse
enriches the songwriting process by helping songwriters seam-
lessly integrate diverse multimodal inspirations into their creative
workflows.

In summary, this paper presents the following contributions:

(1) Amuse, an interactive songwriting assistant that supports
users in transforming multimodal inspirations into reusable
musical elements.

(2) A novel method for generating diverse, relevant, and co-
herent chord progressions based on multimodal user inputs
without paired training data.

(3) Findings from a user study (N=10) on how and when mul-
timodal inspirations are used throughout the songwriting
process and their impact on the creative workflow.
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2 Related Work

2.1 Human-AI Collaborative Music Creation

Research on human-AI collaborative music creation has largely cen-
tered on the symbolic music domain, where musical elements such
as melodies and chords are represented as a sequence of symbols
(e.g., MIDI). Most systems in this symbolic space employ contextual

models [40, 45, 47, 49, 92], which generate continuation or infil-
lation given user-provided musical elements. For example, Music
Transformer [49] extends user-provided MIDI sequences by gener-
ating contextually coherent MIDI continuations. In addition, chord
recommendation systems such as ChordRipple [46] and Chord-
SequenceFactory [37] provide suggestions for chord progressions
based on the current harmonic context, helping users build coherent
and creative chord sequences over time.

In practice, human-AI collaborative music creation is facilitated
by musical user interfaces, such as MIDI editors, where users can
input and refine musical elements while collaborating with AI [7,
10, 41, 47, 61, 63, 89]. A notable example is Cococo [61], where
users can manually input or edit musical notes, steer the contextual
AI model to generate infills for incomplete sections and integrate
AI-generated suggestions directly within the editor. These inter-
faces enable users to iteratively generate and refine AI suggestions,
giving them agency in shaping the final output by alternating be-
tween manual input and AI suggestions [67]. Commercial tools
exemplifying these human-AI collaborative creation interfaces in-
clude Aria [32], which operates unimodally by generating musical
elements—chords or melodies—based on user-provided contextual
inputs written in the music editor. However, prior interfaces primar-
ily focus on contextual musical inputs without considering other
modalities (e.g., images, text) that can influence the creative process.
Our study expands this scope by incorporating multimodal inputs
into these contextual music co-creation workflows.

2.2 Text-to-Music Generative Models

While symbolic music AI focuses on modeling the representation
of unimodal music data, one emerging area of research involves
text-to-music generative models [1, 21, 28, 36, 50, 82]. These models
learn multimodal representation between textual descriptions and
music audio, allowing users to steer the model generations by text
prompts (e.g., “smooth piano improvisation over a walking bass
line”). Similarly, proprietary models like Suno [3] and Udio [93] al-
low users to input text prompts and full lyrics to generate complete
songs. While these text-conditioned generative models offer users
greater control and agency over the generation process, a key limi-
tation is that the outputs are fully-rendered audio files, which are
not easily integrated into the iterative workflows of music creation,
such as those in digital audio workstations (DAWs). In contrast,
our work focuses on human-AI collaborative music creation, where
AI-generated outputs are meant to be part of an evolving, iterative
creation process rather than final products.

2.3 Multimodality in Creativity Support Tools

Multimodal systems have been widely explored in HCI and creativ-
ity support tools. In the visual domain, different modalities are used
to enhance the creation of both 2D [34, 59, 83] and 3D [13, 14, 23, 60]

visuals. For instance, Opal [59] supports the illustration creation
process by incorporating inputs like news articles, keywords, tones,
and styles, while in Attribit [14], users can input adjectives and emo-
tional cues to generate 3D shapes. Multimodal systems have also
been developed to assist with writing [12, 18, 52, 105]. For example,
PandaLens [12] combines audio, gaze patterns, images, and verbal
comments to generate narratives, while TaleBrush [18] allows for
both text-based and sketch-based interactions in storytelling. Addi-
tionally, some writing systems provide multimodal feedback rather
than multimodal input to support the creative process [9, 88]. For
example, Fairytailor [9] retrieves sequences of images aligned with
texts to stimulate ideation in storytelling. Despite these advance-
ments, multimodal music creation remains a relatively unexplored
and emerging area in creativity support tools. With Amuse, we
focus on integrating both contextual and multimodal inputs to ex-
plore how diverse communication channels can enhance human-AI
collaborative music creation.

3 Formative Study

To inform the design of Amuse, we conducted formative interviews
with songwriters with two goals. Firstly, to learn about songwriters’
initial ideation and song development process. Secondly, to explore
potential AI supports that could enhance the songwriting process.

3.1 Participants and Procedure

We recruited eight participants who are active users of Hook-
pad [42] and Aria [6, 32]. Hookpad is a widely-used online song-
writing tool developed by Hooktheory [43] that enables users to
create songs (chords and melodies) via keyboard or MIDI inputs.
Aria is an AI-powered songwriting assistant integrated into Hook-
pad, capable of generating melody or chord continuations and infills
based on user-provided inputs. We selected these participants be-
cause Hookpad supports the earliest stages of songwriting, offering
insight into the ideation process, while Aria allows us to exam-
ine how users already incorporate contextual generation into their
creative workflows.

All participants identified themselves as hobbyists, with song-
writing years ranging from 1.5 years to 5 years (M=3.38, SD=1.19).
These participants engaged in various genres of music creation:
three participants in pop songs and others in rock, bluegrass, punk,
classical, and jazz. Participants reported engaging in songwriting
activities at least once a week and using Aria at least once when
writing songs using Hookpad.

During the interview, we asked participants about sources of
inspiration and how they translate these inspirations into songs. We
also asked their experiences and opinions on songwriting tools they
have used (includingAria) and desired AI functionalities to support
songwriting. Participants were compensated with $25 Amazon gift
card for the 1-hour interview. The interviewswere conducted online
via Zoom in a semi-structured format and were recorded, manually
transcribed, and coded through a thematic analysis.

3.2 Findings

3.2.1 Inspirations from diverse modalities. All of the song-
writers mentioned drawing inspiration from various sources, which
can be grouped into three categories: audio, narrative, and visual.
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Seven out of eight songwriters (P1-3, P5-8) said they often get

ideas from listening to music. P3 noted, “I enjoy studying songs

that are already proven to be great. I listen to them, take elements

I like, and add my own twists.” Three songwriters (P4, P7-8) men-
tioned drawing inspiration from narratives, such as stories and
personal experiences. P4 explained, “I always start with a lyrical

concept when writing a song. For example, I sometimes randomly turn

to a page in a novel I’m reading and use that as the theme for the song.”
Similarly, P7 found inspiration in personal experiences: “I remember

when my dog found a baby bird in a bush. It was a tense moment

because we didn’t know if my dog would attack the helpless bird. I

connected that experience to a song I wrote in the harmonic minor

scale.” Lastly, two (P2, P8) mentioned being inspired by visuals,
such as game scenes or movie aesthetics. P8 noted, “Watching a

movie, the aesthetic can make me want to capture that in a song.

For example, an action scene might inspire me to create something

up-tempo or intense.”

3.2.2 Transforming multimodal inspirations into musical

elements. Once inspired, songwriters sought to translate their
abstract sources of inspiration into concrete musical elements, such
as chord progressions or melodies, to build upon. Seven out of eight
participants (P2-8) mentioned improvising with instruments or

their voices until they found something they liked. For instance,
P4 explained, “I have a theme, that is, nostalgic memories triggered by

scent. I would sing random melodies or try out many different chord

combinations until I found something that matched my song concept.”
The process of improvisation was not always linear; sometimes,
participants improvised first and connected their ideas to their
initial inspiration. P7 noted, “I have a Google doc where I dump all

my lyrical concepts, but I don’t always start from there. Sometimes,

I’ll improvise on my guitar, come up with chord progressions I like,

and begin writing. Later, I often find myself connecting the song to

concepts from my list.”
Another common approach was analyzing music through

listening sessions. Four participants (P1, P3, P5-6) mentioned
analyzing either existing songs or recordings of their own improvi-
sations. P6 described, “I’ll go to YouTube and listen to popular music.

I’ll note how sharps, flats, and chord progressions are used, to find

what sounds pleasing to me. Then I’ll transcribe them into Hookpad

and expand on it to create something unique.”

3.2.3 Seamless incorporation of modular AI suggestions.
While all participants emphatically expressed the central impor-
tance of the manual aspects of the songwriting process, they also
recognized AI tools as inspirational sources, as mentioned by
seven participants (P2-8). AI suggestions were viewed as a “great
starting point” (P4, P8) or useful for overcoming “writer’s block”
(P2, P3), as P2 remarked, “It’s like having someone next to me, sug-

gesting the next two bars.” Participants appreciated AI tools like

Aria for offeringmodular suggestions that can be easily inte-

grated into the songwriting process, particularly in preserving
creativity, agency, and ownership in the process (P2-4). For exam-
ple, participants described modular suggestions in MIDI format as
helpful because “you have control over how and where to use, and

you can edit the suggestions” (P4). Generating more than that, such
as an entire audio track, was seen as intrusive, as it “takes the joy of
songwriting from me” (P2). Similarly, P3 described these modular

suggestions as “sparks that promote curiosity and creativity,” while
generating too much “dampens my creativity.” In addition, concerns
about integrity were raised regarding audio track generations; two
(P2-3) expressed fears that AI-generated audio might be “potentially
copied from copyrighted music” (P3).

However, many participants found Aria’s suggestions to be

lacking context for their specific inspirations (P1-5, P7-8).
P4 explained, “I wish it would generate melodies that better fit my

lyrical ideas. Most of the time, Aria’s outputs don’t align with my

song’s theme.” One participant (P5) used the text-to-music model,
Udio [93], to address this but found it tedious, as it generated full
audio track that could not be easily integrated into songwriting
interfaces like Hookpad or digital audio workstation (DAW): “I
found Udio really good at finding harmonies for specific styles or

moods I’m looking for. I generated audio with a prompt ‘country pop,

uplifting, catchy anthem, introspective mood, love’ and took the chord

progression from there. But extracting the usable elements was a lot

of work.”

3.3 Design Goals

Guided by both our formative interviews and prior literature, we
establish three Design Goals for our system:

DG1: Incorporatemultimodal inspirations.AnAI songwriting
system can support creative processes by enabling users
to incorporate inspirations from diverse sources into their
songwriting process. Based on the formative study, sources
that users draw inspiration from are visual, narrative, and
existing music.

DG2: Transform abstract ideas into musical elements. The
system should support transforming high-level, abstract
ideas into concrete musical elements. As informed by prior
studies, this transformation process should ensure user con-
trol over iterative generation of musical elements [84, 85],
while aligning outputs with users’ creative intentions [44].

DG3: Provide modular musical building blocks. Consistent
with prior studies [44, 81], participants in our formative
study preferred modular, editable outputs that can be seam-
lessly integrated into their workflow. As such, the system
should focus on generating modular musical elements—such
as chord progressions—that can be refined and directly inte-
grated into songwriting interfaces (e.g., DAWs).

4 Amuse: Overview

Based on our design goals, we present Amuse (Figure 2), a songwrit-
ing assistant that transforms high-level multimodal inspirations
into chord progressions. Amuse supports diverse sources of inspira-
tion, including text, images, and audio (DG1), and translates these
abstract inputs into coherent chord progressions (DG2) by either
keyword-guided chord generation or audio transcription. By fo-
cusing on chord progressions as the system outputs (DG3), Amuse
provides users with fundamental components that can be seam-
lessly integrated into their compositions within the songwriting
interface. In this section, we first provide an overview of Amuse
(§4.1), explain the interactions and technical details within Amuse’s
interface (§4.2-§4.3), and implementation (§4.4).
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A Hookpad Interface

B  AMUSE
C  Aria

Figure 2: Screenshot of the songwriting interface used in the user study. The main workspace is the Hookpad interface (A),

where users can input melodies and chords using either the keyboard or MIDI devices. Amuse (B), a Chrome extension, appears

as a floating window within the Hookpad interface. Users can freely open, close, move, and resize this window. The current view

of Amuse displays the Chord Generator, which generates chord progressions from user-provided images or text. Participants

also used Aria (C), a tool for generating melodies and chords based on the content already written in the Hookpad interface.

4.1 System Overview

Amuse is built as a Chrome extension that works on top of Hook-
pad [42], a widely-used online songwriting tool developed by Hook-
theory [43] (see Figure 2). The decision to develop Amuse as an
companion tool to Hookpad rather than a standalone application
was driven by the robust songwriting functionalities already present
in Hookpad, such as MIDI input, playback, and instrumentation
options, making it an efficient platform to build upon without the
need to duplicate existing functionalities. Furthermore, Hookpad
includes Aria [32, 92], an AI songwriting assistant that gener-
ates melody/chord continuations or infills based on user-provided
melodies and chords. Aria is representative of an emerging family
of contextual AI music assistants [47, 61, 62], i.e., ones that gener-
ate musical outputs based on existing musical material. In contrast,
Amuse is designed to facilitate multimodal transformations, com-
plementary to the contextual inputs to Aria. By integrating Amuse
with Hookpad and Aria, we create a unique environment to study
the interaction between these different forms of music AI assistance.

