
Computer Networks 109 (2016) 142–156

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

MAGMA network behavior classifier for malware traffic

Enrico Bocchi a , ∗, Luigi Grimaudo

a , Marco Mellia

a , Elena Baralis a , Sabyasachi Saha

b ,
Stanislav Miskovic

c , Gaspar Modelo-Howard

c , Sung-Ju Lee

d

a Politecnico di Torino, Italy
b Cyphort Inc., United States
c Symantec Corp., United States
d Korea Advanced Institute of Science and Technology, Republic of Korea

a r t i c l e i n f o

Article history:

Received 24 September 2015

Revised 4 March 2016

Accepted 30 March 2016

Available online 6 April 2016

Keywords:

Network traffic modeling

Malware characterization

Malicious behaviors detection

Graph networks

Automatic classification

a b s t r a c t

Malware is a major threat to security and privacy of network users. A large variety of malware is typically

spread over the Internet, hiding in benign traffic. New types of malware appear every day, challenging

both the research community and security companies to improve malware identification techniques. In

this paper we present MAGMA, MultilAyer Graphs for MAlware detection, a novel malware behavioral

classifier. Our system is based on a Big Data methodology, driven by real-world data obtained from traffic

traces collected in an operational network. The methodology we propose automatically extracts patterns

related to a specific input event, i.e. , a seed , from the enormous amount of events the network carries. By

correlating such activities over (i) time, (ii) space, and (iii) network protocols, we build a Network Connec-

tivity Graph that captures the overall “network behavior” of the seed. We next extract features from the

Connectivity Graph and design a supervised classifier. We run MAGMA on a large dataset collected from a

commercial Internet Provider where 20,0 0 0 Internet users generated more than 330 million events. Only

42,0 0 0 are flagged as malicious by a commercial IDS, which we consider as an oracle. Using this dataset,

we experimentally evaluate MAGMA accuracy and robustness to parameter settings. Results indicate that

MAGMA reaches 95% accuracy, with limited false positives. Furthermore, MAGMA proves able to identify

suspicious network events that the IDS ignored.

© 2016 Elsevier B.V. All rights reserved.

i

m

i

d

t

c

s

t

w

o

t

p

r
1. Introduction

Information security over the Internet remains a primary con-

cern for consumers, enterprise, and government alike. Malware in-

filtrates and spreads over the Internet using complicated methods

to hide its traffic among benign activities. Cyber-attackers contin-

uously use sophisticated schemes to create new malware (nearly

20 0,0 0 0 new malware samples every day [1]) to avoid detection

by security measures. Recent industry reports disclose that zero-

day vulnerabilities have increased by 61% [2] , and existing an-

tivirus software’s detection rate of a newly created virus is less

than 5% [3] .

Different approaches have been taken by security practitioners,

ranging from instruction set and code analysis, to traffic character-
∗ Corresponding author. Tel.: + 390110904173.

E-mail addresses: enrico.bocchi@polito.it (E. Bocchi), luigi.grimaudo@polito.it

(L. Grimaudo), mellia@polito.it (M. Mellia), elena.baralis@polito.it (E. Bar-

alis), sabyasachi.saha@gmail.com (S. Saha), stanislav_miskovic@symantec.com

(S. Miskovic), gaspar_modelohoward@symantec.com (G. Modelo-Howard),

sjlee@cs.kaist.ac.kr (S.-J. Lee).

u

a

q

p

l

m

http://dx.doi.org/10.1016/j.comnet.2016.03.021

1389-1286/© 2016 Elsevier B.V. All rights reserved.
zation of infected hosts (see Section 2 for more details). Several

ethodologies have been proposed, each targeting a specific fam-

ly of threats, e.g. , botnets [4] , click fraud [5,6] , exploit kit [7] , or

rive-by downloads [8] . Often, the detector leverages specific fea-

ures that, while effective for the targeted malicious activity, be-

ome useless when considering a different type of threat.

In this paper, we have at the ambitious goal of designing a clas-

ifier that aims at detecting any generic malicious pattern. We do not

arget a specific type of threats, but any family of malware . To do so,

e follow a data-driven approach. We consider the actual traffic

bserved in a live network where users access the Internet. From

he packets and flows, we extract and log events with the use of a

assive monitoring tool. An event could be a HTTP request, a DNS

esponse, or simply a TCP flow going to a remote host using an

nknown protocol. Millions of events are recorded per hour.

We consider a target event under analysis, that we call the seed ,

nd we build a classifier that has to return a binary answer to the

uestion: is the seed part of a benign or a malicious activity? To

rovide the answer, we adopt Big Data techniques where corre-

ation among events is extracted to produce an augmented sum-

ary of the overall activity related to the presence of the seed.

http://dx.doi.org/10.1016/j.comnet.2016.03.021
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2016.03.021&domain=pdf
mailto:enrico.bocchi@polito.it
mailto:luigi.grimaudo@polito.it
mailto:mellia@polito.it
mailto:elena.baralis@polito.it
mailto:sabyasachi.saha@gmail.com
mailto:stanislav_miskovic@symantec.com
mailto:gaspar_modelohoward@symantec.com
mailto:sjlee@cs.kaist.ac.kr
http://dx.doi.org/10.1016/j.comnet.2016.03.021

E. Bocchi et al. / Computer Networks 109 (2016) 142–156 143

W

a

c

C

i

i

l

t

M

fi

t

e

e

r

M

s

e

t

o

w

B

w

t

b

p

t

e

G

F

e

p

b

a

a

h

t

t

c

h

t

l

w

v

d

s

g

a

R

S

2

w

a

t

r

c

t

d

a

i

2

m

o

q

g

T

q

s

a

l

p

b

t

t

a

t

o

a

c

t

s

d

t

p

c

b

2

i

o

c

m

w

n

i

D

a

f

f

[
e represent such summary as a Network Connectivity Graph, i.e. ,

 graph where nodes and edges model the subset of events tightly

orrelated with the seed under study. The purpose of the Network

onnectivity Graph is twofold. First, it provides a set of “forensic”

nformation for the security analyst to support her in understand-

ng the traffic involved in an accident. Second, using a supervised

earning approach, the Network Connectivity Graph is used to ex-

ract a model of the typical behavior of malicious or benign events.

The result is MAGMA, MultilAyer Graphs for MAlware detection.

AGMA is a system able to process the enormous amount of traf-

c coming from operational large-scale networks, and to identify

he subset of relevant events belonging to the same activity of the

vent under consideration.

MAGMA employs Big Data techniques based on a filtering and

nrichment processes that leverages (i) temporal and (ii) spatial

epetitiveness of events generated over time by multiple hosts.

AGMA looks for common patterns across different time snap-

hots generated by hosts connected to the network. Intuitively, it

xtracts those repetitive subsets of events that appear in most of

he observation windows. In practice, as few as three observations

f a seed are enough to trigger the analysis.

We use a real traffic collected from a commercial network

here more than 20,0 0 0 households are connected to the Internet.

y using a commercial Intrusion Detection System (IDS) as oracle,

e obtain a list of more than 42,0 0 0 malicious events that belong

o more than 150 different threats, including exploit kits, Drive-

y downloads, malicious toolbars generating click-frauds, and hosts

articipating in botnets. Each presents very different characteris-

ics. Out of those, about 40,0 0 0 (95%) meet the repetitive prop-

rties required to extract the corresponding Network Connectivity

raphs, which we consider representative of malicious activities.

ollowing the same approach, we select a subset of random benign

vents and extract graphs representing benign activities.

This forms a labeled dataset that we use to train and test the

erformance of decision tree based classifiers. 1 We follow all the

est practice dictated by the machine learning community to run

 thorough evaluation. Despite the heterogeneity of both malicious

nd benign patterns, MAGMA achieves a classification accuracy

igher than 95%. In addition, our performance evaluation reveals

hat MAGMA is very robust to parameter settings.

The contributions of our work, MAGMA, are as follows:

• We propose a methodology that extracts and represents the ac-

tivity correlated with the occurrence of a seed , which allows the

subsequent identification of benign and malicious traffic.

• We train a classifier that explicitly targets generic malware ac-

tivity, and it is not tailored to a specific threat or malware class.

• We provide augmented information to the security analyst to

uncover hidden malware behavior and provide forensic infor-

mation.

This work extends our preliminary analysis of malware traffic

hat appeared in [9] , where the Network Connectivity Graph con-

ept was introduced. Here, we build upon it to engineer a be-

avioral classifier whose performance are evaluated and discussed

horoughly.

The paper is organized as follows: Section 2 presents the re-

ated works. Section 3 provides an overview of the scenario in

hich we operate detailing the available dataset. Section 4 pro-

ides an introductory description of the intuitions behind MAGMA

esign. Section 5 provides a formal description of the graph con-

truction processes. Section 6 details the characteristics of the

raphs, while Section 7 describes the supervised classifier design.
1 Interested researchers that would like to access the dataset have to contact the

uthors and sign a Non-disclosure agreement (NDA).

t

t

L

d
esults are discussed in Section 8 , before drawing conclusions in

ection 9 .

. Related work

The increased popularity of the Internet and particularly the

eb to spread malware and infect computers, has led to vast

mounts of research that attempt to identify malware using the

raffic generated by such threats. The literature suggests for a va-

iety of techniques that can be employed in this context. We fo-

us our attention on three macro-groups of malware traffic de-

ection techniques, being those the most related to our work. We

iscuss how previous works in the fields of graph-based detection

pproaches, multi-protocol traffic correlation, and infection phase

dentification relates to our research.

.1. Graph-based malware detection

Previous work has explored graph-based approaches to detect

alware. In [10] , the authors build a bipartite graph consisting

f domain names of failed DNS queries and host issuing such

ueries. Given this DNS failure graph, a graph decomposition al-

orithm is then applied to iteratively extract dense subgraphs.

he intuition is that host infected by the same malware usually

uery for the same, similar or correlated set of domain names. The

ubgraphs generated are further classified in different categories

nd characterized by exploring their temporal properties. Simi-

arly, building a relationship graph based on DNS historical data is

roposed [11] where suspicious structural networks are identified

ased on two graph measures: graph density and eigenvector cen-

rality and ground truth labels. Recently, a malicious domain de-

ection system [12] is proposed. It leverages homophilic properties

nd ground truth labels to build a host-domain graph and adapt

he belief propagation to estimate an unknown domain’s likelihood

f being malicious. Similarly, malicious hosts are detected using

 semi-supervised, score-propagation algorithm that utilizes HTTP-

ommunication graphs [13] .

