
IEEE Communications Magazine • August 201744 0163-6804/17/$25.00 © 2017 IEEE

AbstrAct

As the proliferation of mobile devices has ignit-
ed cloud computing, it is expected that increasing
development and deployment of IoT services will
expedite the era of fog computing. Fog comput-
ing brings computing, storage, and networking
even closer to end users and devices for services
with better QoS. We introduce FogOS, a fog
computing architecture for IoT services. We take
the perspective of designing an operating sys-
tem, practicing the architectural lessons from the
long history of operating systems. We focus on
addressing the challenges raised by the diversity
and heterogeneity of IoT services and edge devic-
es that are owned by individuals and different
owners, and presenting how FogOS is designed
to effectively and efficiently provide and manage
such IoT services. We provide a city-scale surveil-
lance use case to demonstrate FogOS in action.

IntroductIon
The Internet of Things (IoT) is no longer a vision,
but a reality. We are already witnessing and expe-
riencing many interesting IoT applications. Gart-
ner predicts that about 21 billion “things” across
industry sections will be connected to the net-
work by 2020 [1]. These devices generate and
transmit data that have diverse requirements in
terms of not only volume, but also variety and
velocity.

With the ever increasing number of devices
and data generated from the edge, the classical
cloud-based computing paradigm is faced with
challenges, as IDC estimates that the amount of
data analyzed on the IoT that are physically at
or near the devices is approaching 40 percent
[2]. To address these networking and computing
trends, fog computing brings the cloud closer to
the “things” that produce and act on IoT data as
depicted in Fig. 1. It is an architectural paradigm
that is more appropriate for the fast-growing IoT
as it brings computing, storage, and networking
closer and faster to the edge devices. We pro-
pose Fog Operating System (FogOS), a fog com-
puting architecture for IoT services. We view the
whole IoT ecosystem as a computer, and take
the perspective of an operating system for our
FogOS architecture. The role of traditional oper-
ating systems in computers is managing computer
hardware and software resources and providing
common services for computer programs. FogOS,
on the other hand, regards IoT applications (that

correspond to programs in OS) as X-as-a-service
(X-aaS, e.g., lighting-as-a-service, temperature-sens-
ing-as-a-service) for which common interfaces
are provided. The set of resources managed by
FogOS include all fog and cloud (e.g., nano/edge
cloud) and edge devices (e.g., sensors/actuators).
They can also be connected to any level of cloud
(e.g., central/regional/metro) when FogOS has an
appropriate peering contract.

We particularly consider the case where edge
devices are possibly owned by different individ-
uals and providers. Many current IoT devices
are deployed by infrastructure providers, but we
argue that many more sensors/actuators will be
increasingly individually owned and shared in the
future when they are appropriately incentivized.
In that scenario, there is a complex economic
interplay between different players (e.g., IoT users,
IoT application providers, infrastructure provid-
ers, and edge device owners). Hence, FogOS can
function as a distributed operating system that
manages the cloud and the resources at the edge,
and a platform of incentivizing and connecting
individually owned edge devices.1

An OS for network resource management,
such as Open Network Operating System
(ONOS) [3], is a seemingly similar concept to
FogOS. For example, ONOS has been proposed
as a control platform of software defined net-
working (SDN) for carrier and cloud provider
networks, with scalability, availability, and perfor-
mance in mind. However, there are two main dif-
ferences between FogOS and ONOS.

First, ONOS operators directly own and con-
trol all network devices that are fixed with rela-
tively stable operating conditions, while FogOS
needs to control significantly diverse edge devices
that are highly dynamic and owned by different
parties. Thus, FogOS needs to play the role of a
broker of pooling/slicing edge devices’ resourc-
es and coordinating all the players with self-inter-
est. Second, ONOS participates in standardizing
device interfacing (e.g., OpenFlow [4]). However,
in IoT, diversity in devices, services, and protocols
is inevitable, resulting in a more challenging envi-
ronment. A cloud computing OS, such as Open-
Stack [5], also aims to orchestrate the large-scale
computing resources in a shared infrastructure
built on top of standard and commodity hardware
under the same administrative domain. Hence,
FogOS has similar major differences compared to
the traditional cloud computing OS.