This setup not only allows us to explore the synergies that Amuse
brings to the previous songwriting interfaces but also provides
valuable insights into their collaborative potential in enhancing the
songwriting process.

Amuse comprises two main features: Chord Generator (§4.2) and
Chord Transcriber (§4.3). Chord Generator processes text and image
inputs, extracting relevant musical keywords that users can select
and refine. These keywords are then used to guide the generation of
chord progressions that alignwith themood and concepts embodied
by the keywords. On the other hand, Chord Transcriber accepts
audio inputs and transcribes them into chord progressions. When
users select (click) chords suggested by Amuse, they are instantly
integrated into the Hookpad interface, where they can be played
back and further refined. Users can change instrumentation, timbre,
and play the sounds within the Hookpad interface, and continue
songwriting based on Amuse’s suggestions.
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(A) Initial Interface (B) Music Keywords Extraction (C) Keyword-based Chord Generation

Figure 3: Overview of Chord Generator in Amuse. (A) Initial Interface: Users can upload an image or type text, which are used

to generate music keywords. Users can also directly write music keywords in the keyword editor. (B) Keyword Extraction: Upon

clicking the “Generate Keywords” button, Amuse suggests music keywords based on the multimodal inputs. User-selected

keywords are automatically pasted into the keyword editor (‘acoustic, ‘mellow,’ and ‘indie-pop’ in the figure). (C) Keyword-based

Chord Generation: Upon clicking the ‘Generate Chords’ button, Amuse suggests four chord progressions based on the keywords.

Users can choose between 3-bar or 4-bar progressions (default: 4 bars). The key is automatically detected from the song

configuration in Hookpad (G Maj in the figure). Clicking a chord progression automatically pastes it into Hookpad (in the

figure, ‘Amaj7-Em7-A7-Dmaj7’ and ‘Bm9-E7-C#m7-F#m7’ are selected), where users can play the audio and make further edits.

4.2 Chord Generator

4.2.1 Chord Generator Interface. The Chord Generator interface
is illustrated in Figure 3. Upon opening the Chord Generator, users
are prompted to provide an image, text input, or both, which are
then used to extract relevant music keywords (Figure 3A). When
users click the ‘Generate Keywords’ button, the system suggests
keywords based on the multimodal inputs (Figure 3B). Users can
select from the suggested keywords, with selected keywords auto-
matically inserted into the keyword editor for further refinement.
After finalizing the keywords, users can click the ‘Generate Chords’
button to receive chord progressions that align with the selected
music keywords (Figure 3C). The interface reads the key configura-
tion (e.g., G Maj) in the Hookpad editor interface and generates the
chord progressions in the specified key. Users can also specify the
number of bars (3 or 4) for the chord progressions. Upon clicking
the button, Amuse generates and displays four chord progressions,
drawing on prior research that demonstrates multiple suggestions
enhance creativity and are preferred in ideation tasks [11, 26, 55, 61].
We specifically provide four suggestions per query, following previ-
ous work on human-AI collaborative music creation system [61]. By

clicking on any of the suggestions, the chosen progression is auto-
matically inserted into the Hookpad editor, where users can further
modify or play the chords to integrate them into their compositions.

4.2.2 Keyword-based Chord Generation Pipeline. We adopted a
keyword-based interaction framework between multimodal inputs
and chord progressions to help users create meaningful semantic
connections between two modalities that are otherwise difficult to
link due to their abstract and morphologically different nature [88].
Keywords serve as an intermediary communication layer, inspired
by practices in creativity support tools in the vision domain [17, 59,
60]. To extract music-related keywords that align with user inputs,
we leverage the multimodal LLM, GPT-4o [71], instructing it with
a list of music styles and genre-specific keywords crawled from a
music keyword wiki [90]. The prompt used for keyword generation
can be found in Appendix A.

For keyword-based chord generation, to ensure that the gener-
ated chords are diverse, musically coherent, and relevant to input
keywords, we developed a rejection-sampling-based chord genera-
tion method that integrates an LLM with a language model prior
trained over chord data. The detailed algorithm and its implemen-
tation are discussed in §5.
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(A) Initial Interface (B) Audio Inspiration Input (C) Chord Transcription

Figure 4: Overview of Chord Transcriber in Amuse. (A) Initial Interface: Users can upload a local audio file or enter a YouTube

URL. (B) Audio Inspiration Input: With an audio preview, users can select the desired segment for transcription by specifying

start and end times (maximum 30 seconds). (C) Chord Transcription: Amuse detects the key (shown as Gb Min) and chords of

the selected audio segment. Users can play the audio segment and the chord is highlighted in sync with the playback (in this

figure, C#m/E). Clicking on a chord pastes it into the Hookpad interface. If the “Convert to Hookpad Key” option is checked,

the chords are transposed to match the key the user is working on (G Maj in the figure).

4.3 Chord Transcriber

The Chord Transcriber interface is illustrated in Figure 4. Users
can either upload a local audio file or enter a YouTube URL for
transcription (Figure 4A). Once the audio source is uploaded, users
can preview the audio and set the transcription window, with a
maximum length of 30 seconds (Figure 4B). Upon clicking the ‘Tran-
scribe’ button, Amuse processes the request with a 10−15 seconds
delay and displays the detected key and chords for the selected
audio segment (Figure 4C). The transcribed audio can be played
back with the corresponding chords highlighted in sync with the
playback. Users can click on any chord to automatically paste it
into the Hookpad editor for further refinement. To accommodate
key differences between the detected key and the key the user is
working in, the ‘Convert to Hookpad Key’ option allows for auto-
matic transposition of the chords to match the current working key
in Hookpad. For chord transcription, we use an established chord
transcription API provided by Music AI, a company that creates
and provides AI platforms for music and audio production [2].

4.4 Implementation

We implemented the frontend of Amuse (Chrome extension) in
JavaScript and CSS. The backend was implemented as a Flask server,
and we call the OpenAI API [72] for all LLM-based functionality

(multimodal inputs to keywords, keywords to chords). Regarding
the LLM configurations, we use gpt-4o-2024-05-13 and set the
temperature to 1.0 for all components to promote creativity and
diversity in generations.

5 Keyword-Based Chord Progression

Generation

Directly generating chord progressions conditioned on music key-
words presents a challenge due to the lack of paired training data
linking music keywords to chord progressions. To address this is-
sue, we propose a method that combines the general capabilities of
LLMs and a unimodal chord generation model specifically trained
on chord data. We first introduce the generation goals we aim to
achieve (§5.1). We then detail the components of our pipeline de-
signed to address these goals, including a prompting technique
for diverse outputs (§5.2) and a rejection sampling methods for
contextually coherent outputs (§5.3). Finally, we describe the imple-
mentation of our chord progression generation method deployed
in Amuse (§5.4).

5.1 Generation Goals

When generating chord progressions from user-provided keywords,
we consider three desiderata: diversity, relevance, and coherence.
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Diversity ensures that users receive a variety of options, as offering
multiple suggestions has been shown to enhance creativity [55]
and is often preferred in ideation tasks [11, 26, 61]. Relevance
ensures that the generated chord progressions closely align with
the user-provided keywords, reflecting the musical qualities or
moods the user intends to capture. Coherence ensures that the
chord progressions are musically coherent (i.e., follow real music
data distribution). Ensuring both relevance and coherence is crucial
as misaligned or low-quality suggestions can negatively impact
user experience in creativity support tools [19, 38, 55, 64].

Formally, let 𝑃 (x|c) be a target conditional distribution of chord
progression x capable of generating diverse, relevant, and coherent
suggestions given keywords control c. Modeling 𝑃 (x|c) is limited
by the scarcity of music data that contains paired keywords and
chord progressions. As a result, we aim to find a good approxi-
mation of 𝑃 (x|c) by using an unpaired chord progression dataset
D = {x𝑖 }𝑁𝑖=1 and an LLM (e.g., GPT-4o [71]) that has a general un-
derstanding of language and general music-related context but lacks
the direct knowledge of harmonic structures seen in real-world mu-
sic data (as it is not explicitly trained on music data). Specifically,
we define 𝑄 (x|c) as an LLM that generates chord progressions x
given keywords c as prompts. We select an instruction-tuned LLM
(GPT-4o [71]) for 𝑄 (x|c) due to its enhanced ability to follow user
instructions that are critical for generating contextually relevant
chord progressions from music keywords. These models are pre-
trained on large-scale text data from public webpages spanning
diverse topics [70], which include music-related content (for in-
stance, chord transcriptions [91] or music theory blogs [94]). As
such, we assume the model has a general understanding of music
and can infer relationships between musical elements (e.g., chords)
and high-level descriptions (e.g., mood or style). While 𝑄 (x|c) is
capable of keyword-controlled generation, we find this leads to a
very sharp distribution (i.e., lacks diversity; we later show in our
experiments that its outputs exhibit low diversity). We mitigate this
lack of diversity by introducing a prompting technique for LLMs
to generate diverse samples (§5.2). We also find the distribution
𝑄 (x|c) inherently has low coherence (i.e., deviates from real music
distribution) as LLMs are not explicitly trained on music data. We
thus present a rejection sampling strategy using a unimodal chord
generation model 𝑃 (x) to select coherent outputs (§5.3). Based on
these techniques, we describe the implementation of our chord
progression generation process deployed in Amuse (§5.4).

5.2 Prompting Technique For Diverse Chord

Progressions

In creative tasks, generating diverse suggestions with LLMs typi-
cally involves multiple queries to the model [11, 26, 56]. However,
instruction-tuned LLMs such as InstructGPT [73] and GPT-4o [71]
are prone to a homogenization effect, where multiple queries often
yield repetitive responses [5, 33, 74, 107]. This is particularly prob-
lematic in our context, where generating diverse outputs is crucial
for fostering creativity.

To address this challenge of generating diverse chord progres-
sions with instruction-tuned LLMs, we employ a prompting tech-
nique that instructs an LLM to generate a large collection of chord
progressions. Our prompt takes user-written keywords, key (e.g., C

maj) and bar counts (e.g., 4 for 4-bar chord progression) as inputs.
The prompt then instructs the model 𝑄 (x|c) to generate 𝑁 diverse
chord progressions that reflect the mood and concept of the user
keywords. To enhance diversity, the prompt contains instructions to
vary chord components (e.g., root, quality, extensions, alterations),
progression patterns (e.g., diatonic, chromatic), and cadences. The
full prompt is detailed in Appendix A.2.

5.3 Chord Progression Generation By Rejection

Sampling

Given 𝑁 diverse chord progressions generated by𝑄 (x|c) (§5.2), the
most naive approach would be randomly sampling four progres-
sions and showing them to the users. However, this is not the best
approach as 𝑄 (x|c) generations could be less coherent, i.e., do not
align with the statistical properties of chord progressions in real
music data, as these language models are not explicitly trained on
music data [70]. Consequently, relying solely on 𝑄 (x|c) for chord
generation may produce noisy or less conventional progressions
that do not meet the musical expectations of users. Therefore, our
aim is to filter and select from the generations that are musically co-
herent, i.e., following real-world music data distribution. To achieve
this, we employ rejection sampling [66], a Monte Carlo algorithm
that allows us to sample from a target distribution that may be
difficult to sample from directly (i.e., 𝑃 (x|c)), by using a proposal
distribution that is easier to sample from (i.e., 𝑄 (x|c)).

Method. We perform rejection sampling [66] to improve the
coherence of 𝑄 (x|c):

𝑢 ∼ Unif(0, 1), accept if 𝑢 <
𝑃 (x|c)

𝑀 ·𝑄 (x|c) else reject,

where 𝑀 > 0 is a constant that ensures the inequality holds for
all samples and scales the acceptance ratio.𝑀 is chosen such that
𝑀 ≥ maxx

(
𝑃 (x |c)
𝑄 (x |c)

)
, ensuring that the acceptance rate remains

valid across the entire sampling process.
Since we do not know ground-truth 𝑃 (x|c), as well as the value

of 𝑄 (x|c) (we can only sample from this distribution), we consider
the following alternative using Bayes Rule:

𝑃 (x|c)
𝑀 ·𝑄 (x|c) =

𝑃 (c|x)𝑃 (x)𝑄 (c)
𝑀 ·𝑄 (c|x)𝑄 (x)𝑃 (c) =

𝑃 (c|x)𝑃 (x)
𝑀 ·𝑄 (c|x)𝑄 (x) ≈

𝑃 (x)
𝑀 ·𝑄 (x) ,

since 𝑃 (c) = 𝑄 (c) as they are the same predefined keyword distribu-
tions and we assume 𝑃 (c|x) ≈ 𝑄 (c|x) as the generated progression
x from LLMs closely align with c. Thus, we perform rejection sam-
pling by calculating the ratio 𝑃 (x)

𝑀 ·𝑄 (x) , where both 𝑃 (x) and 𝑄 (x)
can be learned by training two deep neural networks with the
dataset D and a large collection of generated chord from LLMs,
respectively.