All these approaches restrict their effort s to a specific protocol

o identify the suspicious graph entities. Often performance is as-

essed using synthetic datasets or benchmarks which are now out-

ated. MAGMA instead uses the data gathered from multiple pro-

ocols and from real traces to create a model for generic malware

atterns. Moreover, the model characterizes both benign and mali-

ious network activity and summarizes the commonalities exposed

y the involved hosts.

.2. Multi-protocol traffic correlation

Many effort s have f ocused on the analysis of a single protocol to

dentify network traces and patterns displayed by malware, while

thers have considered a set of protocols to achieve the identifi-

ation of malware. In the first case, HTTP and DNS are two of the

ost analyzed protocols among malware threats to communicate

ith victims or between malicious peers. Several detection tech-

iques have been proposed, exploring different ways to character-

ze the behavior of different malware threats on HTTP [12,14–16] or

NS [11,17,18] . Examples of proposals following a multi-protocol

pproach, such as the one presented in MAGMA, include [19–22] .

The popularity of HTTP on the web has made it the pre-

erred protocol for malware creators and as such, the target

or researchers to analyze and detect malware. Invernizzi et al.

14] present a system to identify malicious drive-by download ac-

ivities by exposing the distribution networks necessary to dis-

ribute malware thru HTTP. Similarly, Manadhata et al. [12] and

e et al. [15] propose classifiers based on features from web

omains and URLs to detect malware activity. Oza et al. [16]

144 E. Bocchi et al. / Computer Networks 109 (2016) 142–156

Fig. 1. Example of events generated by a host as seen from the network.

w

q

s

q

s

t

F

a

p

i

p

i

i

t

d

w

l

o

e

t

i

s

r

g

e

o

3

a

r

t

w

t

t

a

A

i

U

n

t

t

b

H

p

r

2 Given the popularity of NAT (Network Address Translation) at home, the ADSL

modem IP address identifies traffic exchanged by all devices accessing the Internet

at each customer household.
proposes the use of n-gram techniques to filter out the majority of

benign HTTP traffic and detect malicious HTTP transactions to be

processed with more costly techniques. Systems that analyze the

DNS protocol, usually look at failed DNS queries [17,11] , as this ac-

tivity can lead to the existence of malware using domain generated

algorithms (DGA). Other systems analyze the flow-level informa-

tion from the DNS traffic and look for statistical patterns [18] . The

problem with systems relying on a single protocol is their limited

scope, as malware can switch from protocols, and the required se-

mantic understanding of the particular protocol considered.

In comparison, other approaches have evaluated multiple proto-

cols to detect malicious activity. A seminal work in this area is pre-

sented in [19] , where the lifecycle of botnets is modeled according

to a set of phases, with different application protocols involved. An

interesting approach is used in [20–22] , where traffic information

is presented through generic packet information such as length se-

quences and encoding differences, allowing then to represent the

malware activity observed in different protocols. All of these multi-

protocol approaches have the limitation of targetting specific type

of malware. Our approach is designed to target any malware type,

whose model is extracted from actual traces rather than synthetic

datasets.

2.3. Infection phase identification

Several types of malware usually exhibit specific phases during

the infection process. For example, botnets are commonly used to

distribute malware and involved several phases, including redirec-

tion of webpages and communicating to a command and control

server. Multiple approaches have looked for specific phases of the

infection lifecycle, in order to detect the existence of malware. Ex-

amples include DNS queries failures [17,11,10] , HTTP connections

to domains [23,24] and command-and-control (C&C) communica-

tion [18,25,20] . As many malware nowadays constantly change its

behavior, relying on a single phase presents a strong limitation for

detection systems. In contrast, MAGMA is agnostic about possible

phases exhibit by malware, by inspecting all alerts presented by a

detection system and looking for common and repetitive patterns.

In common with this body of work, we use traffic traces collected

in the wild to obtain realistic cases of actual malware.

In summary, the consideration of a single protocol or malicious

threat, as well as a single phase of the threat, presents challenges

and demands for a different approach. We fill this gap by design-

ing a flexible method that considers multiple types of threats and

leverages the analysis of actual traces, to provide accurate detec-

tion along with detailed information of the malicious activity.

3. Scenario and dataset

In this section we provide an overview of the scenario we face,

detailing the actual data the system is offered and characterizing

the malicious fraction of traffic.

3.1. Scenario

We consider a scenario in which a sniffer passively monitors

the traffic generated by a large group of hosts, e.g. , hosts in an en-

terprise network, or households connected to a Point-of-Presence

(POP) of an Internet Service Provider (ISP). The sniffer extracts in-

formation from the packets and logs them in a file where each row

corresponds to a different event . We assume that, for each TCP and

UDP connection, the sniffer logs the flow identifier (i.e. , a tuple

made by source and destination IP addresses, source and destina-

tion ports, and protocol type), the timestamp of the first packet,

the flow duration, the number of exchanged packets and bytes,

etc. For some protocols, the monitor provides multiple events
ith detailed information. For instance, it annotates each HTTP re-

uest/response with the requested URL, user-agent, content-type,

erver response status code, etc. A DNS event exposes the re-

uested hostnames along with all returned IP addresses by the re-

olver. We assume that an oracle (e.g. , an Intrusion Detection Sys-

em – IDS) has processed the traffic to label malicious events.

Consider the timeline generated by a single host reported in

ig. 1 . It details the events generated by Internet applications. DNS

nd HTTP events are reported using specific markers, while other

rotocols are reported as generic TCP/UDP events. The user is vis-

ting some web pages (e.g. , acme.org), while an email client is

olling a mail server for new messages. Benign events are reported

n the bottom part of the timeline. Unfortunately, acme.org is host-

ng a Drive-by download page. Events on the upper part are due to

he malicious activity in which the host is unknowingly fooled to

ownload a malware from a malicious JavaScript contained in the

eb page. We observe the download of the JavaScript object, fol-

owed by the download of the malware executable. Once running

n the host, the malware periodically contacts (via HTTP in our

xample) a Command and Control (C&C) server whose name is ro-

ated among random generated names [26] . The periodic polling

s visible as a sequence of failed and successful DNS requests, and

ome HTTP traffic to the C&C node.

The challenge is how to isolate the events that are possibly cor-

elated with a specific malicious/benign activity from the “back-

round” noise caused by other events. All the events are indeed

xposed by the system, and, as we will see in the next section,

nly a handful of them are actually malicious.

.2. Available dataset

We consider a vantage point located in a commercial ISP where

pproximately 20,0 0 0 customers are connected. Most of them are

esidential customers, connected via ADSL modems to the moni-

ored point. Each customer’s modem is given a static IP address,

hich is used to identify the traffic generated/directed to all ac-

ive terminals in the household. In the following, we use the

erm “user” to refer to traffic exchanged by a single household (IP

ddress). 2

We leverage a traffic trace obtained during one entire day in

pril 2012. A commercial monitoring tool processes the packets

n real time, and extracts a text log file in which each TCP and

DP flow is logged. For each flow, a record is stored detailing the

etwork flow identifier (i.e. , a tuple made by source and destina-

ion IP addresses, source and destination ports, and protocol type),

he timestamp of the first packet, the total number of packets and

ytes sent and received, and the application protocol used (e.g. ,

TTP, BitTorrent, etc.).

In case the application protocol is HTTP, the record further re-

orts the server hostname, object path, user-agent, content-type,

esponse status, and content-length directly extracted from the

http://acme.org
http://acme.org

E. Bocchi et al. / Computer Networks 109 (2016) 142–156 145

Table 1

Dataset summary.

All traffic Flagged traffic

Class Users (%) Records (%) Users Records

HTTP 16,217 (79.1) 39.7M (11.8) 1308 42,007

Email 3640 (17.7) 880.7k (0.2) – –

Chat 3045 (14.8) 100.8k (0.03) 7 1467

P2P 3163 (15.4) 17.1M (5.05) – –

OthTCP 18,806 (91.8) 22.7M (6.7) 24 76

DNS 15,164 (74.1) 30.7M (9.3) – –

VoIP 8371 (40.8) 80.5k (0.02) – –

OthUDP 17,664 (86.2) 224.6M (66.8) – –

Total 20,486 336.1M 1321 43,550

P2P = (eMule, BitTorrent), Email = (SMTP, POP3, IMAP), Chat =

(XMPP, YahooMsg, MSN, IRC).

H

i

t

t

t

r

a

b

l

o

h

f

p

s

o

D

T

a

s

s

fi

e

u

t

t

c

3

t

i

i

i

s

i

e

l

a

a

t

i

l

e

0

0.2

0.4

0.6

0.8

1

10 100 1k 10k 100k 1M

C
D

F

Number of Flows per User

All Users
Flagged Users

Fig. 2. CDF of the total number of records per user.

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000

C
D

F

Number of Flagged Flows per User

0.001

0.01

0.1

100 1000 10000

C
C

D
F

Fig. 3. CDF of the number of flagged records per user.

m

r

r

a

i

R

a

m

fl

o

w

m

a

a

c

d

c

a

e

s

o

u

t

t

a

n

o

l

m

fl

l

3

TTP header [27] . In case multiple HTTP transactions are present

n the same TCP flow (e.g. , due to HTTP-persistent option), mul-

iple records are logged. Similarly, for each DNS transaction, the

ool logs the requested hostname, the set of IP addresses re-

urned by the resolver, or the response code in case of an er-

or (e.g., Non-Existent Domain) [28] . IP addresses of customers are

nonymized using irreversible hashing functions, and we adopt the

est practices to remove any sensitive information for the current

egislation.

While a characterization of the overall traffic is out of the scope

f this work, we provide some statistics to show the huge volume,

eterogeneity and complexity of the data that the system has to

ace. More details can be found in our previous work [29] . Table 1

rovides a summary. Focusing on the first three columns, we ob-

erve a total of 20,486 users generating about 336 million flows

ver the whole day. About 20% of those are related to HTTP and

NS records, with a large majority classified as “Other TCP” due to

LS/SSL (HTTPS) traffic, and “Other UDP” due to and Peer-to-Peer

pplications.

Some traffic is machine generated, e.g. , keep-alive messages,

oftware updates, or cloud-based applications synchronizing their

tatus. Some use proprietary protocols and generate little traf-

c. Other exchange information frequently inflating the number of

vents. Considering user-generated traffic, we observe some heavy

sers that generate thousands of HTTP requests, run P2P applica-

ions, play online games, and use multiple devices at the same

ime. Other users, instead, just have their mobile phone periodi-

ally checking the email.