There are three groups actively designing

A Fog Operating System for User-Oriented IoT
Services: Challenges and Research Directions

Nakjung Choi, Daewoo Kim, Sung-Ju Lee, and Yung Yi

Fog computIng And networkIng

Fog computing brings
computing, storage, and
networking even closer to
end users and devices for
services with better QoS.
We introduce FogOS, a
fog computing architec-
ture for IoT services. The
authors take the perspec-
tive of designing an oper-
ating system, practicing
the architectural lessons
from the long history of
operating systems.

Nakjung Choi is with Bell Labs, Nokia; Daewoo Kim, Sung-Ju Lee, and Yung Yi are with KAIST; Yung Yi is the corresponding author.

1 Fog: typically means both
clouds at edge and user
devices in theliterature, but
throughout this article, we
use the terms “fog cloud”
and “edge device.”

Digital Object Identifier:
10.1109/MCOM.2017.1600908

IEEE Communications Magazine • August 2017 45

architectures for fog computing: the Open Fog
Consortium [6], the European Telecommunica-
tions Standards Institute’s (ETSI’s) mobile edge
computing (MEC) [7], and cloudlets [8], each
with slightly different visions and emphasis (see
[9] for comparison). We believe that FogOS can
be applied to or even merged with any of these
architectures, as our focus is on handling the
diversity and heterogeneity of user-oriented IoT
services and edge devices that are owned by indi-
viduals and different owners using fog computing.

Fog operAtIng system: ArchItecture
key chAllenges

We describe the challenges of fog computing
architecture for highly diverse IoT applications
with heterogeneous edge devices owned by dif-
ferent individuals and providers (see Table 1 for a
summary and existing solutions).

Scalability: Being at exponential growth, there
would be a significant number of IoT devices,
which in turn run various IoT applications and
generate a sheer amount of data.

Complex Inter-Networking: Due to the large
scale and diversity, IoT devices will be physical-
ly connected in various forms and under diverse
conditions, for example, wireless multihop con-
nectivity using heterogeneous radio access tech-
nologies, often with mobility.

Dynamics and Adaptation: With wireless con-
nectivity and mobility, IoT devices experience fre-
quent environmental changes in topology and
communication conditions. In addition, IoT appli-
cations may have diverse lifetimes and quality of
service (QoS) requirements, requiring prompt
allocation of edge resources and re-embedding of
IoT applications.

Diversity and Heterogeneity: Edge devices
have various capabilities in communication radios,
sensors, computing powers, storage, and so on.
This requires seamless interfacing and interopera-
bility, often incurring non-negligible overhead and
yielding implementation/operation complexity.

In FogOS, we tackle the above challenges
using a reference architecture. as depicted in Fig.
2, consisting of the following four main compo-
nents:
• Service and device abstraction
• Resource management
• Application management
• Edge resource: registration, ID/addressing,

and control interface
The challenges due to diversity and heteroge-

neity are resolved by an abstraction layer for ser-
vices and devices (see the following subsection).
The application and resource managers work
closely together to provide complex internetwork-
ing services and adaptively allocate edge/fog
resources to accommodate the dynamics of appli-
cations and resources (see “Resource Manage-
ment” and “Application Management” below). In
the “Edge Resource: Registration, Identification,
and ControlInterface” section, we describe ways
of improving network and service scalability.

servIce And devIce AbstrActIon

In the fog computing environment where FogOS
operates, there is a common property in IoT appli-
cations and edge devices: diversity. This diversi-

ty complicates the process of developing an IoT
application and the control of edge devices. It is
therefore necessary to provide flexible but con-
sistent abstraction as application programming
interfaces (APIs), both from FogOS to applica-
tions (service abstraction or service API) and from
FogOS to edge devices (device API). These APIs
are designed and categorized by the degree of
generalization and exposure, where generaliza-
tion refers to how concrete abstraction should
be, and exposure deals with how controllable
we should make service and device through the
designed APIs.