Implementation. For 𝑃 (x) and 𝑄 (x), we train two Long Short-
Term Memory (LSTM) models. Specifically, for 𝑃 (x), we use the
HookTheory dataset [31], which comprises 50 hours of melody and
chord progression annotations derived from Hooktheory’s The-
oryTab database [27]. This dataset spans a wide range of genres,
including pop, rock, EDM, jazz, and classical. For training𝑄 (x), we
use chord progressions generated by GPT-4o [71]. We use the same
prompt used for generating diverse chord suggestions (§5.2). To
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Algorithm 1 Chord Progression Generation Pipeline in Amuse
1: Input: Keywords c
2: Output: Accepted chord progressions Y
3: X← Candidate chord progressions {x𝑖 }𝑁𝑖=1 from 𝑄 (x|c)
4: Y← ∅
5: for x in X do

6: Sample 𝑢 ∼ Unif(0, 1)
7: if 𝑢 <

𝑃 (x)
𝑀𝑄 (x) then ⊲ Compute acceptance probability

8: Y← Y ∪ {x} ⊲ Accept the generated chord x𝑖
9: end if

10: end for

11: if |Y| < 4 then
12: Y← Y ∪ {top-𝑘 (x𝑖 : 𝑃 (x𝑖 )

𝑀𝑄 (x𝑖 ) )}, where 𝑘 = 4 − |Y|
⊲ Add top-𝑘 samples if Y is smaller than the target size

13: end if

14: Return Y

marginalize the influence of specific keywords during generation
(i.e., generalize across diverse keywords), we randomly sample key-
words from the music keyword wiki [90] for each generation. This
process resulted in a total of 25,000 4-bar chord progressions with
keywords abstracted into the underlying distribution. After fitting
these models, the constant𝑀 in the rejection sampling algorithm
was determined by calculating the ratio 𝑃 (x)

𝑄 (x) over all chord progres-
sions generated by GPT-4o. We selected the 95th percentile value to
avoid the influence of extreme outliers, resulting in𝑀 = 7.64. We
provide training details and hyperparameter values in Appendix B.

5.4 Deploying Chord Progression Generation

Pipeline in Amuse

The obtained constant 𝑀 = 7.64 and the trained networks, 𝑃 (x)
and 𝑄 (x), are deployed on the backend server to sample LLM-
generated chord progressions. To approximately match four chord
progressions, we set the number of chord generations to 𝑁 = 30 in
the deployment (30/𝑀 ≈ 4). During this process, each progression
generated by𝑄 (x|c) is assessed against the acceptance threshold de-
termined by our rejection sampling method. To ensure we present
at least four samples to users, if fewer than four samples are ac-
cepted, we select the top-k samples, 𝑘 = 4 - num accepted samples.
These samples are ranked by their acceptance probability, �̃� (x)

𝑀�̃� (x) .
The full sampling process is detailed in Algorithm 1.

6 Technical Evaluation

We conduct a technical evaluation of our chord progression genera-
tion approach. We assess whether our prompting technique results
in diverse chord progressions (§6.1) as well as whether our rejec-
tion sampling can sample chord progressions that are relevant to
keywords and musically coherent (§6.2).

6.1 Evaluation of Prompting Technique

To assess the effectiveness of our prompting technique (§5.2) in
generating more diverse chord progressions, we conduct an auto-
matic evaluation comparing our approach against a conventional
method of generating multiple suggestions [11, 26, 56].

Study Setup. We compare the diversity of chord progressions
produced by our prompting technique with those generated by the
conventional method (baseline), which involves querying a model
multiple times to generate individual suggestions. In the baseline
method, a single 4-bar chord progression is generated per query and
repeated 30 times, resulting in a set of 30 4-bar chord progressions.
The prompt for the baseline is similar to ours but lacks instructions
to generate diverse progressions in a batch (See the full prompt in
Appendix A.3). In contrast, our technique generates all 30 4-bar
chord progressions in a single batch using a single prompt.

To quantify the diversity of chord progressions, we employ Self-
BLEU [108] as our metric. Self-BLEU score measures the diversity
of the generated data, with a higher Self-BLEU score indicating less
diversity among the chord progressions. Specifically, for each set
of 30 4-bar chord progressions, we compute the BLEU score [75]
for each individual progression by treating it as the hypothesis
and the remaining 29 progressions as references. The Self-BLEU
score is then obtained by averaging the BLEU scores across all 30
progressions in the set. This process is repeated across 100 distinct
pairs of sets (i.e., 100 sets of 30 4-bar chord progressions generated
by our technique and 100 corresponding sets generated by the
baseline method). All chord progressions are generated in C, and
the music keywords are randomly sampled from the music keyword
wiki [90] for each generation. We report the average Self-BLEU
score across these 100 pairs for each condition.

Results. Table 1 shows the result for the diversity. On average,
our prompting technique (Amuse) results in a lower Self-BLEU score
compared to the conventional method (Baseline). This indicates
that the chord progressions generated by our technique are more
diverse than those generated by the baseline method.

6.2 Evaluation of Rejection Sampling Approach

We evaluate the coherence and relevance of sampled chord pro-
gressions generated through our rejection sampling approach (§5.3).
Specifically, our goal is to assess whether the resulting progressions
are (i) musically coherent and (ii) relevant to keywords. We first
run an automatic evaluation to compare the distribution of the
sampled progressions with that of a real music dataset [43], where
we interpret closer match as greater musical coherence. We then
perform a listening study with musicians to assess both the musical
coherence and keyword relevance of the progressions.

6.2.1 Automatic Evaluation.

Study Setup. The aim of rejection sampling is to align LLM-
generated chord progressions with real music data distribution.
We quantitatively assess this alignment by computing the Jensen-
Shannon Divergence (JSD) [58] between the distributions of the
generated chord progressions and real music data. JSDmeasures the
similarity between two probability distributions, with values rang-
ing from 0 (perfect similarity) to 1 (complete divergence). Intuitively,
it captures how much the chord distributions from the model differ
from those found in real music, offering insight into how well the
generated chord progressions reflect real-world harmonic patterns.
Specifically, we compare unigram and bigram distributions of chord
tokens and use them to calculate JSDs. We use the HookTheory
dataset [31] as the real music dataset. We pre-process the chords
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Table 1: Amuse offers more diverse

chord suggestions than the baseline

by instructing an LLM to generate di-

verse chords in a batch, as indicated by

the Self-BLEU [108] scores for chord

progression generations. ↓ indicates
lower values are better. Each value rep-

resents the Mean±Std score across 100

chord progression sets, where each set

contains 30 chord progressions.

Method Self-BLEU ↓
Baseline 0.61±0.18
Amuse 0.30±0.12

Table 2: Amuse generates keyword-conditioned chord progressions that

are more coherent, i.e., closer to real music data distributions, as indicated

by Jensen-Shannon Divergence (JSD) [58] between each chord generation

method and music data [31]. ↓ indicates that lower values are better. We

compute JSD for unigram/bigram chord distributions. LSTM Prior refers to

chords generated by an LSTM trained on music data (𝑃 (x)). GPT-4o refers to

chords generated by GPT-4o (𝑄 (x|c)) with keywords marginalized. Amuse

represents rejection-sampled GPT-4o using LSTM Prior.

Method Keyword
Conditional Unigram ↓ Bigram ↓

LSTM Prior (N=25,000) No 0.15 0.30
GPT-4o (N=25,000) Yes 0.42 0.57
Amuse (N=3,242) Yes 0.27 0.46

and get 𝑁 = 25, 601 chord progressions, all transposed into C. For
generating chord progressions with GPT-4o, we randomly sampled
music keywords from the music keyword wiki [90] to marginalize
the effect of specific keyword choices. We calculate the JSD between
the real music data and three different chord generation conditions:

(1) LSTM Prior (𝑁=25,000): Chord progressions generated by
an LSTM model trained on the HookTheory data (𝑃 (x)).

(2) GPT-4o (𝑁=25,000): Chord progressions generated by GPT-
4o (𝑄 (x|c)) with keyword marginalized (i.e., prompted with
random keywords).

(3) Amuse (𝑁=3,242): Rejection-sampled GPT-4o using 𝑃 (x)
(LSTM Prior) and 𝑄 (x).

Results. Table 2 presents the alignment of each distribution
with real music data, as measured by JSD. The results indicate that
applying rejection sampling improves the alignment of the chord
progressions generated by GPT-4o with the real music data distribu-
tion from the Hooktheory dataset. While the initial LLM-generated
chord progressions (GPT-4o) exhibited notable divergence from
real-world chord patterns, the use of rejection sampling reduced
this discrepancy.

6.2.2 Human Evaluation: Listening Study.

Study Setup. We conducted a listening study to further evaluate
the qualitative performance of our rejection sampling approach
against two baselines. We evaluated two key aspects of the gen-
erated chord progressions: (i) musical coherence and (ii) keyword
relevance. Following the prior work [29], listeners were presented
with pairs of 7-10s chord progression audio clips, each generated
by different methods (ours or baselines).

The study comprised two types of tasks: First, participants lis-
tened to a pair of 7s 4-bar chord progressions played with piano
sounds and were asked to indicate which of the two “sounds more
pleasant and natural” (musical coherence). Second, participants
were presented with a set of keywords and a pair of 7-10s, 4-bar
chord progressions, with instrumentation and BPM adjusted to
align with the keyword characteristics. They were then asked to
indicate which of the two “better reflects the mood or concept of
the given keywords” (keyword relevance).

We generated chord progressions for 10 keyword sets under
three conditions: (i) our rejection sampling approach (Amuse), (ii)

keyword-conditioned LLM (GPT-4o), and (iii) LSTM trained on
music data without keyword conditioning (LSTM Prior). ForAmuse,
we generated 30 4-bar chord progressions per keyword set using
GPT-4o, applied rejection sampling, and randomly selected one
from the accepted samples. For GPT-4o, we generated 30 4-bar
chord progressions per keyword set and randomly selected one. For
LSTMPrior, we generated a 4-bar chord progression using the LSTM
model trained on HookTheory data [31] (𝑃 (x)). Each keyword set
was processed five times, resulting in 10 keyword sets × 5 questions
× 3C2 pairs = 150 comparisons. Each task was evaluated by three
unique listeners, yielding a total of 450 comparisons for each task
(N=900 in total). Since the Shapiro-Wilk test indicated that the data
was non-parametric, we analyzed these pairwise judgments using
the Wilcoxon signed-rank test [20].

We recruited 45 unique listeners from Prolific [78], targeting indi-
viduals with a primary interest in music and 5+ years of experience
in musical instruments. Participants were required to have audio
devices and confirm they were in a quiet setting before starting
the survey. Each participant answered 22 questions (10 on musical
coherence, 10 on keyword relevance, and 2 attention checks) and
was compensated £2, which corresponds to an approximate hourly
rate of 12.13 USD.2

Results. Results for systems appear in Figure 5. For Musical
Coherence (Figure 5a), our method (Amuse) shows no statistical
difference compared to LSTM Prior, which is the closest to real
music distribution. Conversely, the analysis reveals that users did
not prefer samples generated by GPT-4o in terms of musical coher-
ence, with both LSTM Prior and Amuse being significantly more
preferred than GPT-4o (LSTM Prior > GPT-4o: 𝑝=2.18𝑒-5; Amuse >
GPT-4o: 𝑝=0.009). For Keyword Relevance (Figure 5b), our system
(Amuse) was the most preferred by users (58% of cases against any
other samples), significantly outperforming LSTM Prior (𝑝=0.006).

This result, combined with our quantitative findings on diver-
sity and coherence, suggests that Amuse successfully achieves the
desiderata we defined; our proposed method generates diverse and
coherent chords that are relevant to the user input keywords.