.3. Traffic volume of malicious activities

In parallel to the monitoring tool, a commercial IDS processes

he packets producing alerts if a network activity matches any rule

n its database. For each alert, the IDS specifies the network flow

dentifier it relates to and a threat-ID, i.e. , a numerical code that

dentifies a particular threat. For some threat-IDs, a name and de-

cription of the malicious activity is available, detailing the sever-

ty of the threat and which component of the host is vulnerable,

.g. , browser, operating system, etc. Other threat-IDs are instead

ittle documented. The IDS is very conservative in triggering alerts,

nd hence it possible that some malicious event do not trigger any

lerts (i.e. , false negative). Conversely, every alert raised is related

o malicious activities. 3 In the following, we use the IDS as oracle,

.e., events are labeled as benign or malicious according to the IDS
abels.

3 In general, we cannot exclude that some few false positives are present. How-

ver, those appear to be marginal.

a

I
We consider each record in the log file as a different event . By

atching the flow identifiers, alerts are linked to records, so that

ecords can be flagged as malicious . We refer to a flag as a log

ecord for which the IDS triggered an alert, and to a flagged user

s a user exhibiting at least one flagged record. A non-flagged user

s instead a user for which no alerts are risen in the whole day.

ightmost columns in Table 1 details the flagged events. Among

ll users, 1308 (6.4%) of them exhibit some malicious activity, with

ore than 150 different threat-IDs being reported. Only 43,550

ags are raised by the IDS. That translates to a negligible 0.013%

f all traffic. Most of these records correspond to HTTP traffic,

ith the exception of some IRC (Internet Relay Chat) and RPC (Re-

ote Procedure Call) activities, which are known to be commonly

bused by malicious adversaries. This highlights the very stealthy

nd low rate activity that malware is typically generating, and also

onfirms the conservative design of the IDS.

We dig into more details to observe if it is possible to pinpoint

ifferences between flagged users and non-flagged users. Specifi-

ally, we investigate on the occurrences at which flagged events

ppear. The intuition is that the more flagged events occur, the

asier it should be to spot them in the traffic aggregate. Fig. 2

hows the Cumulative Distribution Function (CDF) of the amount

f total records logged for all users, and for the subset of flagged

sers. Results show that the flagged users generate much more

raffic than the rest of the population. One would think this is due

o the extra traffic generated by the malicious application running

t the infected client. However, flagged users present a very small

umber of flags. This is detailed in Fig. 3 that reports the number

f flags per flagged user. We find that 75% (92%) of the users show

ess than 3 (10) flags in the whole day, and only two users show

ore than 1,0 0 0 flags. As such, while malicious activities can in-

ate traffic volume, in general the rate of malicious records is very

imited.

.4. Threat diversity

To investigate the threats diversity and the traffic they gener-

te, Fig. 4 reports different statistics on the alarms raised by the

DS. Consider first the shaded histogram. It shows the number of

146 E. Bocchi et al. / Computer Networks 109 (2016) 142–156

 0
 100
 200
 300
 400
 500
 600
 700
 800

1 20 40 60 80 100 120 140
 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

N
um

be
r

of
 U

se
rs

C
D

F

Threat Popularity Ranking

Conficker

distinct users per threat
cumulate distinct users per threat

cumulate flagged records per threat

Fig. 4. Overall threats statistics.

Table 2

Most popular threats.

Name Users Flags

1 Drive-by download [type1] 781 1427

2 DynDNS activity [type1] 266 26,270

3 Blackhole EK [type1] 127 158

4 Skintrim [type2] 56 301

5 Skintrim [type3] 56 301

6 Facebook plugin attack 30 31

7 Threat-A 25 27

8 Blackhole EK [type2] 25 25

9 Toolbar activity [type1] 21 105

10 Threat-B 21 23

11 Threat-C 21 22

12 Toolbar activity [type2] 17 19

13 Drive-by download [type2] 15 33

14 Tidserv 14 228

15 Threat-D 14 470

Fig. 5. Popularity of HTTP objects.

p

D

w

c

s

m

t

w

b

3

t

l

i

T

p

c

c

h

T

i

i

t

w

r

t

t

a

e

b

s

W

i

b

l

m

p

4

o

i

fl

f

p
users affected by each threat. Threats are sorted by popularity on

the x -axis. Overall, the IDS detects 151 distinct threats. Their popu-

larity is highly skewed, with the most popular affecting about 800

(61%) flagged users, and 129 threats affecting less than 10 users

each. Despite the limited number of alerts, this highlights a very

diversified scenario of malicious activities.

Next, consider the red dashed line of Fig. 4 . It reports the CDF

of the number of flagged records contributed by each threat. As ex-

pected, the majority of these records are related to the most pop-

ular threats. However, the distribution has several steps, indicating

that some are more “chatty” than others and produce many alarms

even when only few users are involved. This is the case of Con-

ficker [30] , which infects only two users, yet it contributes to 23.3%

of all flagged records. Note that Conficker is a worm that was first

detected in 2008 but is still one of the most popular threats [31] .

The solid line in Fig. 4 shows the CDF of the number of distinct

users involved in each threat. In other words, we progressively

add the fraction of new users that were not affected by previ-

ously considered threats. Notice how the distribution presents sev-

eral “plateaus”, indicating that all involved users were already ac-

counted by previous threats. We find that 23% of users are flagged

with multiple threats. This is due to users being infected by differ-

ent malware.

To give more insights about how diverse and heterogeneous the

malicious events are in the wild, Table 2 offers a deeper charac-

terization of the 15 most popular threats. It details the popularity

ranking of the threat, the number of infected users and the num-

ber of flagged records it generates. For some threat-IDs, the IDS

provides limited information on the malicious activity and hence

we adopt generic names, e.g. , Threat-A. Notice how some threats

presents a type . This corresponds to the ability of the IDS to iden-

tify different variant of the network traffic of the same threat.
Some examples of threats include Drive-by downloads and Ex-

loit Kits (EKs), which are among the most popular threats. The

ynDNS activity corresponds to traffic toward hostnames registered

ith DynDNS services that hide control messages (e.g. , periodic

ommunications to check network connectivity). Skintrim and Tid-

erv are two popular trojans that can trigger the download of other

alwares through backdoors. Toolbar activity threats are related to

he Ask.com toolbar that are triggered by the download of un-

anted advertisement objects or perform iframe injections in the

rowser.

.5. Events popularity and whitelisting

Fig. 5 shows the HTTP event popularity, i.e. , the fraction of hosts

hat accessed a given URL (with stripped parameters). Note the

og scale on x -axis. Fig. 5 shows the classic heavy tailed popular-

ty. Top URLs are clearly very common among most of the hosts.

hose include social network buttons (e.g. , www.facebook.com/

lugins/like.php), analytics services (e.g. , www.google-analytics.

om/ga.js), software update check (e.g. , download.windowsupdate.

om/v9/windowsupdate/redir/muv4wuredir.cab), etc. Red triangles

ighlight those events that are considered malicious by the oracle.

he most diffused type of attack – a Drive-by Download threat –

nfects about 800 hosts (3.8% of hosts). The huge tail confirms the

ntuition that most of URLs are accessed by few hosts only.

Leveraging the stealthy nature of malicious traffic, and thanks

o the fact that few users are actually infected by a given mal-

are, we adopt whitelisting as a common technique used to both

educe the amount of information to process, and to discard data

hat would possibly pollute the analysis. We built a whitelist that

argets very popular events, which add little information or cre-

te noise. Instead of creating a manual list of popular and benign

vents, we opt for a dynamic and context-aware approach. MAGMA

uilds a whitelist based on events popularity among clients, and

elects the top- k elements to be ignored during the processing.

e whitelist single HTTP events and not the entire websites, as

t is known that malware can be hosted and distributed also from

enign services. We pick top most popular 100 HTTP events (high-

ighted in Fig. 5), i.e., we filter those events that are common to

ore than 23% of users. This is equivalent to assume that the most

opular malware has infected less than 23% of population.

. Methodology overview

Before presenting the details of MAGMA, we provide an

verview on the adopted methodology and the intuitions behind

ts design. Through a high-level description of the overall work-

ow, we aim at defining conventional names that we use in the

orthcoming sections of the paper. We follow a data-driven ap-

roach, where filtering and correlation phases allow us to extract

http://www.facebook.com/plugins/like.php
http://www.google-analytics.com/ga.js
http://download.windowsupdate.com/v9/windowsupdate/redir/muv4wuredir.cab

E. Bocchi et al. / Computer Networks 109 (2016) 142–156 147

Fig. 6. Host Connectivity graph generation.

i

c

4

C

a

w

a

t

t

s

o

a

e

c

i

e

T

a

a

t

l

m

r

m

s

H

a

a

w

a

t

C

t

t

4

i

v

b

s

i

s

C

Fig. 7. MAGMA classifier overview.

r

b

u

s

4

c

A

b

b

t

f

i

t

s

i

h

5

e

p

5

a

a

fi

I

i

s

t

t

h

a

t
nformation from the huge amount of data at our disposal, as is

ommon practice in a Big Data scenario.

.1. Single host connectivity graph

Consider Fig. 6 . It depicts the procedure used to extract the Host

onnectivity Graph (Host-CG) from those hosts presenting the seed

mong the events they generate. We refer to the seed as the event

e want to classify as benign or malicious.

Three steps are executed:

(i) Snapshots extraction,

(ii) Per-layer common patterns mining, and

(iii) Host-CG creation.

Snapshots extraction. Consider the seed event, and the timeline

round it. Intuitively, events close-in-time with the seed are likely

o be related to it (e.g. , a DNS request followed by several HTTP

ransactions could be identified as a typical pattern). For each in-

tance of the seed, we extract a snapshot defined as the ordered set

f events occurring in the temporal window centered on the seed.

Common patterns mining. We then look for common patterns

cross snapshots. A pattern is defined as the unordered set of

vents that appear across multiple snapshots. We extract separate

ommon patterns by processing the host traffic considering layers

n isolation. The traffic generated on each layer corresponds to all

vents of a specific protocol so that HTTP, DNS, other-TCP (i.e. , all

CP communications except HTTP on port 80), and other-UDP (i.e. ,

ll UDP communication except DNS traffic) events are separately

nalyzed. The choice of separately analyzing layers originates from

he fact that each protocol has some peculiarities that we would

everage. For instance, in the HTTP layer, we are looking for com-

on and repetitive patterns. On the DNS layer instead, failed DNS

equests may be more interesting than successful DNS requests.