Service Abstraction
Generalization: In operating systems, users can
directly access OS resources by invoking low-level
system calls or using a high-level programming
language dependent standard library. FogOS
defines the following three hierarchical service
APIs from low to high level:
• Level 1: Resource service API: This API

resides at the lowest level, providing services
that can control each individual edge device
resource such as computing, storage, sens-
ing, actuating, and radio access (or link) to
applications. For example, a service call of
“read the temperature from sensor X” can
be invoked by an application.

• Level 2: Network service API: Using a col-
lection of resource service APIs, this API
provides the service of creating a networked
slice that consists of some set of edge device
resources. For example, to create a video
surveillance service, a service call of “form
a wireless video sensor network with video
sensors X, Y, Z and an edge cloud C, where
all wireless sensor nodes are connected to
C with statistical bandwidth guarantee of 1
Mb/s.” Note that there can be a multihop
path from X to C, where the resource match-
ing module of the service manager deter-
mines the “optimal” path (see “Application
Management” later in the article).

Figure 1. Fog cloud and edge devices.

Edge devices

Fog cloud

Central (or regional)
cloud

IEEE Communications Magazine • August 201746

• Level 3: Application service API: This API is
at the highest abstraction and allows appli-
cation developers to easily create a service
that is defined as a typical service a priori.
An example could be a call of “create a
video surveillance service at hotspots with
high-definition TV quality.”
Note that there could be more levels in this

hierarchy. Application developers are allowed to
utilize any level of service APIs with different con-
trollability and programming proficiency.

Exposure: A FogOS designer may choose dif-
ferent exposure degrees even in each service API,
based on programming friendliness and security
level. For example, a video surveillance service
can be created with the service requirement
description {3 cameras} or {1 camera near gps-1,
2 cameras near gps-2} at the level 3 resource API.
Also, everything cannot be open to application
developers. For example, network link resources
in the resource API at level 1 cannot be acces-
sible because arbitrary change of link resources
may negatively affect other applications; even the
entire resource API at level 1 can be blocked to
allow only high-level access.

Device Abstraction

Generalization: UNIX-like operating systems
treat everything as a file, for example, /dev/sda1
for a hard disk, /tmp/mongodb-27017.sock for
a socket, and /proc filesystem (procfs) for a pro-
cess or other system information. FogOS could
enjoy a similar level of generalization, but has
more diversity to interface with various existing
and emerging edge devices, which are possi-
bly manufactured by different vendors. To this
end, multiple device data models are defined
and exposed to FogOS, for example, “sensor
device data model,” which is different from a sin-
gle device data model in operating systems (i.e.,
a file). Note that device data models might have
inheritance relation as in the object oriented pro-
gramming language; for example, a tempera-
ture sensor device data model inherits a sensor
device data model, or some device data models

might be grouped. This generalized abstraction
of edge devices enables emerging IoT devices to
easily be incorporated without affecting existing
applications.

Exposure: Typical OSs provide different con-
trol granularity to each managed resource. For
example, a default WiFi device driver provides the
interface to configure WiFi behaviors. However,
a vendor-provided device driver can be activated
to expose vendor-specific features with finer con-
trol granularity. Similarly, edge devices that are in
the same device category might have their own
specific features that can be differentiated from
other edge devices. Hence, FogOS still requires
vendor-specific/owner-specific device drivers to
control devices’ details or new features, in addi-
tion to general and abstract IoT device data mod-
el-based control.

resource mAnAgement

FogOS manages the resources of edge devices
and fog clouds that are spatially separated and
often need to be controlled in a distributed man-
ner. We assume that the list of available resources
are registered at the resource management mod-
ule for the process of edge resource registration.
As in traditional OS, FogOS pools or slices the
available resources whenever needed, but there
are many challenges to be handled, as elaborated
next.