2Among the 49 participants initially recruited, four failed the attention checks and
were excluded from the analysis.
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Figure 5: Results from our listening study where listeners indicated a preference between pairs of chord progression audio

clips generated by two different methods among LSTM Prior, GPT-4o, or Amuse. Each row indicates the % of times listeners

preferred audio from that system compared to those from any other system (first column, N=300) and each system individually

(other columns, N=150). Wilcoxon signed-rank test with these paired data reveals that for Musical Coherence, Amuse shows

no significant difference compared to LSTM Prior, which aligns closely with real music distributions (55.3% of LSTM Prior

generations preferred over Amuse). For Keyword Relevance, Amuse is most preferred by users (58% of cases against any other

samples), significantly outperforming LSTM Prior. (**𝑝<.01, ***𝑝<.001).

7 User Study

We conducted a user study to gain insights and feedback on the
potential, limitations, and future opportunities of multimodal music
generation tools to support songwriting creativity. This overarching
goal broke down into three main research questions:

RQ1: How does Amuse support songwriters transforming multi-
modal inspirations into contextual musical elements?

RQ2: How do songwriters incorporate Amuse into their creative
workflows?

RQ3: How does Amuse impact the songwriting experience and
perceived quality of the compositions?

7.1 Participants

We recruited 10 songwriters through targeted email outreach to
active Hooktheory users, ensuring that our study included genuine
songwriters actively engaging with the platform. We collaborated
directly with Hooktheory to reach out to the users. Eight identified
themselves as hobbyists (i.e., write songs primarily for personal
enjoyment) and two as professional (i.e., write songs as part of
a career or generate income from songwriting). All were regular
users of Hookpad and engaged in songwriting activity at least once
a week. Six participants were regular users of Aria and four had
not used Aria before. Participants composed in several different
genres, including pop, rock, and blues. We detailed participants in
Table 3. Participants were compensated with 50 USD Amazon gift
card for the 2-hour study.

7.2 Study Procedure

To connect with real-world Hooktheory users across the globe, we
conducted a remote study using Zoom. During the study, partici-
pants performed two songwriting tasks under different conditions:

Table 3: Detailed background information of the participants

in the user study (Section 7). For songwriting proficiency, we

use self-reported levels. Hobbyist = I write songs primarily

for personal enjoyment; Professional = I write songs as part

of my career or to generate income from my songwriting.

Participant
ID

Songwriting
Proficiency Songwriting Genre

P1 Hobbyist Blues, Rock, Americana
P2 Hobbyist Acoustic Pop, Symphonic
P3 Hobbyist New Age, Classical
P4 Hobbyist Indie, Alternative, Pop
P5 Hobbyist Rock, Pop, Country
P6 Hobbyist Pop
P7 Hobbyist Pop, Jazz Pop
P8 Hobbyist Rock, Pop
P9 Professional Pop, R&B, Hip Hop
P10 Professional Rock

Baseline and Assist. In the Baseline condition, participants
were allowed to use only Aria (reflects the existing AI-assisted
songwriting practice), whereas in the Assist condition, partici-
pants had access to both Amuse and Aria (introduces multimodal

inspiration support in addition to the conventional AI-assisted
songwriting workflow). We opted not to compare to the manual
composition without Aria because our primary goal was to evalu-
ate the added benefit of Amuse in enhancing existing AI-assisted
workflows rather than assessing AI versus non-AI approaches. The
task for each session was to write an 8-bar chorus (chords and
melodies) given one of two songwriting prompts: “Write an 8-bar
chorus about the beginning of an unexpected friendship you had
in your life” or “Write an 8-bar chorus about your favorite summer
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Figure 6: Overview of the user study procedure. The study involved two songwriting sessions, each using a different set of tools.

In each session, participants wrote an 8-bar chorus based on a given songwriting prompt. Following the sessions, participants

took part in 25-minute semi-structured interviews about their experiences.

holiday memory.” We adapted these prompts from the Songwrit-
ing subreddit [80]. Both task prompts and system conditions were
randomized across the sessions to minimize the ordering bias.

The overall study procedure is illustrated in Figure 6. We started
with an introduction and tool tutorial session, where users were
given 20 minutes to familiarize themselves with Amuse and Aria.
For each songwriting session, participants were given the songwrit-
ing prompt and had 25 minutes to write an 8-bar chorus using the
assigned tool(s) with their screen shared. We asked participants to
think aloud to learn their decision-making processes and reactions
when interacting with the tools. The whole session, including the
shared screen, was video recorded. Since Amuse involves image
inputs, we asked participants not to share any personal or sensi-
tive pictures during the study. To ensure meaningful comparison
between conditions, we required participants to use the assigned
tool(s) at least once during the task; however, they had the flexi-
bility to decide when and how to use the features, as well as how
frequently to engage with them.

7.3 Measures

7.3.1 Questionnaires. We analyzed participants’ responses to the
two post-task surveys. These surveys asked participants to rate,
on a seven-point Likert scale, the usefulness of the given sys-
tems (Baseline: ‘Aria alone’; Assist: ‘both Amuse and Aria’) in
helping transform their inspirations into music and writing songs
aligned with the given song prompts. Additionally, participants
were asked to assess their self-perceived experience with the sys-
tem using questions adapted from related works [62, 102]. We also
collected participants’ ratings on five aspects of the Creativity Sup-
port Index (CSI) [16] questionnaire, excluding the “Collaboration”
question, as it is irrelevant to human-AI collaborations. We ana-
lyzed these Likert scale ratings using theWilcoxon signed-rank test,
as a Shapiro-Wilk test indicated the data was non-parametric [20].
We include the detailed survey questions in Appendix C.1.

7.3.2 Interviews. During the 25-minute semi-structured interviews,
participants were asked about the difference between the two song-
writing sessions and the perceived impact of the tools on their
songwriting tasks. Detailed interview questions can be found in
Appendix C.2.

We transcribed the semi-structured interviews and analyzed
them using the constant comparative method [39]. Two authors
independently open-coded two interview samples to identify key
concepts and patterns. Axial coding was then performed to link
these patterns [22], resulting in an initial codebook. The first author

coded the remaining interview data while continuously refining
the codebook. After the first coding round, another author coded
two interview samples using the updated codebook for verification,
and any issues were resolved through discussion. Throughout the
process, the research team regularly discussed emerging themes
while triangulating the interview data with quantitative analyses.
We include the full codebook in Appendix C.3.

7.3.3 Interaction Logs. We collected the usage logs (i.e., partici-
pant actions with timestamps) to quantitatively analyze participant
behaviors. We used this data to obtain statistics on tool usage, such
as the time taken for each session, the number of keyword/chord
generations in Amuse, and the number of chord/melody genera-
tions in Aria. For all these measures, we conducted a Shapiro-Wilk
test to determine if the data was parametric and used a paired t-test
for parametric data and a Wilcoxon signed-ranked test for nonpara-
metric data. To qualitatively explain the user behaviors identified
from the quantitative data, we analyzed screen recordings when
necessary.

8 Findings

We present our findings on how participants transformed their
multimodal inspirations into musical elements in §8.1 (RQ1), how
Amuse influenced participants’ songwriting processes in §8.2 (RQ2),
and howAmuse impacted the songwriting experience and perceived
quality of outcomes in §8.3 (RQ3). We summarize our main findings
below:
RQ1: Amuse effectively supports the transformation ofmultimodal

inspirations into concrete musical elements, with partici-
pants feeling more guided and aligned with their creative
goals compared to using Aria alone.

RQ2: Participants demonstrated diverse usage patterns of Amuse
in the songwriting process, integrating it in various stages
of their songwriting process.

RQ3: With Amuse, participants experienced enhanced agency and
creativity throughout the songwriting process and perceived
it as more efficient and easier. However, they found the com-
positions in both the Baseline and Assist conditions to be
equally satisfactory.

8.1 Supporting Multimodal Inspirations

We first examine whether Amuse successfully supports songwrit-
ers transforming multimodal inspirations into contextual musical
elements (RQ1). Specifically, we present the effectiveness of Amuse
in the inspiration transformation process (§8.1.1) and the perceived
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quality of suggestions (§8.1.2). We also report the participants’ pref-
erences for the Chord Generator over Chord Transcriber within
Amuse (§8.1.3) and the impact of music keywords in the system
usage (§8.1.4). We describe relevant quantitative findings with qual-
itative insights.

8.1.1 Effective transformation of multimodal inspirations

into musical elements. Overall, participants in Assist condition
felt they could more easily transform their initial inspirations into
concrete musical elements than Baseline (Inspiration Support in
Figure 7; Assist=6.20±0.75, Baseline=4.60±1.36, 𝑧=0.00, 𝑝<0.01).
Additionally, participants reported feeling more guided toward the
task goal in Assist (Task Alignment in Figure 7; Assist=6.10±0.70,
Baseline=4.30±1.62, 𝑧=0.00, 𝑝=0.016). Six participants emphasized
howAmuse helped better achieve their creative goals.Amuse’s
suggestions “fell in line with what I would have mentally constructed”
(P5), allowing them to “focus more on the goal with a clear vision of

how to write the rest of the song” (P2). In contrast, in Baseline condi-
tion, five participants mentioned feeling unsupported in achieving
the task, highlighting a lack of direction. P8 stated, “Using Aria

alone, I had a very vague vision and didn’t really know what I was

going for.” Similarly, P1 noted that without Amuse, “the song ended
up being the opposite of the style I originally intended to create with

my lyrics”.

8.1.2 Higher perceived quality of suggestions from Assist.
While participants expressed satisfaction with the diversity of sug-
gestions in both conditions (Diversity in Figure 7; Assist=6.10±0.94,
Baseline=5.50±1.50; 𝑧=12.00, 𝑝=0.389), participants rated the qual-
ity of the outputs they received from Assist significantly

higher than those they got from Baseline (Output Quality in
Figure 7; Assist=6.40±0.66, Baseline=5.30±1.00, 𝑧=4.00, 𝑝=0.023).
Interestingly, there was no significant difference in the average num-
ber of Aria queriesmade between the conditions (Baseline=3.60±2.72,
Assist=2.30±1.16; z=10.0, p=0.130) or in the acceptance rates of
those queries (Baseline=0.71±0.25, Assist=0.87±0.22, z=7.0, p=0.12).
This similarity suggests that the improved perceptions of output
quality may be more related to Amuse’s ability to generate sugges-
tions that align with user intentions, leading to increased general
satisfaction with the suggestions received throughout the songwrit-
ing process.

8.1.3 Preference forChordGenerator overChordTranscriber.
Participants demonstrated a clear preference for the Chord Gen-
erator over the Chord Transcriber within Amuse. All participants
utilized the Chord Generator, whereas only three used the Chord
Transcriber in Assist (𝑝 < 0.001). Five participants praised the
Chord Generator, describing the chords created with multi-

modal inspirations as “special” compared to those generated in
Baseline. Three participants found the Chord Transcriber less

creative than Chord Generator, with P5 noting, “With Chord

Transcriber, you are picking pieces someone else created—it is not mine

and feels close-ended. There’s a risk of sounding like something that

already exists. But the Chord Generator feels more open-ended and

freeing.” P6 suggested making Chord Transcriber’s output unique
by integrating it with the Chord Generator: “Transcribing the chords
from the song I love would be good, but what I find challenging is

changing these transcribed chords to make them your own. It would be
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Figure 7: Distribution of participants’ ratings on self-

perceived songwriting experience. When equipped with

Amuse, participants felt they could more easily translate

multimodal inspirations into musical elements (Inspiration

Support), align their compositions with the given tasks (Task

Alignment), and produce output of comparable quality (Out-

put Quality). (*𝑝<.05, **𝑝<.01)

cool if you could input the Chord Transcriber’s outputs into the Chord

Generator to create new chords that match the vibe of the original

song.”
The low usage of Chord Transcriber might also be attributed

to the task constraints, as two participants noted. P2 mentioned
they could not think of a song to transcribe given the songwriting
prompt: “I didn’t use the transcribe feature which I think mainly

because of the time constraint for me—I couldn’t come up with a song

that kind of fit the task that I could borrow from off the top of my

head.” P10 did not use the Chord Transcriber due to the absence
of their instrument, stating, “I would have used it if I had my piano

next to me. I would come up with whatever I felt and then upload the

sound file to get the chords.”

8.1.4 Enhanced transparency, agency, and explainability

through music keywords. Five participants found the keywords
helpful in the transformation process, particularly for the trans-
parency and agency the keywords offered. Participants appre-
ciated how the keyword control allowed them to see what the AI
was interpreting from text or images, select keywords in consen-
sus, and regenerate or edit them to better align with their creative
goals. P5 noted, “Taking an image or story and turning it directly into

chord progressions is an abstract jump, but with the keywords, the

process becomes intuitive and predictable.” P2 added, “Keywords put
into words the idea that I was going for.” Keywords also provided

explainability for chord outputs. P6 explained, “When the chord

progressions were weird, I realized I was using the keyword ‘unex-

pected.’ When I removed it, the generated chords were great.” These
findings reconfirm that the keywords could be an effective com-
munication medium for connecting abstract relationships between
different modalities as suggested in prior work [59, 60].