Host connectivity graph. For each layer, we represent the com-

on pattern as a graph, where nodes and edges are defined con-

idering specific layer properties. For instance, focusing on the

TTP layer, URLs are represented by separating server hostnames

nd object paths using two nodes. An edge between the hostname

nd the path represent a URL. The resulting graph captures the

ebsite structure. Similarly, in the DNS layer, requested hostnames

re linked to the server IP address(es) returned by the resolver. As

he last step, we collapse the per-layer graphs into a single Host

onnectivity Graph . This is done by linking common nodes in mul-

iple layers. For instance, the hostname in the HTTP layer is linked

o the hostname node in the DNS layer graph.

.2. Seed connectivity graph

We now leverage the fact that the same seed can be present

n the timeline of multiple hosts . We exploit this to gain a broader

iew of the common activity using the “spatial” diversity provided

y multiple hosts. To do so, we merge multiple Host-CGs into a

ingle Seed Connectivity Graph (Seed-CG). This can be done by tak-

ng the union, the intersection (or implementing more complex

trategies between these two extremes) of all nodes from Host-

Gs. The process of generating the Seed-CG aims at creating a
ich but compact representation of the common events generated

y multiple hosts, i.e. , combining common patterns across distinct

sers. A Seed-CG is thus a summary of events correlated with the

eed.

.3. MAGMA supervised classifier

Consider now Fig. 7 . It shows the processes needed to train a

lassifier able to distinguish between malicious a benign Seed-CGs.

s first step, we use the alarms raised by the commercial IDS to

uild two distinct sets of Seed-CGs, one containing CGs generated

y malicious seeds, the other containing CGs of benign seeds. We

hen leverage the descriptiveness of Seed-CGs to define a set of

eatures with which the classifier can be trained and tested. These

nclude:

(i) Graph topology properties (e.g. , number of nodes, node de-

grees).

(ii) HTTP header parameters (e.g. , response status, distinct user-

agents, content-type).

(iii) Syntax properties extracted from the names (e.g. , string

length, number of subdomains, digit–characters ratio).

(iv) Occurrence properties (e.g. , minimum, maximum, average

recurrence of specific events). Some of these features are

driven by the domain knowledge, while others are generic

and considered to avoid biasing towards a specific threat.

The complete set of features is described in Appendix A .

As last step, we run an exhaustive set of experiments to assess

he accuracy of the classifier under a variety of conditions, and its

ensitivity to parameter setting. The results is MAGMA, a behav-

oral classifier able to label Seed-CGs as malicious or benign with

igh accuracy.

. Building the connectivity graph

This section discusses the design choices taken and the param-

ters to control when creating a Network Connectivity Graph. The

seudo-code in Algorithm 1 details the overall approach.

.1. Snapshots extraction

The first step to process the traffic generated by each host (h)

mong the set of hosts (H) exhibiting the seed (s) is to extract

n observation snapshot for each occurrence of the seed. We de-

ne the parameter � that controls the duration of the snapshots.

n particular, a snapshot is composed by all events occurring in the

nterval ± �/2 centered around the seed. In case consecutive snap-

hots overlap, we apply two strategies depicted in Fig. 8 to solve

he conflict. If the overlapping window lasts for less than �/2, the

wo snapshots are merged. Otherwise, the overlap is split into two

alves, each associated to a different snapshot. These operations

re executed by getSnapshots () (Algorithm 1 line:5) that receives

he seed (s), a host (h) presenting at least one instance of s , and

148 E. Bocchi et al. / Computer Networks 109 (2016) 142–156

Algorithm 1 Create network connectivity graph.

input args s: seed

H: set of hosts

�: snapshot duration

output Seed Connectivity Graph

1: procedure graphLayer (s, S, layer):
2: P = findCommonPattern (s, S, layer)
3: return fromPatternsToGraph (P, layer)

4: procedure hostConnectivityGraph (s, h, �):
5: S = getSnapshots (s, h, �)
6: g HT T P = graphLayer (s, S, ‘HTTP’)
7: g DNS = graphLayer (s, S, ‘DNS’)
8: g T CP = graphLayer (s, S, ‘TCP’)
9: g UDP = graphLayer (s, S, ‘UDP’)

10: return connectLayers (g HT T P , g DNS , g T CP , g UDP)

11: procedure seedConnectivityGraph (s, H, �):
12: G s = ∅

13: foreach h ∈ H:
14: G s ← hostConnectivityGraph (s, h, �)
15: return fuseGraphs (G s)

Fig. 8. Snapshots creation when consecutive snapshots overlap.

t

i

t

w

g

d

t

c

o

T

f

k

A

s

s

M

w

(

(

p

o

M

w

s

5

c

t

T

h

e

t

t

i

w

a

h

5

b

e

1

t

t

c

t
the snapshot duration (�) as inputs. It returns the set of snapshots

found (S).

Different values of � can lead to different results. In particular,

the larger the � (e.g. , hours), the more the snapshots will merge.

This results in less snapshots on which perform pattern mining,

producing “noisy” data since not many events are filtered. Con-

versely, a small value of � (e.g. , seconds) might be too conserva-

tive. In the following, we set � = 30 min. A complete sensitivity

analysis is reported in Section 8 .

5.2. Patterns mining

We use the frequent itemset mining technique to extract com-

mon patters [32] . This technique works on unordered sets of sim-

ple objects (e.g. , strings). Snapshots however, correspond to or-

dered sequences of events that may appear multiple times. We

thus map each event to an item based on the event properties.

Specifically,

• A HTTP item is represented by HTTP URLs, e.g. , http://domain.

com/path/file.ext .

• A DNS item combines the requested hostname, and either the

list of returned IP addresses or the query response error code,

e.g., DoesNotExists.com – NXDomain .

• TCP and UDP items are represented by the server IP address

and the server port being contacted, e.g., 10.20.30.40:443 .

For each snapshot, we create a transaction containing the set of

distinct items. We look for common itemsets, i.e. , sets of items com-

mon across multiple transactions. A support value is computed for

each itemset and indicates the fraction of transactions containing
he specific itemset. For a given support value, the itemset present-

ng the highest number of items is said to be closed . The closed at-

ribute implies that there is no other itemset made by more items

ith the same support. An itemset is “frequent” if its support is

reater than or equal to MinSup .

Itemsets with a number of items smaller than MinLen could be

iscarded. By setting MinLen = 1, frequent itemsets are equivalent

o simple frequent items. For MinLen = 2, at least pairs of items are

onsidered. For instance, consider acme.org/index.html and acme.

rg/logo.png that appear in 70% and 45% of snapshots, respectively.

he itemset (acme.org/index.html , acme.org/logo.png) may appear

rom 15% to 45% of snapshots.

Looking for all itemsets is a #P-hard problem [33] , but well-

nown algorithms efficiently compute frequent closed itemsets.

mong those, we rely on the Carpenter algorithm [34] , which is

pecifically designed for datasets made of few transactions (i.e. ,

napshots) that have a huge number of items (i.e. , events). A

apReduce implementation is available [35] .

MAGMA looks for frequent closed itemsets that, for simplicity,

e call patterns . Patterns are extracted by findCommonPatterns ()

 Algorithm 1 line:2), that receives the seed (s), the set of snapshots

 S) and the layer (layer) to process. It returns the pattern (P). The

attern extraction process is guided by the definition of the value

f MinSup : all events that do not appear with frequency at least

inSup are discarded. We set MinSup = 1/2, i.e. , for each host,

e discard all events not appearing in at least half of the snap-

hots. Sensitivity analysis in detailed in Section 8 .

.3. Host connectivity graph

As previously discussed, we individually process each layer to

reate separate graphs. The graphLayer () (Algorithm 1 line:1) ex-

racts patterns for a specific layer and maps them into a graph.

his mapping exploits a subset of the events properties, as follows:

• The HTTP layer has two types of nodes: hostnames and object

paths. An edge connects the hostname and the object path to

compose a URL.

• The DNS layer has three types of nodes: server hostnames,

server IP addresses, and DNS error codes. An edge connects

the hostname to either the IP addresses returned by a DNS re-

sponse, or to an error code.

• The TCP and UDP layers have two types of nodes: server IP ad-

dresses and server ports. An edge connects the two to represent

a TCP or UDP connection.

Different graph layers are combined in a single Host-CG using

ostConnectivityGraph () (Algorithm 1 line:4). The function starts by

xtracting the snapshots (S) related to the seed. The shapshots are

hen processed to extract the graph layers (g
HT T P

, g
DNS

, g
T CP

, g
UDP

)

hrough calls to graphLayer (). The separate graph layers are finally

ntegrated to form the Host-CG using the collectLayers () function,

hich looks for common nodes across the layers and links them

s represented in Fig. 9 . Notice that each graph layers contains the

ost (h) IP address by construction.

.4. Seed connectivity graph

To provide the global view of the common behavior gained

y observing multiple hosts, we combine all Host-CGs. This op-

ration is performed by the seedConnectivityGraph () (Algorithm

 line:11) function. For each host (h) among the subset presenting

he seed (H), the function creates the Host-CG calling hostConnec-

ivityGraph (). All the output graph are collected into the set G hosts .

The graphs are finally merged using fuseGraphs (). This operation

an consider different strategies. For instance, applying a strict in-

ersection would retain only nodes appearing in all Host-CGs. In

http://domain.com/path/file.ext
http://acme.org/index.html
http://acme.org/logo.png
http://acme.org/index.html
http://acme.org/logo.png

E. Bocchi et al. / Computer Networks 109 (2016) 142–156 149

Fig. 9. Graph layers nodes and multi-layer connections.

Fig. 10. Number of snapshots per malicious events. Only those with frequency

higher than k = 3 are processed by MAGMA.

t

i

l

a

C

c

6

M

i

r

o

t

c

p

n

l

t

t

a

t

t

c

t

3

l

9

Table 3

Eligible seeds with minSnapshots = 3.

Unique seeds Threat-IDs

All Elig. (%) All Elig. (%)

Benign 6111k 509,700 (8.3) – –

Malicious 1783 236 (13.2) 151 60 (39.7)

r

c

s

b

m

e

i

o

r

c

s

6

M

C

m

c

s

e

t

c

i

R

o

m

F

h

t

I

h

r

n

f

o

b

t

t

F

c

m

c

s

v

r

n

s

t

4 VirusTotal is a free service that scans submitted URLs to detect malicious URLs.

VirusTotal is not a defense tool per se, but it leverages threat definitions of more

than 65 commercially available antiviruses and IDS suites.
he worst case, this results in a Seed-CG containing only the orig-

nal seed. More complex strategies can instead compute node and

ink frequency or popularity among hosts, and discard those below

 given threshold of MinPopularity .