Resource Pooling: The concept of resource
pooling is used in a variety of contexts across dif-
ferent domains. In this article, we define resource
pooling as a mechanism to collect the resources
of the same “class.” A good example in a general
OS is the notion of virtual memory in the hierar-
chical memory system, which enables the main
memory and hard disk to be pooled, transparently
seen as runtime storage by running processes.

In fog computing, similar resource pooling
would be useful in furnishing IoT applications with
larger service options and freedom. The unique
challenges of resource pooling in fog computing
are:
• Pooling occurs among edge devices that

might be placed in spatially different locations.

Table 1. Challenges and solutions: fog computing.

Components (FogOS) Task Example func. in general OS Challenges Existing solutions

Service and device
abstraction

Providing a device
data model

File as a universal resource
identification

Diversity in devices Device data model in [10, 11]

Providing service
APIs

System calls and standard
libraries

Diversity in services
IoT service APIs (e.g., IoBridge,
Evrythng)

Resource management
Pooling resources

Distributed system (e.g., Ha-
doop distributed file system)

Spatially separated resources,
heterogeneous devices

Network controller for SDN (e.g.,
ONOS [3])

Slicing resources Virtual memory Lightweight slicing Hypervisor for compute resource

Application manage-
ment

Matching services
with resources

CPU scheduling
Adaptation to dynamics envi-
ronments (e.g., diverse service
lifetime, devices’ mobility)

Virtual network embedding and
adaptation

Edge resource control

Registration and
identification

Device manager Diversity and large scale
AllJoyn and IoTvity’s administra-
tion system [10, 11]

Control interface System bus
Heterogeneous network
interfaces

Openflow, CoAP, MQTT

IEEE Communications Magazine • August 2017 47

• The resources to be pooled are highly het-
erogeneous.

• Limited resources of edge devices often
require large-scale pooling.

These unique features act as technical challenges
that should be tackled by FogOS. A candidate list
of resource pooling is as follows.

Computing/Storage Pooling: The process-
ing power of an edge device is likely limited.
For intense data processing that requires fast
response, we can use multiple edge devices in a
distributed manner. Similarly, limited storage can
be compensated by a distributed collection of
storage of other devices.

Sensor/Actuator Pooling: Many IoT applica-
tions relying on data from sensors might increase
information accuracy by exploiting similar data
from multiple sensors. Also, different kinds of sen-
sors lead to more complete information on the
monitoring status, for example, pooling and fusion
of the data from a combination of gyroscopes,
magnetometers, and accelerometers. In actuator
pooling, a good example is multiple drones flying

in a group, performing environmental sensing in a
collaborative manner.

Network Link Pooling: IoT applications that
generate large data or require low latency need
high-speed access links. To that end, an edge
device with multiple communication radios can
pool them to create a thick communication pipe.
Also, a device that is not directly connected to a
fog cloud could use other edge nodes as relays.

Resource Slicing: As opposed to resource
pooling, resource slicing corresponds to a mech-
anism that enables sharing of physical resources
by multiple IoT applications. For example, in an
OS, storage can be sliced through the concept of
virtual memory space so that multiple processes
can regard the entire (virtual) memory as if it is
exclusively allocated to each single process. Mul-
ticore CPU allocating each core independently to
each process is another example.

Slicing of the resources of edge devices can
provide differential granularity and help use the
resources efficiently. Sensor/actuator and process-
ing resources can be sliced temporally, and stor-

Figure 2. FogOS (Fog Operating System) reference model.