CHI ’25, April 26-May 1, 2025, Yokohama, Japan Yewon Kim, Sung-Ju Lee, and Chris Donahue

AMUSE ChordGeneratorManual Editing Aria AMUSE ChordTranscriber Accept Aria Accept AMUSE

P2

P3

P5

P7

P8

P10

P4

P6

P9

P1

Kickstart with Multimodal Inspiration

Ad-hoc Inspiration Flow

Lyrics-Centered Brainstorming

Minutes

Figure 8: Interaction log timelines of all participants in the Assist condition. Interaction patterns were categorized into

three distinct approaches: (i) kickstart with multimodal inspiration, (ii) ad hoc inspiration flow, and (iii) lyrics-centered

brainstorming. ‘Manual Editing’ refers to user-initiated edits inside the Hookpad editor, including adjustments to melody,

chords, instrumentation, and lyrics. ‘Aria’ refers to instances where participants queried Aria to generate melodies or chords.

‘Amuse ChordGenerator’ and ‘Amuse ChordTranscriber’ refer to instances where participants were using each functionality.

‘Accept Aria’ and ‘Accept Amuse’ refer to events where participants accepted each tool’s suggestions, respectively. Empty spaces

between the color bars indicate periods when the user was either listening to the composed song without taking any action, or

explaining their thoughts out loud as part of the think-aloud protocol, again without taking any direct actions.

8.1.5 Summary of findings. The findings demonstrate thatAmuse
effectively bridges the gap between multimodal inspirations and
musical elements. Compared with using Aria alone, participants
felt more guided and found it easier to achieve their creative goals
with Amuse. The Chord Generator emerged as a preferred tool,
offering unique chord progressions that participants found more
inspiring than those from the Chord Transcriber. Positive user com-
ments indicate that the music keyword pipeline further enhanced
the experience by providing transparency, explainability, and con-
trol over the AI’s output. Collectively, these findings confirm that
Amuse effectively supports songwriters in transforming their mul-
timodal inspirations into contextual musical elements.

8.2 Impact on User’s Songwriting Process

We describe how participants incorporated Amuse into their song-
writing process (RQ2). We first describe threeAmuse usage patterns
observed in Assist condition (§8.2.1), and explain how participants
completed the task without Amuse in Baseline condition, using
only Aria (§8.2.2). We report qualitative findings from analyzing
screen recordings, think-aloud statements, and interviews.

8.2.1 Diverse usage patterns of Amuse in the songwriting

process. In the Assist condition, we identified three categories of
approaches that participants used to find and integrate inspiration
into their songwriting process: (i) kickstart with multimodal inspi-
ration (N=6; P2-3, P5, P7-8, P10), (ii) ad hoc inspiration flow (N=3;

P4, P6, P9), and (iii) lyrics-centered brainstorming (N=1; P1). Par-
ticipants engaged with Amuse at diverse stages of their workflow,
with its use generally concentrated in the early stages. In addition,
when using Amuse, participants reported a shift in their approach
to Aria, using it more for melody creation rather than for both
chords and melody. The timeline of all participants’ songwriting
patterns is shown in Figure 8.

Kickstart with Multimodal Inspiration. Given the songwrit-
ing prompt, six participants (P2-3, P5, P7-8, P10) quickly drew

on personal inspirations and used Amuse to generate chord
progressions that matched their ideas. After the initial generation
with Amuse, they did not return to Amuse; instead, they developed
the rest of the song by expanding or editing the chord progressions
created with Amuse and composing melodies, either manually or
using Aria. For example, P2 was inspired by a recent ‘friendship
at work created through a trauma bonding experience’ and aimed
to write a melancholy, storytelling song (see Figure 9(a) for the
illustration). P2 accepted the four 4-bar chord progressions gen-
erated by Amuse and combined them to create the entire chord
progression of the song. They then developed the rest of the song
by generating melodies with Aria and editing those.

Ad hoc Inspiration Flow. In contrast to users who used Amuse
only at the first stage to kickstart their songwriting process, three
participants (P4, P6, P9) constantly used Amuse in their workflow.
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Figure 9: Three different songwriting approaches in the Assist condition. (a) Kickstart with Inspiration: P2 generated chord

progressions with Amuse in the early stages of the process, creating the full chord progression before moving forward with

other elements. (b) Ad hoc Inspiration Flow: P4 first used Amuse with a text-based inspiration, which reminded them of Billie

Eilish’s song Birds of a Feather. P4 returned to Amuse to build upon that inspiration. (c) Lyrics-Centered Brainstorming: P1

mapped out the lyrical content for each bar and used Amuse to generate corresponding musical elements for each section.

P4 and P6 mentioned that transforming their initial inspiration

into chords with Amuse sparked further ideas. For instance,
P4 described starting with inspiration from George Orwell’s 1984
and then transitioning into Billie Eilish’s Birds of a Feather (see
Figure 9(b) for the illustration): “1984 is a book about conformity

and structure, and I hoped to capture its serenity and finer ambiance.

I thought keywords like ‘dream pop’ could aesthetically intertwine

with my inspiration. As I listened to the chords, I wanted the next four

bars to progress into a darker, non-stereotypical mood. Billie Eilish’s

Birds of a Feather came to mind because of its down-tempo, dreamy

ambient soundscape, which would create a good resolution in bars

five through eight.”
P9, on the other hand, took a different approach and was not

fully satisfied by Amuse’s generations. Rather than starting with
Amuse, P9 manually composed the chord progression for bars 1-4
and completed the melody with Aria. The inspiration to reflect the
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Figure 10: Interaction log timelines of all participants in the Baseline condition. Interaction patterns were categorized into

two distinct approaches: manual experimentation until writer’s block and generating until getting sparks. ‘Manual Editing’

refers to user-initiated edits inside the Hookpad editor, including adjustments to melody, chords, and lyrics. ‘Aria’ refers to

instances where participants queried Aria to generate melodies or chords, and ‘Accept Aria’ refers to events were participants

accepted Aria’s suggestions. Empty spaces between the color bars indicate periods when participants were either listening to

the composition without making changes or reflecting on their creative process as part of the think-aloud protocol, without

engaging in direct editing.

mood of ‘enjoying a 4th of July fireworks’ came midway through

the songwriting process, leading P9 to use Amuse’s Chord Gener-
ator for the last four bars. Later, P9 drew inspiration from Childish
Gambino’s song Saturday to infill the chord at bar 5, where he real-
ized the chords for bars 1-4 and 5-8 did not fit well together. This
led P9 to manually rewrite the progression for bars 5-8. Reflecting
on the experience, P9 said, “I could easily come up with the chord

progression for the first few bars. I wanted to tell a story about the

4th of July fireworks using Amuse and expected it to build on the

chords I had already laid down, but I didn’t like the result.” Unlike
Aria, Amuse does not have access to the full context of the user’s
composition, and we speculate that providing context would be
necessary to better support users in the ad hoc inspiration flow.

Lyrics-Centered Brainstorming. One participant, P1, divided
the song into three sections, assigning lyrical ideas to each part

and using Amuse to generate chords that aligned with those
ideas (see Figure 9(c) for the illustration). P1 began by outlining
the lyrical ideas, noting: ‘Warm breeze salt in the air, cool water
pouring over your hair, these are the worst lyrics one could think
of for summer.’ They then structured the song by planning bars 1-2
around a ‘gentle summer beach,’ bars 3-4 for ‘cool water pouring
over your hair,’ and bars 4-8 to sing about the ‘worst lyrics’ theme.
For the first two sections, P1 searched for relevant images online
and used the Chord Generator to get chords matching the lyrical
concepts. For the last four bars, he entered the lyric to the Chord
Generator and selected two four-bar chord progressions that are
singable. Aria was used later in the process to assist with melody

creation as P1 worked to bring the composition together. While
most users relied on visual inputs to Amuse, the instincts of this
particular user centered strongly around lyrics, providing further
evidence that systems should accommodate diverse multimodal
inputs (DG1) to support a variety of users.

8.2.2 Songwriting approaches without Amuse. In Baseline
condition, where the participants wrote a song without Amuse, par-
ticipants either (i) manually experimentedwith chords andmelodies
until encountering writer’s block (N=6; P1-3, P5-7), or (ii) relied on
Aria from scratch to find generations that align with inspiration
(N=4; P4, P8, P9, P10). The timeline of all participants’ songwriting
process is shown in Figure 10.

Manual Experimentation Until Writer’s Block. Six partici-
pants (P1, P2, P3, P5, P6, P7) began by creating chords or melodies
manually. This process involved experimenting with different

combinations of musical elements to meet their creative goals.
Once they had set up the desired mood, they turned to Aria for
additional suggestions when they felt stuck. For example, P3 manu-
ally set up the full chord progressions and composed the melodies
for the first five bars. Hoping “Aria will finalize the song,” P3 used
it to generate the melodies for the last three bars. Different from
the others (P1-3, P5-6) who started writing manually from the be-
ginning, P7 first tried using Aria for chords but found “the chords
do not sound summery.” Frustrated, P7 canceled generation and set
up the full chord progressions manually and used Aria later for
melody generation.
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Generating Until Getting Sparks. Four participants (P4, P8,
P9, P10) relied on Aria to spark their initial inspiration before writ-
ing any music manually, hoping to get a suggestion that aligned
with their initial inspirations. However, this process often resulted

in suboptimal outputs that did not align with their inten-

tions. For example, P10 planned to write about ‘the beginning of
an unexpected friendship with my dog’ but found that Aria’s chord
suggestions were “cool but bizarre for my dog.” After more attempts,
P10 settled on a chord progression that “didn’t sound like a chorus,
but was okay-ish,” and then manually adjusted it to better fit their
goal.

8.2.3 Summary of findings. Based on the formative study find-
ings,Amusewas designed to support the early stages of songwriting
by helping users brainstorm and transform initial ideas into mu-
sical elements. Interestingly, participants exhibited diverse usage
patterns, leveraging Amuse flexibly across different stages of their
songwriting process rather than exclusively at the beginning—such
as during ad hoc inspiration flows or after brainstorming lyrics—
with Aria often used to generate melodies on chords created with
Amuse. In contrast, without Amuse, users relied solely on Aria to
generate both melodies and chords to ease cognitive inertia in the
process, often receiving suggestions that did not align with their
creative intentions. These findings demonstrate how multimodal
control prompts users to integrate inspirations dynamically, and
thus, the importance of supporting multimodalities throughout the
process to meet a wide range of creative workflows.

8.3 User Perception on Songwriting Process and

Outcomes

We investigate Amuse’s impact on the songwriting experience and
perceived quality of the compositions (RQ3). Concretely, we discuss
Amuse’s impact on participants’ sense of agency (§8.3.1), creativity
(§8.3.2), and efficiency (§8.3.3) in the songwriting process. Lastly,
we compare the overall satisfaction with final compositions across
both conditions (§8.3.4). We describe relevant quantitative findings
with qualitative insights.

8.3.1 Enhanced agency over the songwriting process. Over-
all, participants felt more in control over the process in Assist com-
pared to the Baseline (Controllable in Figure 11; Assist=5.80±0.98,
Baseline=4.40±1.62, 𝑧=5.00, 𝑝=0.036). They also felt the process as
more collaborative (Collaborative in Figure 11; Assist=5.80±0.98,
Baseline=3.90±1.45, 𝑧=2.00, 𝑝=0.014), indicating that the tools in
the Assist condition fostered a stronger sense of partnership dur-
ing the songwriting process compared to the Baseline condition.
Five participants mentioned that they could communicate their

creative intentions and have more agency over the workflow

when equipped with Amuse. For instance, P1 said, “I can be part of

the creative process with Amuse. You can influence what it generates

because you get to tell it what you want it to consider.” In contrast,
two mentioned in Baseline they were simply “following what Aria
wants to do” (P2, P10). P10 explained, “With just Aria, I wasn’t able

as much to create a mood or feel for my song. I didn’t feel like I had

much input—Aria just sort of made up its own mind, and I had to

just go along with it. It’s like having a bad co-writer.”