In the following, we consider the strict intersection across Host-

Gs as the default choice, i.e. , MinPopularity = 1. A detailed dis-

ussion about the impact of this choice is deferred to Section 8 .

. CG characterization

We next evaluate the benefits and properties of CGs created by

AGMA. First, we identify the amount of events eligible of becom-

ng seeds. Recall that MAGMA’s CG construction requires a recur-

ence of seed events over time and user population. The presence

f recurrent events matches the basic properties of malicious ac-

ivities, such as periodic reporting to the Command and Control

enter, or recurrent attempts to identify new victims. We also ex-

ect that malware creators would try to disguise such repetitive-

ess as much as possible. In our data, indeed, we found 820 ma-

icious hosts that had only one flagged event. If analyzed in isola-

ion (on per host basis), these events would evade MAGMA’s de-

ection by not having any recurrence. Yet, by looking at correlation

mong different hosts, MAGMA is able to find commonalities be-

ween these events and tie them to a common malicious activity.

Fig. 10 reports the number of snapshots that can be associated

o each unique malicious event. By considering 1783 unique mali-

ious events, we found that 236 events can be uniquely associated

o at least three independent snapshots. Setting minSnapshots =
, these events become fully characterizable by MAGMA. In fact,

ooking at the absolute numbers, MAGMA can provide insights in

5% of malicious snapshots in our dataset (40k out of 42k flagged
ecords, cfr. Table 1). We also emphasize the diversity of MAGMA’s

haracterization capabilities, noting that the events in scope corre-

pond to 60 different types of threats.

In summary, Table 3 details the amount of events eligi-

le to be seeds for both benign and malicious events when

inSnapshots = 3. We observe that only 509,700 (8.3%) benign

vents are repetitive enough to be considered by our system. This

s largely expected: benign traffic is mostly related to activities

f human users, and would not access identical objects as recur-

ently as malware. To test our system, we next use all 236 mali-

ious seeds and combine them with 664 randomly selected benign

eeds.

.1. Examples of CGs

In Fig. 11 , we show and example of the corresponding CGs that

AGMA produces. Fig. 11 (a) is an effective input element to the

G creation. It represents all the events present in a single 30

inute snapshot around the malicious seed http://jockesnotliked.

om/mybach.php . Obviously, this graph is very difficult to interpret

ince the malicious activity is mixed with ordinary user-generated

vents due to web surfing.

Fig. 11 (b) depicts the final Seed-CG generated by MAGMA af-

er the filtering and enrichment process. Note the original mali-

ious seed on the leftmost part of the graph. The final picture

s much clearer, identifying three suspicious clients (red markers).

ed edges highlight the events that are malicious according to our

racle. The richness of MAGMA’s indications stems from the aug-

ented context that we provide about the activity of these clients.

irst, the clients access three URLs (blue hexagons) hosted by three

ostnames (orange circles) – all of which now become an indica-

ion of a suspicious infrastructure. Next, two servers use the same

P address (gray diamonds) suggesting a potential obfuscation by

ostname flipping. The third host is distributed over several mir-

ors whose IP addresses belong to very different subnets, a hint of

on-structured infrastructure or zombies that were previously in-

ected. Finally, the rightmost part of the graph shows another layer

f information, indicating multiple failures of DNS queries (purple

oxes). This reaffirms our suspiciousness.

Apart from providing more context for the malicious activi-

ies, MAGMA also discovers new malicious objects and improves

he flagging consistency of our oracle. For example, referring to

ig. 11 (b), MAGMA consistently includes the object bluberrymo.

om/volvo.php in the malicious graph, while the IDS occasionally

issed it. Since we set MinPopularity = 1, all the events are

ommon to the three hosts, strengthening the correlation with the

eed and providing to the security analysis a richer context to in-

estigate on the incident. MAGMA also discovered a new object

ivergrape.com/world.php for which we confirmed its malicious-

ess across several other security tools such as VirusTotal [36] . 4

As second example of representative CG related to a malicious

eeds, Fig. 11 (c) details the results for ∗/logo.png , which is linked

o the Cycbot botnet. Cycbot is a backdoor trojan that allows cyber-

http://jockesnotliked.com/mybach.php
http://bluberrymo.com/volvo.php
http://rivergrape.com/world.php
http://*/logo.png

150 E. Bocchi et al. / Computer Networks 109 (2016) 142–156

Fig. 11. Examples of network connectivity Graphs.

m

u

I

i

o

t

e

t

a

b

fl

c

i

n

(

F

s

t

I

i

d

f

a

u

t

t

6

f

-

c

a

m

l

m

p

m

p

S

t
criminals to access infected computers remotely. This causes vic-

tims’ hosts to be exploited by malicious adversaries for large-scale

attacks, and to potential leakage of personal information. The CG

in Fig. 11 (c) offers interesting insights. For instance, more than 80

hostnames serve the malicious file logo.png (cloud of orange circles

in bottom left part of the graph). All those hostnames have random

strings that are made of both characters and numbers, and are

hard to code with regular expressions. This technique, known as

fast-flux , allows attackers to hide malicious infrastructures by gen-

erating random hostnames. Those are registered to the DNS and

lately removed with a high frequency. This makes the detection

harder, circumvents blacklisting, and guarantees a longer lifetime

to the infrastructure. Considering only second-level domains, they

present appealing names acting as a lure for potential victims, e.g. ,

faststorageonline.com , phonegamescatalog.com , wwwmp3archives.

com , etc. The entire set of domain names is hosted on 5 IP ad-

dresses. Those addresses are not organized in a structured CDN

(e.g. , they do not belong to the same subnet), suggesting for the

usage of infected servers acting as C&C nodes.

Moving to the right part of Fig. 11 (c), we observe some benign

objects. Those are indeed perfectly legitimate services, and thus

any IDS would not block them. However, those are contacted as

part of the malicious activity of the infected hosts. First, look at

the bottom-right part of the CG and observe how the malware is

checking victim’s Internet connectivity by visiting the www.google.

com homepage. This is a first test to gather connectivity properties

of the victim. Look now at the top right URLs. Contacted websites

host services aimed at the discovery of the public IP address of the

host, and the malware is abusing of these legitimate services for its

goals. Such behavior is coherent considering the intent of the mal-

ware we are facing. Being a backdoor trojan, the infected clients

form a botnet. They have to be reachable by the cyber-criminals

to control them. Eventual reachability issues, e.g. , NATs or firewalls,

might preclude the access to the host. Thus the malware tests con-

nectivity abusing of the above mentioned services.

For comparison, graphs related to benign seeds (not reported

here due to lack of space) look radically different: they typically

show legitimate CDNs (many IP addresses belong to only three

subnets), and legitimate websites (many objects hosted on the

same domain), no failed DNS events, etc.

6.2. Overall analysis of the CGs

We now offer a thorough analysis of URLs MAGMA identified as

belonging to Connectivity Graphs. In particular, for each of the 236
alicious seeds, we extract the corresponding CG. Overall, 5213

nique items appear, out of which 2393 are HTTP requests that the

DS oracle does not flag. For each of these requests, we investigate

f they are malicious or benign. For this purpose we use again the

nline service VirusTotal. In addition, we also double check each of

hem using Snort [37] . Results show that 1580 (66%) of the discov-

red items are labeled as malicious by either VirusTotal or Snort,

hus confirming the items in the CGs generated by MAGMA form

 better and more complete picture than the one originally offered

y the oracle.

CGs also include 1114 benign objects that no IDS or antivirus

ags. While these may seem false positives, it is often not the

ase. For instance, we have seen perfectly legitimate URLs being

ncluded in a malicious graph. We have already verified that be-

ign URLs are indeed part of malicious activities that run checks

 e.g. , the www.google.com or whatismyip.org for the Cycbot case,

ig. 11 (c)). Furthermore, infected hosts often contact legitimate

ervers to run DDoS attacks, or to generate fake clicks on adver-

isements, or in general to spread the malware and run attacks.

DSes cannot flag these events as malicious, since the correspond-

ng services are not malicous. In contrast, MAGMA is capable of

iscovering such interactions between malicious and legitimate in-

rastructures, and to expose them to the security analyst.

In summary, GCs offer expressive information to characterize

nd understand activities related to malicious events. While this is

seful for the analyst to understand an accident, the information

hey provide can be used to train classifiers and to extract signa-

ures to spot new malicious activities.

.3. Impact of pattern filtering

Before training the classifier, we first study the volume of in-

ormation that Seed-CG creation process extracts from single seeds

 malicious or benign. We later use some of these indications to

reate features that distinguish maliciousness. Table 4 shows the

verage number of nodes included in the final CGs for benign and

alicious seeds, and for each node type.

Three sets of parameters are considered. c1, a very se-

ective type, sets filtering parameters to minSup = 1 and

inPopularity = 1 , resulting in the selection of objects that ap-

ear in all snapshots and for all hosts. c3, with minSup = 0 and

inPopularity = 0 , instead merges and fuses all patterns inde-

endently of their support and popularity. Finally c2, with min-

up = 0.5 and minPopularity = 1 , is the default parameter set-

ing. It selects all events appearing in at least half of the snapshots

http://faststorageonline.com
http://phonegamescatalog.com
http://wwwmp3archives.com
http://www.google.com
http://www.google.com
http://whatismyip.org

E. Bocchi et al. / Computer Networks 109 (2016) 142–156 151

Fig. 12. Feature distributions for malicious and benign CGs. Due to the variety of patterns, the usage of simple heuristics is not suitable to separate benign and malicious

CGs. This suggests for the need of a classifier able to combine different planes of information.

Table 4

Average number of nodes of different types among Seed-CG for malicious

and benign seeds.

Malicious Benign

Type c1 c2 c3 c1 c2 c3

Object-path 6 .6 14 .9 2351 .4 18 .5 56 .3 3320 .1

Hostname 7 .0 16 .8 691 .5 8 .1 28 .9 781 .2

Server IP 19 .9 95 .9 3423 .0 39 .0 161 .2 6260 .2

Dst-port TCP 0 .2 0 .6 79 .9 0 .8 4 .1 194 .2

Dst-port UDP 2 .0 27 .8 1335 .1 2 .8 42 .2 3129 .5

DNS error 0 .3 2 .4 40 .4 0 .2 0 .6 19 .4

Total 36 .0 158 .4 7921 .5 69 .4 293 .3 13704 .6

c1 = minSup = 1, minPopularity = 1 , c2 = minSup = 0.5, minPopularity

= 1 , c3 = minSup = 0, minPopularity = 0.

g

o

d

n

T

n

s

l

t

s

s

h

(

s

o

s

t

7

b

s

t

n

c

c

r

t

i

F

c

f

s

i

w

C

a

t

i

m

g

f

i

f

7

s

b

C

i

t

a
enerated by each host involved in the seed activity, and retains

nly those common to all hosts.