Applications

Fog cloud / Edge devices

Application manager

Resource manager

FogOS

Resource
slicing

Resource
monitoring

Scheduling and orchestration

Matching Policing Adaptation

Resource
pooling

Application
store

Service abstraction

Device abstraction

Application service API

Network service API

Resource service API

Resource
store

Device API

Abstract resource model

We assume that the list

of available resources

are registered at the

resource management

module for the process

of edge resource regis-

tration. As in traditional

OS, FogOS pools or

slices the available

resources, whenever

needed, but there

exist many challenges to

be handled, as

elaborated next.

IEEE Communications Magazine • August 201748

age resource can be sliced spatially. The network
link resource can also be sliced temporally as well
as spatially (e.g., subdivision of the communica-
tion channel). Synchronization and scheduling
among the distributed resources is a key chal-
lenge, as poor execution would result in serious
resource waste.

ApplIcAtIon mAnAgement

As the resource manger manages all the edge
device resources, the application manager man-
ages everything on the running IoT applications
by matching the service requests to the edge
resources, monitoring the running application’s
resource usage status and enforcing service level
agreements (SLAs), orchestrating the registered
and available edge resources among multiple
ones (e.g., prioritization), concurrent applications,
and adapting to the changes of edge resource
and application status.

Application-Edge Resource Matching: Dif-
ferent IoT applications need different types and
amounts of edge resources, depending on their
QoS requirements. One of the key functions of
the application manager is to compute a match-
ing solution from such requirements to the
edge resources, where the available resources
are obtained by querying the resource manag-
er. In a typical OS, such a matching is trivial as
the device resources are directly controllable and
small scale. However, in IoT, there are many and
diverse devices, often placed in spatially different
locations, requiring networked control. Diversi-
ty requires the matching module to match the
required resource “optimally” from many candi-
dates. Depending on how effective this match-
ing is, the number of IoT applications that can be
accepted and run is determined, which has large
impact on the revenue of IoT service providers
and other economic players. Theoretical under-
standing of this matching problem must be made,
and practically implementable algorithms with low
complexity are of significant importance, which in
turn depends on the type of applications provided
as IoT application service APIs.

Policing, Scheduling, and Orchestration:
Once edge resources are appropriately allocat-
ed to incoming IoT applications, the application
manager keeps track of their resource usage and
monitors whether SLAs are violated. SLA violation
of an application might degrade QoS of other
applications, for which a certain level of resource
partitioning often becomes of some value. The
key challenge comes from the large scale of edge
devices, where monitoring and policing for each
would incur significant overhead even for a small
edge device.

Dynamic creation and termination of IoT
applications fluctuates available edge resources
over time, often leading to the resource com-
petition among them. In addition, each applica-
tion would be assigned a different priority based
on, for instance, security and pricing. All these
motivate FogOS to employ a smart scheduler of
running applications, similar to the job scheduler
of an OS.

Adaptation to Resource and Service Changes:
After the applications are matched to a set of edge
resources, this matching result might not remain
valid due to the change of application status and

the change/fault of edge resources. Whenever
applications with higher priority arrive or existing
applications terminate, the application manager
might need to re-match the resource among the
running applications for better resource manage-
ment. This adaptation is also necessary when the
edge resource topology changes as edge devices
move or experience fault (e.g., battery shortage).
In this case, the application manager must sup-
port continuous reconfiguration of the applica-
tion and edge resources in collaboration with the
resource manager. However, we must consider
the trade-off between operation cost efficiency of
reconfiguration and performance.

edge resource: regIstrAtIon, IdentIFIcAtIon, And
control InterFAce

Identification and Addressing: In fog comput-
ing, high dynamics and diversity of edge networks
force FogOS to interact with edge resources
frequently to keep an up-to-date snapshot of th
resource store of the resource manager (Fig. 2),
and pool/negotiate a proper set of resources to
embed various IoT applications, where an effi-
cient identification of edge resources via IDing
and addressing is essential. We propose to use
both syntactic and semantic IDs in FogOS. Syn-
tactic IDs refer to the ones that directly identify
the edge resource (e.g., a 5th sensor of room 2 of
building 2 of the Korea Advanced Institute of Sci-
ence and Technology, KAIST), whereas semantic
IDs support the context of what a service want to
utilize (e.g., any temperature sensor sensing 10°C
of room 2 of building 2). Each ID might use a dif-
ferent binding with its network address, for exam-
ple, static binding for syntactic IDs and dynamic
binding for semantic IDs.