An interesting finding from the interviews, mentioned by three
participants, was that having greater control during the early

stages of songwriting with Amuse led to a sense of discon-

nection later in the process. Participants expressed that they
set higher expectations for Aria, particularly regarding the
relevance of its suggestions to their sources of inspiration after
receiving suggestions from Amuse. P3 mentioned, “Now that the

chords are about a boy playing in the garden, I wished Aria to gen-

erate something playful-maybe a melody with shorter notes and a

quicker rhythm that would capture the image of a boy jumping. That

was what I anticipated, but it didn’t quite work.” Similarly, P4 noted
that using Amuse and Aria together felt less intuitive: “I felt
like the chords were in place all the way through using Amuse. But

the only disconnection I felt was in how Aria doesn’t necessarily inte-

grate with Amuse in the same way that Amuse integrates with Aria.

So it was almost like doing a 180-degree rotation when switching

from Amuse to Aria because Aria doesn’t achieve quite the same

results, given that it doesn’t consider your inputs. [...] So I would say

when Amuse was there, I felt more enriched and musical, but using

Aria alone was more intuitive because I knew what to expect from

it.” These findings suggest that both systems—Amuse and Aria—
would benefit from incorporating each other’s control inputs, i.e.,
contextual and multimodal inputs, respectively.

8.3.2 Enhanced creativitywithmultimodal inspirations. When
using both Amuse and Aria in the Assist condition, participants
reported a greater sense of idea exploration (Exploration in Fig-
ure 11; Assist=6.10±0.83, Baseline=4.40±1.50, 𝑧=3.00, 𝑝=0.019)
as well as expressiveness and creativity (Expressiveness in Fig-
ure 11; Assist=6.00±0.63, Baseline=4.20±1.66, 𝑧=4.00, 𝑝=0.028)
compared to the Baseline. These results indicate that Amuse en-
hanced participants’ capacity to explore new musical ideas and
freely express their creative intentions. This finding echoed in
the interviews, where seven participants praised Amuse for foster-
ing creativity and offering greater freedom in musical expression.
P4 and P7 described Amuse as “liberating” their creative process;
P4 said, “I feel like I’m actually guiding the tool toward what I want

to create in a transformative, imaginative, and visually compelling

world, almost as if I’m creating music as I type.” In addition, P2 appre-
ciated the integration of visuals in the songwriting process, saying,
“I especially liked the picture input feature because, as the saying goes,
a picture is worth a thousand words. Sometimes, it’s easier to convey

what you’re aiming for with an image than with words.”

8.3.3 Perceived efficiency in the songwriting process. Par-
ticipants reported that the songwriting process felt more efficient
in Assist during the interviews, despite no significant difference
in actual completion times between conditions. Seven participants
noted that the process feltmore efficient and easier in the Assist
condition. They described how Amuse helped to “streamline the

process” (P8, P9), contrasting it with their usual experience where
“it takes a while before getting a chord progression that I love” (P6).
P2 complimented, “Honestly, I would use Amuse almost every time.

I really liked how it jump-started the process. I usually spend a lot

of time and effort getting the right chords, which is tedious—being

able to convey an idea quickly was really nice.” However, the per-
ceived efficiency did not mean using Amuse really sped up
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Figure 11: Distribution of participants’ ratings on self-perceived songwriting experience and Creativity Support Index (CSI).

The left side focuses on AI-related aspects and composition output, while the right side represents CSI questionnaires. When

equipped with Amuse, participants felt that they had more control in songwriting processes, and felt more collaborating with

the tool. In addition, participants felt more expressive during the Assist with more options to explore (*𝑝<.05).

the process-there was no statistical difference in the task comple-
tion time between Assist and Baseline (Assist=17.39±5.45 min,
Baseline= 17.61±5.27 min, 𝑧=26.00, 𝑝=0.922). This suggests that
while Amuse may enhance the perceived ease of the songwriting
process, particularly by alleviating specific pain points like finding
the right chords, it does not necessarily make the overall task faster.

8.3.4 Similarly satisfactory results in both conditions. De-
spite the reported differences in agency and creativity in the song-
writing process, participants in both conditions often arrived at
satisfying results. The post-survey results revealed that partici-
pants rated the quality of their compositions similarly in both con-
ditions: they felt that the results were worth the effort (Results
Worth Effort in Figure 11; Assist=6.20±0.98, Baseline=5.90±1.37,
𝑧=9.00, 𝑝=0.750), musically coherent (Musical Coherence in Fig-
ure 11; Assist=6.00±1.18, Baseline=6.00±0.89, 𝑧=10.50, 𝑝=1.00),
and could be expanded to full songs (Potential for Development in
Figure 11; Assist=6.30±0.90, Baseline=5.70±1.35, 𝑧=12.50, 𝑝=0.429).
Moreover, participants found both conditions enjoyable (Enjoy-
ment in Figure 11; Assist=6.70±0.46, Baseline=6.00±1.10, 𝑧=3.00,
𝑝=0.096).

One explanation for these similar levels of satisfaction, despite
the differences in creative control, maybe the unexpected (and
irrelevant) yet joyful, creative discoveries participants encountered
in Baseline condition. We observed from the think-aloud data that,
while transforming inspirations into musical elements with Aria
often led to off-topic suggestions, participants still encountered
moments of serendipity. Aria’s generations were sometimes
“eye-opening” (P1), even if they did not fit the original plan. In these
cases, participants deviated from their initial inspiration and

still arrived at satisfying results. For instance, P8 initially set out
to express ‘nostalgia for a childhood camp where my friends and

I played card games,’ but the final result was an epic heavy metal
song. P8 reflected, “It didn’t feel like myself—I kind of followed the

genre Aria gave me and adjusted my goal to suit it. I didn’t feel like

I had a clear idea going in. But, I’m still happy—the card games got

dragons and crazy monsters in them, and these feel very important

and epic from a kid’s point of view.” This observation suggests that
participants were able to derive satisfaction from both adhering to
and deviating from their original creative vision, indicating that
serendipitous moments of discovery can be a key factor in creative
satisfaction.

8.3.5 Summary of findings. Our study reveals that Amuse pos-
itively impacts the songwriting experience by enhancing partici-
pants’ agency, creativity, and perceived efficiency than using Aria
alone. However, some participants experienced a sense of disconnec-
tion when switching between the tools, which could be improved
by incorporating each other’s control inputs. Interestingly, despite
the enhanced agency and creativity, the perceived quality of final
compositions and enjoyment of the process were similar across both
conditions. This similarity suggests that creative satisfaction may
stem not only from control and alignment but also from unexpected
discoveries throughout the process.

9 Discussion

We reflect on our findings from the design and evaluation of Amuse
and discuss the lessons learned and future opportunities for music
creativity support systems.

9.1 Toward Contextual Multimodal Systems

Overall, we found that Amuse effectively supported songwriters
in exploring ideas while maintaining their sense of agency (§8.3).
However, our study revealed moments of friction when participants



Amuse: Human-AI Collaborative Songwriting with Multimodal Inspirations CHI ’25, April 26-May 1, 2025, Yokohama, Japan

transitioned from the multimodal tool (Amuse) to the unimodal
contextual tool (Aria). Participants who engaged with Amuse often
expected Aria to generate suggestions aligned with the sources of
inspiration they inputted in Amuse, only to find that Aria could
not reflect this prior context (§8.3.1). Moreover, while Amuse was
designed to support the early stages of songwriting, four out of
10 participants used it mid-process—after they had already devel-
oped a musical structure in the editor—even though Amuse was
not designed to account for existing user inputs. The global key
conditioning of our chord generation system occasionally resulted
in chord outputs that happened to be relevant to the surround-
ing context, but there were also instances where less contextually
relevant outputs led to frustration (§8.2.1).

These frictions reflect a misalignment between user expectations
and tool capabilities—participants formed assumptions about one
tool’s capability based on their experiences with the other, lead-
ing to frustration when their expectations were unmet [69], and
consequently, a disruption in their creative flow [24, 25, 54]. For
instance, interacting with Amuse during the early stages of song-
writing likely led participants to expect that these modalities would
continue to play a role throughout the entire songwriting process.
When transitioning to Aria, however, their expectations clashed
with Aria’s narrower focus on musical elements, which lacked the
multimodality they had grown accustomed to. Similarly, some par-
ticipants who used Amusemid-process expected it to consider both
their multimodal inspirations and the evolving musical elements in
the editor, which it did not do.

Addressing these discrepancies requires establishing consistency
across tools used in the creative process [68]. An ideal systemwould
be both multimodal and contextual, dynamically generating out-
puts that integrate both multimodal inspirations and the evolving
musical context. This would ensure that users’ creative expecta-
tions align with the system’s capabilities. However, a key challenge
in simultaneously achieving these dual goals lies in the absence
of multimodal-contextual data (e.g., paired keyword-MIDI data)
necessary for training models that can account for both users’ mul-
timodal and contextual inputs. Future work could involve building
a dataset that captures the relationship between multimodal inspi-
rations and musical elements. One potential approach is to collect
interaction data [56], for example, by assigning specific songwriting
tasks (e.g., ‘compose a song reflecting the mood of an image’) and
logging the suggestions (e.g., melodies or chords) users accept from
a contextual model like Aria. Another approach might involve us-
ing multimodal models for the reverse task of generating relevant
multimodal inspirations from musical elements to create paired
data. These approaches would offer valuable multimodal-contextual
data pairs to inform the development of more integrated systems.

9.2 The Role of Randomness in Human-AI

Co-Creation

One of the interesting observations from our study was that partici-
pants felt equally satisfied with the final compositions and enjoyed
the songwriting process similarly, regardless of whether they used
only Aria or both Aria and Amuse, despite Amuse’s outputs be-
ing considered as more controllable and better aligned with their
creative intentions (§8.3.4). Notably, participants often described

Aria’s suggestions as out-of-sync and random, yet they also re-
ported moments of serendipity where these unexpected outputs
prompted them to deviate from their original plans and still achieve
satisfactory outcomes. This observation aligns with prior work
showing that unrelated suggestions can be evocative and produc-
tive in creative contexts [51, 57, 100], with the surprising combi-
nations of ideas provoking exploratory processes that lead to the
production of creative ideas [53]. Participants may have viewed
Aria’s random outputs not as bugs but as an inherent feature of
the human-AI interaction, and this engagement with randomness
likely stimulated cognitive reorganization and creative leaps that
enriched their overall experience [88].

Another hypothesis is that participants’ engagement styleswould
have played a crucial role in how they interacted with the systems
and perceived their creative processes. As suggested by prior work
in the creative writing domain [88], creative processes involve
broadly different styles of engagement with suggestions, includ-
ing reactive and proactive engagements. Reactive writers let AI
suggestions actively shape their work, using the AI outputs to de-
termine their creative direction. Proactive writers, by contrast, have
a clear idea of what they want to create and tightly control their
process. Similarly, participants with reactive engagement style in
our study may have found Aria’s randomness more inspiring than
Amuse’s controllable outputs, as it enabled exploration without
requiring explicit decisions about the creative direction. However,
it is important to note that our study was conducted in a controlled
environment, where participants were given a songwriting prompt
and instructed to use the assigned tool(s) at least once. This setup
might have influenced how they engaged with the systems, poten-
tially differing from how they would approach the tools in more
natural settings. Future work could explore these dynamics in open-
ended, real-world scenarios with a larger and more diverse group of
participants. Such studies could uncover richer usage patterns and
provide deeper insights into how randomness, controllability, and
user engagement styles contribute to shaping creative satisfaction
and the effectiveness of AI creativity support tools.

9.3 Reflection on the Chord Transcriber’s Low

Usage

While the majority of participants in the formative study high-
lighted existing music and transcribing elements like chords or
melodies as a key ideation process (§3.2), the user study revealed a
contrasting preference: participants generally favored the Chord
Generator over the Chord Transcriber (§8.1.3). Although practi-
cal constraints—such as the absence of instruments and limited
time to choose appropriate songs during the study—may have influ-
enced this preference, the difference in how the two tools supported
creative exploration may provide additional insights.

We hypothesize that the Chord Generator, by accepting non-
musical inputs such as images and texts, offered the creative free-
dom necessary to compose songs based on songwriting prompts
(e.g., “Write an 8-bar chorus about your favorite summer holiday
memory.”), which was the focus of our user study task. Working
to understand the abstract and open-ended relationship between
non-musical inputs and musical outputs likely fostered imagina-
tive and interpretative exploration. Theories of creative thought
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also support this hypothesis, which suggests that abstract think-
ing facilitates creative cognition by stimulating new associations
and broadening the scope of possibilities [35, 99]. In contrast, the
Chord Transcriber, which outputs literal transcriptions from musi-
cal inputs, provided a more concrete and constrained interaction.
This specificity may limit participants’ opportunities for abstract
thinking and exploratory ideation. As a result, the Chord Genera-
tor’s capacity to support interpretative and open-ended exploration
likely made it better suited for our songwriting task, which em-
phasized creative ideation. Future work could explore contexts in
which more literal, concrete tools like the Chord Transcriber are
particularly effective.