Results clearly show that MAGMA builds graphs with hun-

reds of nodes. Note that malicious Seed-CGs generally have fewer

odes, except for the nodes that represent DNS errors (last row of

able 4). For c2, the number of common object-paths found in be-

ign CG is approximately four times larger than in malicious CG,

uggesting that benign web pages are more complicated than ma-

icious HTTP patterns. Note also that the number of elements in

he graph grows very large for c3, where no item is discarded and

everal thousands of nodes are retained. This could undermine the

upervised classifier accuracy (see Section 8), and it definitively

urts the amount of information offered to the security analyst

see Fig. 11 (a) for instance). c2 offers a good trade-off between de-

criptiveness and richness of the final CG.

In summary, CGs are focused and descriptive characterization

f common activities. Benign and malicious graphs look different,

uggesting that a supervised classifier would be able to model

hem and distinguish between the two categories.

. MAGMA classifier and features

We now design a supervised classifier and train it using the la-

eled dataset of graphs obtained considering malicious and benign

eeds. We consider different decision tree classifiers:

(i) the original J48 (an open source implementation of the C4.5

decision tree).

(ii) Bagging coupled with J48.

(iii) Random Forest (RF).

Decision trees are known for being scalable and offering a in-

erpretative classification models [32] . In a decision tree, internal

odes represent tests on individual features, each branch is an out-

ome of the tests, and each leaf node represents a decision, i.e. , a

lass label. The paths from the root to a leaf represent classification
ules. Bagging is a process that improves stability and accuracy by

raining m decision trees on m independent samples of the train-

ng set. The m models are combined by voting at the end. Random

orest is an extension of the bagging process such that, at each

andidate branch in the learning process, a random subset of the

eatures are selected to avoid strong features from biasing the con-

truction of trees.

Since MAGMA aims at the classification of malicious patterns

n general and does not target specific class of malicious behaviors,

e define an extensive set of features and extract them from Seed-

Gs. Four different domains are covered:

(i) graph topology (e.g. , the number of distinct nodes for each

type, min/max/avg/std of in-degree and out-degree for each

node type, graph giant connection ratio, etc.);

(ii) HTTP (e.g. , the number of GET/POST events, min/max/avg/std

of the length of user-agent string, etc.);

(iii) URL syntax (e.g. , the number of hostname accessed directly

using the IP address, or starting with www , etc.); and

(iv) occurences (i.e. , min/max/avg/std of the number of events for

each node type). The choice of features is partly driven by

domain knowledge or has been previously used in the liter-

ature. Some features are instead generic, but could be useful

in making the distinction. In total, 111 features are extracted

from each CG, as detailed in Appendix A .

In the following, we consider the classifiers trained using (i)

ll; (ii) only HTTP; (iii) only Topology; and (iv) only Syntax fea-

ures. We do this in order to compare against the previous works

n which only HTTP or syntax has been used to target a specific

alware. For comparison, we consider the subset of features sug-

ested by the Minimum-redundancy-maximum-relevance (mRMR)

eature selection algorithm [38] (the selected features are reported

n bold in Appendix A). Note that mRMR selects features from all

our of our domains.

.1. Feature characterization

Table 4 hints that CGs obtained from malicious and benign

eeds contain a different amount of nodes and edges. Here, we

riefly illustrate the extent of feature differences extracted from

Gs. Fig. 12 compares the number of occurrences of three features

n individual CGs:

(i) number of distinct User-Agents;

(ii) number of object-paths; and

(iii) number of DNS failures. Two benign and two malicious

seeds are highlighted for comparison.

Consider first the number of distinct User-Agents. The in-

uition is that malware could abuse the semantic associ-

ted to the User-Agent information and generate a large

152 E. Bocchi et al. / Computer Networks 109 (2016) 142–156

A

Fig. 13. Comparison of MAGMA’s accuracy for different classifiers and set of

features.

Table 5

Confusion matrix for Random Forest and all features.

Predicted class

Malicious Benign

Malicious 218 18

Benign 21 643

8

s

F

c

O

w

a

T

b

g

W

f

d

a

g

T

w

a

r

fi

h

8

s

6

a

e

p

f

e

i

l

i

f

p

o
number of semi-random strings. This is what happens with

http://badi4net.no-ip.org/realtime.xmltmp (red square), which is a

malware that generates click-fraud and “impersonates” different

browsers. Surprisingly, benign applications also abuse the User-

gent field, e.g. , liveupdate.symantecliveupdate.com (blu triangle)

encodes the update versions in user agents, generating more than

200 different agents.

Looking at the number of HTTP objects, Fig. 12 (b) confirms the

intuition that benign patterns include more objects. Yet, there are

some malicious patterns that have a large number of objects, and

a lot of benign CG have few HTTP objects. This is the case of the

previously investigated seed in Fig. 12 (a) (black diamond and green

star). Finally, look at Fig. 12 (c), which represent the number of DNS

failures. Also in this case we expect a high number of failing DNS

requests to be a characteristic of malicious activity. But there are a

lot of benign CGs that exhibit a number of DNS failures very simi-

lar to benign patterns.

Two conclusions can be drawn from these examples. First, the

60 threats in the dataset that we use exhibit a wide range of pat-

terns. Second, there are no easy means to separate malicious and

benign CGs using some simple heuristic. A state-of-the-art classi-

fier is needed to combine different planes of information and make

the distinction.

8. Classification results

To assess the performance of MAGMA, we follow best practices

suggested by the machine learning community. We consider a la-

beled dataset, where ground truth labels are provided by the ora-

cle, i.e. , the IDS, and then we train and test performance using this

labeled dataset.

8.1. Cross-validation and performance metrics

We split the labeled dataset of N eligible seeds in two parts,

one for training the classifier, and the other for testing its perfor-

mance.

We employ several validation methodologies:

(i) 66% split;

(ii) k -fold cross-validation; and

(iii) leave-one-out cross-validation methodologies.

In the first methodology, we run a single experiment using 66%

of our dataset for training and the remaining 33% for testing. k -fold

cross validation generalizes this such that k equal size subsets are

randomly generated. Then, k experiments are run, where k − 1 sub-

sets are used for training, and the remaining 1 is used for testing.

The results are computed over all k runs. Finally, “leave-one-out”

is an exhaustive cross-validation methodology in which, for each

of the N elements in the labeled dataset, N − 1 are used for train-

ing, and 1 is used for testing. The results are then computed over N

independent experiments. Exhaustive cross-validation methods are

preferred since they learn and test on all possible ways to divide

the original sample into a training and a validation set. They are

considered to be the most accurate means of testing a classifier,

but they require a very large number of tests. For N ≈ 900, we

could afford the complexity of the leave-one-out in the following.

We measure the performance in terms of accuracy, i.e. , the frac-

tion of valid results over the number of tests. We also report the

confusion matrix which details the number of true positives and

false negatives for each class, i.e. , for malicious (benign) seeds, it

shows the number of events that were correctly classified as ma-

licious (benign), and the number of events that were erroneously

classified as benign (malicious).
.2. Classifier and feature impact

We start by evaluating MAGMA with the default parameters

etting, i.e. , � = 30 min, MinSup = 0.5, and MinPopularity = 1.

ig. 13 reports the classification accuracy for the three classifiers,

onsidering different sets of features (see Table A.6 in Appendix).

bserve how Random Forest consistently provides the best results,

ith J48 providing the worst. Accuracy is higher when all features

re used, with all subsets contributing to improve performance.

he two observations confirm the richness of information offered

y Seed-CGs, as well as the need to consider a wide range of

eneric features that do not focus on particular types of malware.

e also confirm this reasoning via mRMR checks, where only few

eatures are selected, but all of them are always from different

omains.

When all features are offered to the Random Forest classifier,

ccuracy reaches more than 95%. This is an excellent result in

eneral, which is confirmed by the confusion matrix reported in

able 5 . The rows of the matrix specify the ground truth class,

hile the columns indicate the predicted class. Cells on the di-

gonal represent the number of true positives, while cells outside

epresent the false positives (or false negatives). The results con-

rm that the recall and precision in pattern classification is very

igh for both classes.

.3. Parameter sensitivity

We now focus on the impact of parameters settings. Fig. 14

hows the impact of the choice of �, which we vary from 1 s to

0 min. It considers only the Random Forest, with MinSup = 0.5,

nd MinPopularity = 1. The experiments are repeated for differ-

nt feature combinations. Results show that � has a limited im-

act. The intuition is that typical activity related to an event lasts

ew seconds during which the application running at the host gen-

rates a burst of events. Only for very small values of � indeed it

s possible to appreciate a generic decrease of accuracy due to a

imited number of events that fall within the snapshots. Interest-

ngly, we observe that HTTP features tend to be more significant

or small values of �, while graph topology features gains of im-

ortance for larger values of �. The drop of accuracy for a HTTP

nly based classifier is due to noise infiltrating into the benign

http://badi4net.no-ip.org/realtime.xmltmp
http://liveupdate.symantecliveupdate.com

E. Bocchi et al. / Computer Networks 109 (2016) 142–156 153

Fig. 14. Classifier accuracy depending on the observation snapshot duration � with

Random Forest classifier and different feature combinations.

Fig. 15. Sensitivity analysis on MinSup and MinPopularity with Random Forest clas-

sifier, all and mRMR features, � = 30 min.

g

r

h

t

t

p

o

T

c

i

e

i

a

o

0

a

m

T

f

t

o

a

s

M

a

8

T

i

I

t

a

o

s

M

c

1

h

s

a

T

p

S

t

e

T

i

w

a

a

v

1

f

(

9

t

n

r

a

a

i

f

t

d

c

n

c

e

p

l

l

f

M

e

M

u

r

i

m

A

c

r

p

t

d

raphs when large snapshots are considered. At the same time, the

ich graphs are better characterized by topology features. Notice

ow the classifier trained considering all features is able to trade

he drop of HTTP feature information with the increase of informa-

ion offered by other features.

With � = 30 min, we change the MinSup , and MinPopularity

arameters. In Section 7 we already detailed how a different choice

f parameters induces on the filtering and enrichment process, crf.

able 4 . We now compare the impact on classification accuracy. Re-

all, that the number of snapshots and of hosts presenting a seed

s rather limited. As such, we can only coarsely choose the param-

ters. Fig. 15 reports results. We observe that also in this case the

mpact of parameter settings is not crucial. However, by applying

 too selective choice, e.g. , MinSup = 1, and MinPopularity = 1,

r a too permissive filter, e.g. , MinSup = 0, and MinPopularity =
, the accuracy tends to decrease. In the first case, too few events

re left in the common pattern extraction. In the second case, too

any events are instead accepted so that CGs appear to be noisy.

rading between minimum frequency in snapshot and minimum

requency among hosts provides a good trade-off.

Notice that the choice of MinSup , MinPopularity impacts also

he number of events that appear in the Seed-CG, which is then

ffered to the security analyst in case he/she likes to investigate

 decision returned by MAGMA. The more restrictive they are, the

maller the number of events. The choice of MinSup = 0.5, and

inPopularity = 1 results in a good balance between accuracy

nd richness of the graph, as depicted in Fig. 11 .

.4. Additional experiment

We now aim at assessing the usage of MAGMA in the wild.

o this extent, we run an experiment on a separate trace which

ncludes only traffic from 15 hosts monitored for one day. The
DS does not flag any of the events appearing in the traffic,

herefore these hosts should be considered as not infected by

ny malware. Overall, 43,0 0 0 distinct HTTP events are collected,

f which 1868 are seen at least 3 times, and thus are valid

eeds.

For each seed, we extract the CG, and run it through the

AGMA classifier that we previously trained. We let then MAGMA

lassify each of the CGs. It returns 1852 benign tests, and only

6 malicious tests. By considering the oracle labels, the former

ave to be considered as true negatives (i.e. , benign events clas-

ified as not malicious). The latter instead have to be considered

s false positives (i.e. , benign events misclassified as malicious).

his corresponds to 99.14% of accuracy, with a mere 0.86% of false

ositive.

We further investigate the 16 misclassified cases using again

nort and VirusTotal. Snort detects 10 malicious events out of

he 16 misclassified cases, while VirusTotal raises 4 warnings for

vents that were already flagged by Snort. Cross-checking Virus-

otal threat descriptions and Snort detection-rules documentation,

t appears that the detected events are related to Simbar Spy-

are , a redirecting toolbar affecting Internet Explorer, Sgrunt Di-

ler , a Trojan virus that limits the access to files and programs,

nd AskSearch Toolbar that is responsible for inflating clicks on ad-

ertisement to monetize traffic. In a nutshell, MAGMA identified

0 threats that the oracle ignored (but other tools have signatures

or). This reduces the false positive to only 6 cases over 1868 tests

0.3%).

. Conclusions

We presented MAGMA, a classifier for malicious network ac-

ivity identification. It leverages simple events collected from the

etwork vantage point, where both the spatial and temporal recur-

ences of events allow MAGMA to capture a detailed picture of the

ctivity involved in a malicious or benign activity using Big Data

pproaches. MAGMA models this by means of Network Connectiv-

ty Graphs, in which multiple graphs model the common events

ound by separately analyzing different protocols, and then fusing

hem in a single graph. A decision tree classifier is trained on a

ataset where malicious and benign graphs are labeled by an ora-

le, which exposed a very heterogeneous set of malicious and be-

ign activities. MAGMA thus results in a general purpose malware

lassifier, able to leverage common features that characterize sev-

ral different families and variations of malware. We presented a

erformance evaluation using a real traffic trace obtained from a

arge ISP. MAGMA accuracy is over 95%, and its performance shows

ittle sensitivity to parameter settings.

MAGMA model is based on the extraction of recurrent events

rom the traffic surrounding a given seed. We acknowledge that

AGMA applicability is limited to only those threat families that

xhibit recurrent patterns over time and over multiple hosts.

AGMA is intended to facilitate the identification of previously

nknown malware and to support the forensic activity of a secu-

ity analyst. We have shown that the MAGMA Network Connectiv-

ty Graph provides a rich and interpretable characterization of the

alicious activity.

ppendix A. Classification features

Table A.6 list all features extracted from Seed-CGs divided by

ategories. Most of them are self-explanatory. The CDN hostname

atio takes into account the presence of CDN in nowadays web-

ages. We assume that if a hostname is linked to more than 3 dis-

inct IP addresses, the content it refers to is hosted on a CDN. We

efine such hostname a CDN hostname .

154 E. Bocchi et al. / Computer Networks 109 (2016) 142–156

Table A6

Full list of features extracted from Seed-CGs. Underlined features are selected by

mRMR.

Topology

num. of total number of nodes

num. of total number of edges

num. of failed DNS queries events

num. of object-path nodes

num. of hostname nodes

num. of serverIP nodes

num. of UDP-ports nodes

num. of TCP-ports nodes

num. of DNS error types

num. of nodes with single edge

min/max/avg/std in-degree object-path nodes

min/max/avg/std in-degree hostname nodes

min/max/avg/std in-degree serverIP nodes

min/max/ avg /std out-degree object-path nodes

min/max/avg/std out-degree hostname nodes

min/max/avg/std out-degree serverIP nodes

ratio giant connection ratio

ratio ratio num. of CDN hostnames over total hostnames (CDN

hostname ratio)

HTTP

num. of requests per each method [GET, POST, others]

num. of replies per each response status [20x, 30x, 40x , 50x]

num. of replies per each content-type [text, image, application,

binary, multipart, multimedia]

num. of distinct user-agent strings

min/max/avg/std user-agent strings length

min/max/ avg /std requests per distinct user-agent string

min/max/avg/std user-agent strings blank chars

Syntax

num. of hostname nodes being IP addresses

num. of hostname starting with www
min/max/avg/std hostname string length

min/max/ avg /std hostname digits and alphabetic chars ratio

min/max/avg/std for hostname up to 2nd LD, num. of distinct 3rd LD

Occurrences

min/ max /avg/std object-path nodes events

min /max/avg/std hostname nodes events

min/ max /avg/std DNS fail nodes events

min/ max /avg/std DNS succeed nodes events

min/max/avg/std TCP port nodes events

min/max/avg/std UDP port nodes events

[

[

[

[

[

[

[

References

[1] Kaspersky lab: 2013, http://media.kaspersky.com/en/business-security/

Kaspersky _ Global _ IT _ Security _ Risks _ Survey _ report _ Eng _ final.pdf , 2013. Global
Corporate IT Security Risks,

[2] Symantec, 2014 Internet Security Threat Report, http://www.symantec.com/

security _ response/publications/threatreport.jsp , 2014.
[3] iMPERVA, Assessing the Effectiveness of Antivirus Solutions,” http://www.

imperva.com/docs/HII _ Assessing _ the _ Effectiveness _ of _ Antivirus _ Solutions.pdf ,
2012.

[4] M.A. Rajab, J. Zarfoss, F. Monrose, A. Terzis, A multifaceted approach to un-
derstanding the botnet phenomenon, Proceedings of the 6th ACM SIGCOMM

Conference on Internet Measurement, IMC ’06, ACM, 2006, pp. 41–52 . [Online].

Available: http://doi.acm.org/10.1145/1177080.1177086 .
[5] L. Zhang , Y. Guan , Detecting click fraud in pay-per-click streams of online ad-

vertising networks, in: Proceedings of the 28th International Conference on
Distributed Computing Systems, ICDCS ’08, 2008, pp. 77–84 .

[6] N. Kshetri , The economics of click fraud, in: Security & Privacy, vol. 8, IEEE,
2010, pp. 45–53 .

[7] C. Grier, et al., Manufacturing compromise: the emergence of exploit-as-a-

service, Proceedings of the 2012 ACM Conference on Computer and Commu-
nications Security, ser. CCS ’12, ACM, New York, NY, USA, 2012, pp. 821–832 .

[Online]. Available: http://doi.acm.org/10.1145/2382196.2382283 .
[8] M. Cova , C. Kruegel , G. Vigna , Detection and analysis of drive-by-download at-

tacks and malicious javascript code, in: Proceedings of WWW, 2010 .
[9] E. Bocchi , L. Grimaudo , M. Mellia , E. Baralis , S. Saha , S. Miskovic , G. Mode-

lo-Howard , S.-J. Lee , Network connectivity graph for malicious traffic dissec-
tion, in: Proceedings of the 2015 24th International Conference on Computer

Communications and Networks (ICCCN), 2015 .
[10] N. Jiang , J. Cao , Y. Jin , L. Li , Z.-L. Zhang , Identifying suspicious activities through
DNS failure graph analysis, in: Proceedings of the 2010 18th IEEE International

Conference on Network Protocols (ICNP), IEEE, 2010, pp. 144–153 .
[11] Y. Nadji , M. Antonakakis , R. Perdisci , W. Lee , Connected colors: unveiling the

structure of criminal networks, Research in Attacks, Intrusions, and Defenses,
Springer, 2013, pp. 390–410 .

[12] P.K. Manadhata , S. Yadav , P. Rao , W. Horne , Detecting malicious domains via
graph inference, in: Proceedings of European Symposium on Research in Com-

puter Security ESORICS 2014, Springer, 2014, pp. 1–18 .

[13] L. Liu , S. Saha , R. Torres , J. Xu , P.-N. Tan , A. Nucci , M. Mellia , Detecting mali-
cious clients in ISP networks using HTTP connectivity graph and flow informa-

tion, Proceedings of the 2014 IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining (ASONAM), IEEE, 2014, pp. 150–157 .

[14] L. Invernizzi , S. Miskovic , R. Torres , S. Saha , S.-J. Lee , C. Kruegel , G. Vigna ,
Nazca: detecting malware distribution in large-scale networks, in: Proceedings

of the ISOC Network and Distributed System Security Symposium (NDSS ’14),

2014 .
[15] A . Le , A . Markopoulou , M. Faloutsos , Phishdef: URL names say it all, in: Pro-

ceedings of the 30th IEEE Int’l Conference on Computer Communications, 2011,
pp. 191–195 .

[16] A. Oza, K. Ross, R.M. Low, M. Stamp, Http attack detection using n-gram
analysis, Comput. Secur. 45 (2014) 242–254 . [Online]. Available: http://www.

sciencedirect.com/science/article/pii/S01674048140 0 0959 .

[17] M. Antonakakis , R. Perdisci , Y. Nadji , N.V. II , S. Abu-Nimeh , W. Lee , D. Dagon ,
From throw-away traffic to bots: detecting the rise of DGA-based malware, in:

Proceedings of USENIX Security Symposium, 2012, pp. 491–506 .
[18] G. Gu , R. Perdisci , J. Zhang , W. Lee , Botminer: clustering analysis of network

traffic for protocol- and structure-independent botnet detection, in: Proceed-
ings of the 17th USENIX Conference on Security Symposium, SS’08, 2008,

pp. 139–154 .