Additionally, participants may have preferred the Chord Gen-
erator because it provided multiple suggestions, aligning with the
design principles for creativity support tools that emphasize the im-
portance of exploring various alternatives [81]. In comparison, the
Chord Transcriber’s singular, literal outputs may have constrained
creative exploration. Although we designed the Chord Transcriber
based on observations from the formative study—where users tran-
scribed chords from audio and expanded upon them—participants
in the user study appeared to expect the tool to support further
exploration of the chords, as indicated by P6 in §8.1.3. Future work
could consider expanding the Chord Transcriber’s capabilities to
encourage exploration within the creative space, such as offering
multiple variations of transcribed chord progressions, like alter-
ations or substitutions, alongside the literal transcriptions.

9.4 Real-time Multimodal Creativity Support

Like many existing AI music systems [61, 62, 89], Amuse was de-
signed for a static environment where users sit down at a com-
puter to create music, and our experiments reflected this setting.
However, music creation is inherently dynamic, often occurring
in spontaneous moments, such as during improvisation on instru-
ments [4, 96]. We observed similar behaviors in both our formative
and user studies. The majority of formative study participants re-
ported they rely on improvising on their instruments to manually
conjure ideas (§3.2.2), and a user study participant noted that they
would have improvised on the piano to develop ideas if they had
access to it during the study session (§8.1.3).

To this end, a promising direction for the future development
of human-AI music co-creation systems would involve building AI
systems and interaction methods that facilitate real-time creative
exploration. One intuitive approach is real-time accompaniment
systems [8, 98, 104], which includes harmonizing with [104] or gen-
erating basslines [8] upon user melody inputs. Exploring how users
can effectively interact with these systems to create a meaningful
composition would be a valuable area of investigation.

Moreover, multimodal systems could further enhance this pro-
cess by providing real-time feedback across different modalities,
supporting the user’s creative exploration of musical ideas. Similar
to writing support tools that offer multimodal feedback to guide
story development [9, 88], a real-time multimodal feedback system
for music could offer lyrical ideas, visual cues, or rhythmic patterns
that respond dynamically to the user’s improvisations, enriching
the creative process.

9.5 Expanding Multimodal Support Across

Inputs and Outputs

In this study, we focused on generating chord progressions based
on multimodal inspirations. While chord progressions are a crit-
ical building block of music, the music itself comprises multiple
layers: lyrics, melody, chords, bassline, drums, structure, and instru-
mentation, to name a few. A promising research direction would
involve expanding multimodal support to output other types of
layers, each of which might constitute a reusable musical element.
This could offer users greater flexibility in how they approach music
composition and help them develop different layers of their songs
simultaneously or in sequence.

Similarly, musicians might benefit from AI assistance supporting
diverse forms of input beyond the text, image, and audio modali-
ties considered in this work. For instance, users could initiate their
creative process with rhythm (as sensory data) or motion informa-
tion (as video data). Exploring how different modalities can inspire
musical ideas could open up new possibilities for future research.
The diversity of input/output directions pursued by participants in
the AI Song Contest [48, 65] provides some evidence that greater
flexibility on both ends would support the creative goals of more
users.

9.6 Limitations

Several limitations of the study warrant consideration. First, Amuse
always displayed the Chord Generator first, potentially influencing
participant preferences. Additionally, the controlled study environ-
ment, where participants were required to use each tool at least
once, may not reflect how they would naturally interact with the
tools in a more open-ended setting. The novelty effect of Amuse
also cannot be decoupled, as most participants were familiar with
Aria but not with Amuse. Future studies could benefit from in-the-
wild, long-term investigations to capture more natural and organic
use of Amuse.

10 Conclusion

We present Amuse, a songwriting assistant that transforms multi-
modal (image, text, audio) inspirations into reusable musical ele-
ments (chord progressions) that can be seamlessly incorporated into
songwriters’ creative process. Amuse offers two key functionalities:
Chord Generator and Chord Transcriber. The Chord Generator
allows users to extract music keywords from multimodal inspira-
tions and generate chord progressions aligned with these keywords.
The Chord Transcriber enables users to convert audio sources into
chords. To ensure the generated chord progressions are diverse,
musically coherent, and relevant to keywords, we developed a novel
rejection-sampling-based approach that leverages the general capa-
bilities of LLMs in combination with a unimodal chord generation
model trained on real music data. Our technical evaluation and user
study demonstrate that Amuse effectively supports the transforma-
tion of multimodal inspirations into musical elements, enhancing
the songwriting process by improving perceived agency, creativity,
and efficiency. With advancements in music AI, we believe Amuse
opens new avenues for human-AI co-creation in music.
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A Prompts

We list the GPT-4o prompts used in Amuse and its evaluation.

A.1 Keywords Extraction

System Prompt
You are a creative assistant that generates song keywords. You
will receive one or more of the following: an image URL, a text
note, and user-written keywords. Your task is to create keywords
that capture the essence of the input, using style-words, genres,
and song-types from the provided keyword list. You may also
create new relevant keywords if necessary. Respond only with the
keywords, avoiding any additional commentary or formatting.

Instructions:
1. Analyze the inputs: For an image, identify visual elements
that suggest musical themes and emotions. For text, identify
the main themes, emotions, or ideas. For user-written keywords,
expand upon them with related music styles, genres, and types.
2. Generate keywords: Use the provided keyword list, but feel
free to create new, relevant keywords if they better capture the
input.
3. Format the output: Provide the keywords in a comma-separated
list without any additional text or formatting.

Keyword List:
Style: dance, festive, groovy, mid-tempo, syncopated, tipsy,
atmospheric, cold, dark, doom, dramatic, sinister, adjunct,
art, capriccio, mellifluous, nü, progressive, unusual, anthemic,
emotional, happy, jubilant, melancholy, sad, aggressive, banger,
power, stadium, stomp, broadway, cabaret, lounge, operatic,
storytelling, torch-lounge, theatrical, troubadour, vegas,
ethereal, majestic, mysterious, ambient, cinematic, heat,
minimal, slow, sparse, german schlager, glam, glitter, bedroom,
chillwave, intimate, sadcore, carnival, distorted, glitchy,
haunted, hollow, musicbox, random, arabian, bangra, calypso,
chalga, egyptian, hindustani, hōgaku, jewish music, klezmer,
matsuri, middle east, polka, russian navy song, suomipop, tribal
Genre: appalachian, bluegrass, country, folk, freak folk,
western, afro-cuban, dance pop, disco, dubstep, disco funk,
edm, electro, high-nrg, house, trance, downtempo, synthwave,
trap, cyberpunk, drum’n’bass, electronic, hypnogogical, phonk,
synthpop, techno, bebop, gospel, frutiger aero, jazz, latin jazz,
RnB, soul, bossa nova, forró, mambo, salsa, tango, afrobeat,
dancehall, dub, reggae, reggaeton, black metal, deathcore, death
metal, heavy metal, heavy metal trap, metalcore, nu metal, power
metal, pop, pop rock, kpop, jpop, classic rock, blues rock, emo,
glam rock, hardcore punk, indie, industrial rock, punk, rock,
skate rock, skatecore, funk, hiphop, rap
Type: elevator, jingle, muzak, adan, adjan, call to prayer,
gregorian chant, i want song, hero theme, strut, march, military,
villain theme, lullaby, nursery rhyme, sing-along, toddler,
adagio, andante, allegro, acoustic guitar, bass, doublebass,
electricbass, electric guitar, fingerstyle guitar, percussion,
chaotic, noise, stuttering, glissando trombone, legato cello,
orchestral, spiccato violins, staccato viola, symphonic, 1960s,
barbershop, big band, classic, doo wop, girl group, salooncore,
swing, americana, christmas carol, a cappella, arabian ornamental,
dispassionate, melismatic, monotone, narration, resonant, spoken
word, sprechgesang, sultry, scream, torchy, vocaloid

Examples
User: Image: [A base64-encoded image of a city skyline at
sunset]
System: ambient, lo-fi house moods, mellow, smooth jazz,
chillwave, urban pop, dreamy, city pop
User: Image: [A base64-encoded image of a long-distance couple
reuniting at the airport] | Text Note: Met after three years at
the airport. Felt like a movie scene. I scanned the crowd, and
there you were, smiling. I knew I was home.
System: cinematic, indie, nostalgic, intimate, troubadour,
americana, orchestral, piano
User: Text Note: “Hope” is the thing with feathers - That perches
in the soul - And sings the tune without the words - And never

stops at all. | User Keywords: hopeful
System: emotional, ethereal, acoustic guitar, folk, atmospheric,
storytelling ballad, soft-spoken harmonies

A.2 Chord Progression Generation: Amuse

System Prompt
You are a musical assistant generating chord progressions
based on user-provided keywords, key, mode, and bar. The
keywords describe the genre, style, and song type. The key
specifies a root note that is in [C, G, D, A, E, B, F#, Db,
Ab, Eb, Bb, F]. The mode specifies a scale that is in [Maj,
Min, Dor, Phr, Lyd, Mix, Loc, Hmin, Phdm]. The bar specifies
the number of chords to generate for each progression. Your
task is to create 30 diverse chord progressions conforming
to the keywords, key, and mode. Each progression should
consist of the same number of chords as the bar input, with each
chord separated by a space ’ ’ and each progression on a new line.

Instructions:
1. Analyze Chord Functions: Determine the functions of chords in
the given key and mode. Tonic (I, vi) provides resolution and
stability. Subdominant (IV, ii) creates movement away from the
tonic. Dominant (V, vii°) creates tension that needs to resolve
to the tonic.
2. Analyze the Keywords: Determine the chord components and
progression patterns based on the keywords. For example, for
jazz-related keywords, consider using seventh chords, altered
chords, and common jazz progressions like ii-V-I. For keywords
like ’sadness’ or ’emotional,’ use minor chords, diminished
chords, and progressions that create tension.
3. Generate 30 Chord Progressions: Create 30 distinct chord
progressions that fit the specified key and mode and match the
keywords. Each progression should be unique and align with the
bar parameter (i.e., if bars = 4, each progression should have 4
chords). Ensure diversity by varying the chord components (root,
quality, extensions, alterations, etc.), progression patterns
(diatonic/chromatic), and cadences.

Each chord text can have the following components, in
order:
1. Root Note: A-G, with optional accidentals (#, b, x).
2. Chord Quality: maj, min, aug, dim.
3. Extensions: Specific chord extensions such as 6/9, 7, 9, 11,
13.
4. Suspended Chords: Suspended chords such as sus2, sus4, sus#2,
sus#4.
5. Added Notes: Added notes such as add2, add4, add6, add9,
add11, add13.
6. Altered Notes: Alterations such as b5, #5, b9, #9, #11, b13.
7. Slash Chords: Alternate bass notes such as /E, /G#, /Bb, /Dx.

Ensure the chord progressions are musically coherent,
stylistically appropriate, and diverse. Include extensions,
suspensions, adds, altered notes, slash chords as needed to
achieve maximum diversity. Use both diatonic and chromatic
chords to enhance the progressions. Respond only with the chord
progressions, avoiding any additional commentary or formatting.

Examples:
User keywords: dreamy, jazz, soft | Key: B | Mode: Maj | Bars: 4
Example Progressions: C#m7 F#7 Bmaj9 d#dim/C\nEmaj7 A#m7b5 D#m7
G#7
User keywords: singer-songwriter, acoustic, emotional | Key: F#
| Mode: Maj | Bars: 3
Example progressions: F# B/F# C#/G#\nC# D#msus2 D#m/
User keywords: orchestral, adventurous, epic | Key: D | Mode:
Min | Bars: 4
Example progressions: dm gm/Bb gm dm\nBb F C C#dim

Generate 30 progressions for each user input, following
the above guidelines and ensuring diversity and musical
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coherence. Keep the chord format the same as the examples
provided (e.g., G, Amaj7, Cm are valid formats, but Gmaj, Cmin
are invalid formats).

A.3 Chord Progression Generation: Baseline

System Prompt
You are a musical assistant generating chord progressions based
on user-provided keywords, key, mode, and bar. The keywords
describe the genre, style, and song type. The key specifies a
root note that is in [C, G, D, A, E, B, F#, Db, Ab, Eb, Bb,
F]. The mode specifies a scale that is in [Maj, Min, Dor, Phr,
Lyd, Mix, Loc, Hmin, Phdm]. The bar specifies the number of
chords to generate for each progression. Your task is to create
a chord progression conforming to the keywords, key, and mode.
The progression should consist of the same number of chords as
the bar input, with each chord separated by a space ’ ’ and the
progression on a new line.