[19] G. Gu , P. Porras , V. Yegneswaran , M. Fong , W. Lee , Bothunter: detecting mal-
ware infection through IDS-driven dialog correlation, in: Proceedings of the

16th USENIX Security Symposium, 2007, pp. 12:1–12:16 .
[20] C.J. Dietrich , C. Rossow , N. Pohlmann , Cocospot: clustering and recognizing

botnet command and control channels using traffic analysis, Comput. Netw.
57 (2) (2013) 475–486 .

[21] J. François , S. Wang , R. State , T. Engel , Bottrack: tracking botnets using netflow

and pagerank, Networking 2011, Springer, 2011, pp. 1–14 .
[22] H. Hang , X. Wei , M. Faloutsos , T. Eliassi-Rad , Entelecheia: detecting P2P botnets

in their waiting stage, in: Proceedings of IFIP Networking Conference, 2013,
pp. 1–9 .

23] J. Ma , L.K. Saul , S. Savage , G.M. Voelker , Beyond blacklists: learning to detect
malicious web sites from suspicious URLs, in: Proceedings of the ACM SIGKDD,

2009, pp. 1245–1254 .

[24] J. Zhang , C. Seifert , J.W. Stokes , W. Lee , Arrow: generating signatures to detect
drive-by downloads, in: Proceedings of the 20th International Conference on

World Wide Web, 2011, pp. 187–196 .
[25] G. Gu , J. Zhang , W. Lee , Botsniffer: detecting botnet command and control

channels in network traffic, in: Proceedings of the Network and Distributed
System Security Symposium, 2008 .

26] R. Perdisci , I. Corona , D. Dagon , W. Lee , Detecting malicious flux service net-
works through passive analysis of recursive DNS traces, in: Proceedings of the

Computer Security Applications Conference, ACSAC ’09, 2009, pp. 311–320 .

[27] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee,
Hypertext Transfer Protocol–http/1.1, 1999, RFC 2616, 2006.

28] P. Mockapetris, RFC 1034: Domain Names: Concepts and Facilities (November
1987), Status: Standard, 2003.

29] A. Finamore , S. Saha , G. Modelo-Howard , S.-J. Lee , E. Bocchi , L. Grimaudo ,
M. Mellia , E. Baralis , Macroscopic view of malware in home networks, in: Pro-

ceedings of the 2015 12th Annual Consumer Communications and Networking

Conference (CCNC), IEEE, 2015, pp. 262–266 .
[30] P. Porras , Inside risks: Reflections on conficker, Commun. ACM 52 (10) (2009)

23–24 .
[31] L. Seltzer, Conficker: Still Spamming After All These Years, http://www.zdnet.

com/conficker- still- spamming- after- all- these- years- 70 0 0 031206/ , 2014.
32] P.-N. Tan , M. Steinbach , V. Kumar , Introduction to Data Mining, second ed.,

Addison-Wesley, 2013 .

[33] D. Gunopulos , R. Khardon , H. Mannila , S. Saluja , H. Toivonen , R.S. Sharma , Dis-
covering all most specific sentences, ACM Trans. Database Syst. 28 (2) (2003)

140–174 .
[34] F. Pan , G. Cong , A.K. Tung , J. Yang , M.J. Zaki , Carpenter: finding closed pat-

terns in long biological datasets, Proceedings of the Ninth ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining, ACM, 2003,

pp. 637–642 .

[35] D. Apiletti , E. Baralis , T. Cerquitelli , S. Chiusano , L. Grimaudo , Searum: a
cloud-based service for association rule mining, in: Proceedings of the 2013

12th IEEE International Conference on Trust, Security and Privacy in Comput-
ing and Communications (TrustCom), 2013, pp. 1283–1290 .

36] VirusTotal, http://www.virustotal.com/ .
[37] Snort, http://www.snort.org/ .

38] H. Peng , F. Long , C. Ding , Feature selection based on mutual information crite-

ria of max-dependency, max-relevance, and min-redundancy, IEEE Trans. Pat-
tern Anal. Mach. Intell. 27 (8) (2005) 1226–1238 .

http://media.kaspersky.com/en/business-security/Kaspersky_Global_IT_Security_Risks_Survey_report_Eng_final.pdf
http://www.symantec.com/security_response/publications/threatreport.jsp
http://www.imperva.com/docs/HII_Assessing_the_Effectiveness_of_Antivirus_Solutions.pdf
http://doi.acm.org/10.1145/1177080.1177086
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0003
http://doi.acm.org/10.1145/2382196.2382283
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0012
http://www.sciencedirect.com/science/article/pii/S0167404814000959
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0019
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0019
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0019
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0019
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0019
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0022
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0022
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0022
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0022
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0025
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0025
http://www.zdnet.com/conficker-still-spamming-after-all-these-years-7000031206/
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0026
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0026
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0026
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0026
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0028
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0028
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0028
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0028
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0028
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0028
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0029
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0029
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0029
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0029
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0029
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0029
http://www.virustotal.com/
http://www.snort.org/
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30094-9/sbref0030

E. Bocchi et al. / Computer Networks 109 (2016) 142–156 155

ications Engineering from Politecnico di Torino, Italy, in 2013. In 2014, he joined the

no as Ph.D. Candidate. During Summer 2014, he was a research intern at Narus Inc, now

sification. His research interests cover several aspects of network traffic characterization

 storage services benchmarking, and security on the Internet.

e in Information and System Engineering from the Computer Engineering Department

ely. From 2011 to 2014 he collaborated with Narus Inc working on traffic classification
h interests cover the areas of Internet traffic classification, recommendation system, social

ith Ph.D. in Electronic and Telecommunication Engineering in 2001, where he holds a

250 papers published in international journals and presented in leading conferences. He
ences including ACM SIGCOMM, ACM CoNEXT, ACM IMC, IEEE Infocom, IEEE Globecom

EE Transactions on Networking. He is the coordinator of the mPlane Integrated Project,
ne for Future Network and Application Management.

nd her Ph.D. in Computer and Systems Engineering from Politecnico di Torino, where she
puter Engineering Department since 2005. Her current research interests are in the field

r activity focuses on algorithms for diverse data mining tasks in a Big Data environment,

find their application. She has published over 100 papers in international peer-reviewed

from University of Tulsa, Oklahoma. He is Principal Data Scientist at Cyphort Inc, Santa
Toyota ITC. His research interests include machine learning, data mining, artificial intelli-

l and Computer Engineering from Rice University in 2012. Prior to that he earned his

a Principal Data Scientist at the CTO office of Symantec Inc. His published research has

ivacy, to wireless communications, to traffic engineering and congestion control, as well
Enrico Bocchi received his M.Sc. Degree in Telecommun

Telecommunication Networks Group of Politecnico di Tori
part of Symantec, working on malware detection and clas

and monitoring, including performance assessment, cloud

Luigi Grimaudo received both his M.Sc. and Ph.D. Degre

of Politecnico di Torino, Italy, in 2010 and 2013, respectiv
problems and on-line social networks analysis. His researc

network analysis and big data.

Marco Mellia graduated from the Politecnico di Torino w

position as Associate Professor. He has co-authored over
participated to the program committees of several confer

and IEEE ICC. He is Area Editor of ACM CCR, and ACM/IE
which focuses on building an Intelligent Measurement Pla

Elena Baralis received her M.Sc. in Electrical Engineering a
holds a position as full professor in the Control and Com

of database systems and data mining. More specifically, he

and on different domains where data mining techniques
journals and conferences.

Sabyasachi Saha received his Ph.D. in Computer Science
Clara, CA. Previously, he was at Symantec, Narus Inc. and

gence and network security.

Stanislav Miskovic received his Ph.D. degree in Electrica

degrees from the University of Belgrade. He is currently

spanned a wide spectrum of topics, from security and pr
as file systems and disk caching.

156 E. Bocchi et al. / Computer Networks 109 (2016) 142–156

gineering from Purdue University and his M.Sc. in Information Security from Royal Hol-

 at Symantec, responsible for developing applications of machine learning and predictive
antec, he was Senior Member of Technical Staff at Narus for two years, and Information

 years. His current research interests include machine learning techniques for intrusion

senix, and a Senior Member of IEEE.

 University of California, Los Angeles (UCLA) in 20 0 0. He spent 15 years in the industry;
g the faculty of the School of Computing at the Korea Advanced Institute of Science and

cal papers in peer-reviewed journals and conferences. His papers are well-cited, with his
ording to Google Scholar. In addition, he has 34 granted US patents. He is the winner of

ation Award in 2010. He is an IEEE Fellow and an ACM Distinguished Scientist.
Gaspar Modelo-Howard earned his Ph.D. in Computer En

loway, University of London. He is Principal Data Scientist
analytics to secure computer systems. Prior to joining Sym

Security Officer at the Panama Canal Authority for seven

response and web security. He is a Member of ACM and U

Sung-Ju Lee received his Ph.D. in Computer Science from
at Hewlett-Packard Company and Narus Inc, before joinin

Technology (KAIST). Dr. Lee has published over 100 techni
publications receiving a total of over 10,0 0 0 citations acc

IEEE ICDCS 2015 Best Paper Award and the HP CEO Innov

	MAGMA network behavior classifier for malware traffic
	1 Introduction
	2 Related work
	2.1 Graph-based malware detection
	2.2 Multi-protocol traffic correlation
	2.3 Infection phase identification

	3 Scenario and dataset
	3.1 Scenario
	3.2 Available dataset
	3.3 Traffic volume of malicious activities
	3.4 Threat diversity
	3.5 Events popularity and whitelisting

	4 Methodology overview
	4.1 Single host connectivity graph
	4.2 Seed connectivity graph
	4.3 MAGMA supervised classifier

	5 Building the connectivity graph
	5.1 Snapshots extraction
	5.2 Patterns mining
	5.3 Host connectivity graph
	5.4 Seed connectivity graph

	6 CG characterization
	6.1 Examples of CGs
	6.2 Overall analysis of the CGs
	6.3 Impact of pattern filtering

	7 MAGMA classifier and features
	7.1 Feature characterization

	8 Classification results
	8.1 Cross-validation and performance metrics
	8.2 Classifier and feature impact
	8.3 Parameter sensitivity
	8.4 Additional experiment

	9 Conclusions
	Appendix A Classification features
	 References