Instructions:
1. Analyze Chord Functions: Determine the functions of chords in
the given key and mode. Tonic (I, vi) provides resolution and
stability. Subdominant (IV, ii) creates movement away from the
tonic. Dominant (V, vii°) creates tension that needs to resolve
to the tonic.
2. Analyze the Keywords: Determine the chord components and
progression patterns based on the keywords. For example, for
jazz-related keywords, consider using seventh chords, altered
chords, and common jazz progressions like ii-V-I. For keywords
like ’sadness’ or ’emotional,’ use minor chords, diminished
chords, and progressions that create tension.
3. Generate a Chord Progression: Create a chord progression that
fits the specified key and mode and matches the keywords. The
progression should align with the bar parameter (i.e., if bars =
4, the progression should have 4 chords).

Each chord text can have the following components, in
order:
1. Root Note: A-G, with optional accidentals (#, b, x).
2. Chord Quality: maj, min, aug, dim.
3. Extensions: Specific chord extensions such as 6/9, 7, 9, 11,
13.
4. Suspended Chords: Suspended chords such as sus2, sus4, sus#2,
sus#4.
5. Added Notes: Added notes such as add2, add4, add6, add9,
add11, add13.
6. Altered Notes: Alterations such as b5, #5, b9, #9, #11, b13.
7. Slash Chords: Alternate bass notes such as /E, /G#, /Bb, /Dx.

Ensure the chord progression is musically coherent and
stylistically appropriate. Include extensions, suspensions,
adds, altered notes, and slash chords as needed to achieve a
rich and satisfying progression. Use both diatonic and chromatic
chords to enhance the progression. Respond only with the chord
progression, avoiding any additional commentary or formatting.

Examples:
User keywords: dreamy, jazz, soft | Key: B | Mode: Maj | Bars: 4
Example Progression: C#m7 F#7 Bmaj9 d#dim/C
User keywords: singer-songwriter, acoustic, emotional | Key: F#
| Mode: Maj | Bars: 3
Example progression: F# B/F# C#/G#
User keywords: orchestral, adventurous, epic | Key: D | Mode:
Min | Bars: 4
Example progression: dm gm/Bb gm dm

Generate a progression for each user input, following the
above guidelines and ensuring musical coherence. Keep the chord
format the same as the examples provided (e.g., G, Amaj7, Cm are
valid formats, but Gmaj, Cmin are invalid formats).

Table 4: CLAP scores calculated using the synthetic audio

used to evaluate keyword relevance in the listening study

(Section 6.2). Amuse achieves higher scores (↑), indicating
better relevance compared to the baselines.

Method CLAP ↑

LSTM Prior 0.2626
GPT-4o 0.2661
Amuse 0.2685

B Chord Progression Generation Details

B.1 Rejection Sampling Implementation Details

𝑃 (x) consists of two stacked LSTM layers with 512 embedding and
hidden dimensions, a learning rate of 1e-5, and a dropout rate of
0.2. Similarly, 𝑄 (x) uses two stacked LSTM layers but with 256
embedding and hidden dimensions, the same learning rate of 1e-
5, and a dropout rate of 0.2. The distribution is smoothed with a
temperature value of 1.7 during rejection sampling.

B.2 Keywords Used for Listening Study

We list 10 sets of keywords used for the “Keyword Relevance” sec-
tion of the listening study.
• urban, hip hop, trap
• powerful, rock, heavy metal
• emotional ballad, sad
• bossa nova, latin jazz, samba
• acoustic, folk, country
• soul, r&b, groovy
• smooth, jazz, swing
• lo-fi, dreamy, ambient
• orchestral, epic, cinematic

In addition to this, we included the attention check question
with keywords “beautiful, calm, piano” where users select between
consonance and dissonance chord progressions.

B.3 Additional Evaluation on Keyword

Relevance

We report the automatic evaluation results for keyword relevance
using the CLAP score [15, 103] to complement the qualitative find-
ings from our listening study (Section 6.2.2). The CLAP score mea-
sures how well audio aligns with a text prompt by computing the
pairwise cosine similarity between text and audio embeddings ex-
tracted by CLAP. CLAP is a dual-encoder model, with one encoder
processing text inputs and the other processing audio inputs. These
embedding spaces are jointly trained using a contrastive learning
objective [95]. For evaluation, we feed the synthetic audio (used
in the listening study for keyword relevance) into the CLAP audio
encoder and set the CLAP text encoder input to “An audio track of

[keywords] music,” building on prior work [101, 103].
Table 4 presents the results: LSTM prior, GPT4o, and Amuse

achieved CLAP scores of 26.3%, 26.6%, and 26.9%, respectively. Note
that scores in the range of 20%-30% are typical for cosine similarity
metrics in multimodal contrastive models (e.g., CLIP [79]) [77, 87,
101, 106]. In contrast, in our listening study, listeners rated those
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systems as having better pairwise keyword relevance 41.4%, 50.7%,
and 58.0% of times. For each pair in the listening study, wemeasured
the correlation between differences in CLAP scores and listener
judgments. This resulted in a percent agreement of 48.67% and a
Pearson correlation of 0.05 (p=0.25). We suspect that the CLAP
audio encoder cannot meaningfully embed our synthetic audio,
resulting in a weak correlation overall. Although CLAP scores and
listener judgments follow a similar trend (favoring Amuse), the
listening study provides a more reliable evaluation in this setting.

C User Study

C.1 Survey Questions

For the post-task surveys in the user study, participants were asked
to rate their agreement with the following statements on a seven-
point Likert scale (1=Strongly Disagree, 7=Strongly Agree). [sys-
tem(s)] was either “Aria alone” (Baseline) or “Amuse and Aria
together” (Assist).

• Inspiration Support: “Using [system(s)], I could easily
translate abstract ideas (e.g., imagery, emotions) into con-
crete musical components.”
• Task Alignment: “Using [system(s)], I felt the tool(s) guided
me toward a composition that felt connected to the task
prompt.”
• Think Through: “Using [system(s)], I could think through
what kinds of outputs I would want to complete the task
goal, and how to complete the task.”
• Output Quality: “Using [system(s)], the outputs I received
from the tool(s) were of sufficient quality to be useful in my
composition.”
• Diversity: “Using [system(s)], I was able to receive a wide
range of suggestions that I wouldn’t have composed on my
own.”
• Collaborative: “Using [system(s)], I felt I was collaborating
with the tool(s) to come up with the composition.”
• Controllable: “Using [system(s)], I felt I had control over
the songwriting process. I could steer the tool(s) towards the
task goal.”
• Ownership: “I feel that the composition I created using
[system(s)] is mine.”
• Musical Coherence: “I feel that the composition I created
using [system(s)] is musically coherent.”
• Potential for Development: “I feel that the composition I
created using [system(s)] could serve as a strong foundation
for a full song that I could expand on.”
• Enjoyment: “Using [system(s)], I was very engaged in the
songwriting activity - I enjoyed and would do it again.”
• Exploration: “Using [system(s)], it was easy for me to ex-
plore many different options, ideas, designs, or outcomes.”
• Expressiveness: “Using [system(s)], I was able to be very
expressive and creative while doing the activity.”
• Immersion: “Using [system(s)], I was able to concentrate
on the activity, and I forgot about the tool that I was using.”
• Results Worth Effort: “Using [system(s)], what I was able
to produce was worth the effort required to produce it.”

The questions for think-through, collaborative, and controllable
are adapted from the previous work that measured user percep-
tions on AI systems [102]. The questions for ownership and musical
coherence are adapted from the related work on human-AI music
co-creation [62]. The questions for enjoyment, exploration, expres-
siveness, immersion, and results worth effort are Creativity Support
Index [16] measures.

C.2 Interview Questions

We list the questions used for the semi-structured interview after
the two songwriting sessions with baseline and Amuse.
• Can you walk me through your songwriting process when
using both Aria and Amuse together?
• Comparing the baseline and Amuse, what were the main
differences you noticed in the songwriting process?
• How did using Amuse with Aria influence your final com-
position compared to using Aria alone? Did it lead to any
unexpected or particularly satisfying results?
• Were there any creative challenges you faced during the
process that the tools helped (or could have helped) you
overcome? How did they assist (or not) in solving specific
problems?
• Which features in Amuse did you find most helpful or not?
Can you describe specific scenarios where they were partic-
ularly helpful or unhelpful?
• How do you envision using tools like Aria and Amuse in
your future songwriting projects?What role do you see them
playing in your creative process?
• What specific improvements or features would you suggest
for either Aria, Amuse, or both to better support your song-
writing process? Are there any gaps or frustrations you en-
countered that you want addressed?

C.3 Thematic Analysis Codebook

We include the codebook used for the thematic analysis of user
experience on Amuse and Aria. Table 5 presents the codes related
to user experiences in the Assist condition where users used both
Amuse and Aria. Table 6 presents the codes related to user experi-
ences in the Baseline condition where users used Aria alone.
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Table 5: Codebook summarizing the dimensions, descriptions, and example quotes from participants regarding the benefits,

challenges, and feature usability of Amuse integrated with Aria in the Assist condition.

Dimensions and Codes Code Description Example Quote

What are the benefits of using Amuse with Aria?

Controllable outcomes Users can steer the tool outputs to
align with their creative intentions.

“Amuse was definitely more helpful when starting from

scratch. The ideas it generated fell in line with I would

have mentally constructed.”
Diverse outcomes The tools generate novel and di-

verse outputs, providing inspira-
tions or surprises to users.

“Amuse surprised me with its use of chromaticism, push-

ing me to think beyond diatonic patterns. It’s been fun

and engaging to work with ideas I wouldn’t have come

up with on my own.”
Foster imagination The tools facilitate imaginative

thinking and creative expression.
“Amuse did allow for a more generative ideation. I felt

more creatively connected to what I was actually doing

musically from a very imaginative perspective.”
Streamline workflow Users find creation process efficient

and easy with the tools.
“I really liked how it jump-started the process. I usually

spend a lot of time and effort getting the right chords,

which is tedious—being able to convey an idea quickly

was really nice.”
Agency over workflow User has a sense of autonomy in

their interactions with the tools.
“It felt like unlocking a communication channel where

I can tell what I wanted, and compared to AI writing

the whole thing for me, with Amuse, I had control in the

writing process.”

What are the challenges of using Amuse with Aria?

Disconnection
between tools

Switching between Amuse and
Aria disrupts the creative work-
flow.

“The only disconnection I felt was in how Aria doesn’t

necessarily integrate with Amuse in the same way that

Amuse integrates with Aria. So it was almost like doing a

180-degree rotation when switching from Amuse to Aria

because Aria doesn’t achieve quite the same results, given

that it doesn’t consider your inputs.”

Which features in Amuse did users particularly helpful or unhelpful?

Music keywords are helpful Users findmusic keywords in Chord
Generator helpful.

“Turning an image directly into chords feels like a big

abstract leap. Generating keywords from the image helps

me connect with it—asking, ‘What keywords come tomind

for this image?’ makes the process feel more familiar and

predictable.”
Image input is helpful Users find image input in Chord

Generator helpful.
“I especially liked the picture input feature because, as

the saying goes, a picture is worth a thousand words.

Sometimes, it’s easier to convey what you’re aiming for

with an image than with words.”
Chord Transcriber
is unhelpful

Users find Chord Transcriber unnec-
essary or unhelpful.

“I didn’t use the transcribe feature which I think mainly

is because of the time constraint for me—I couldn’t come

up with a song that kind of fit the task that I could borrow

from off the top of my head.”
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Table 6: Codebook summarizing the dimensions, descriptions, and example quotes from participants regarding the benefits

and challenges of using Aria alone in the Baseline condition.

Dimensions and Codes Code Description Example Quote

What are benefits of using Aria alone?

Intuitive workflow Users find the standalone Aria ex-
perience straightforward.

“I would say when Amuse was there, I felt more enriched

and musical, but using Aria alone was more intuitive

because I knew what to expect from it.”
Unexpected discoveries Users receive unexpected, serendip-

itous results that inspire new direc-
tions from Aria.

“I feel like Aria generates something randomly so it could

or could not work. But in this case, the fact that it worked

and it actually sounded good was pretty nice experience.”

What are the challenges of using Aria alone?

Uncontrollable outcomes Users find Aria’s output random or
irrelevant, failing to align with the
user’s creative intentions.

“Aria is a bit random – its suggestions don’t sync up

exactly with what I am writing.”

Lack of agency
over workflow

Users feel they lack autonomy in
their interactions with Aria.

“With just Aria, I wasn’t able as much to create a mood or

feel for my song. I didn’t feel like I had much input—Aria

just sort of made up its own mind, and I had to just go

along with it. It’s like having a bad co-writer.”
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