One can refer to IoTivity’s identification spec-
ification [10], AllJoyn [11], geocasting [12], or
Named Data Networking (NDN) for IoT [13].
For example, AllJoyn requires each IoT device
to know the minimum information (i.e., name) of
destinations, and each device can find the destina-
tion device with this information by using mDNS
(multicast). However, while AllJoyn is suited for a
small-scale IoT network, FogOS targets networks
with a large number of edge devices with high
dynamics and diversity, and hence requires scal-
able solutions.

Resource Discovery, Registration, and Man-
agement: FogOS must discover edge devices and
their resources, manage the list, and monitor their
status. Two schemes are possible: proactive and
reactive. In a proactive scheme, when an edge
device enters our FogOS-administered network,
it notifies FogOS of its intention to join with its
list of available resources. FogOS then updates its
resource store database to keep track of this new
edge resource. In order to keep the information
up to date, the available resource status must be
periodically rteported to the resource manager
of FogOS. In a reactive scheme, edge resourc-
es are queried on demand, whenever new edge
resources are needed as new applications are
about to be created. Proactive schemes provide
faster response to resource lookup and match-
ing for new applications, but at the cost of larger
overhead stemming from keeping track of the
resource-related information. On the other hand,
reactive schemes provide fresher information but

Different IoT applica-

tions need different

types and amount

of edge resources,

depending on their QoS

requirements. One of

key functions of the

application manager is

to compute a matching

solution from such

requirements to the

edge resources, where

the available resources

are obtained by que-

rying to the resource

manager.

IEEE Communications Magazine • August 2017 49

with slower response time. AllJoyn follows this
reactive scheme, mainly because it is designed
for home-scale one-hop IoT applications. We
envision FogOS operating on a larger scale; thus,
we believe that a scheme with a certain degree
of proactivity is necessary for a possible hybrid
approach.

Heterogeneous Control and Network Pro-
tocols: As discussed earlier, FogOS uses device
APIs to control each individual edge device and
fog cloud. We argue that to control fog clouds,
the current approach to SDN (i.e., OpenFlow)
is a good option. However, to control diverse
resource-constrained edge devices, the classical
SDN approach might be too heavy and inflexible.
Thus, a lightweight version of SDN could be a
candidate solution for separating data and control
planes. Many of the challenges are due to high
heterogeneity in control, communication, and net-
working protocols of edge devices. The control
plane should leverage existing IoT control pro-
tocols such as Constrained Application Protocol
(CoAP) and Message Queuing Telemetry Trans-
port (MQTT), and also emerging architectures
such as information-centric networking (ICN).
Similarly, the data plane should support diverse
wireless technologies, for example, WiFi, LTE, Low
Power WAN (LPWAN) [14], and ZigBee, which
is necessary to deliver data as well as control
information. There are different proposals for this,
where one is to employ a gateway that can under-
stand such heterogeneity, but such an approach
of only a single hop at the last mile might restrict
the service coverage, and thus limiting the scope
of possible IoT applications that FogOS supports.
To extend the reach of FogOS, seamless multihop
communication over a large-scale wireless nodes
would be highly valuable.

Fogos-drIven Iot ecosystem
In the fog computing market, there are four key
economic players that compete and cooperate to
increase their revenues. This is depicted in Fig. 3.
We do not claim that the ecosystem mentioned
in this article is the only one that would emerge.
Rather, we believe that it might be one of the
most basic and intuitive patterns where players
interact.

End Service2 Users (SUs): These are end users
who are ready to enjoy IoT applications. They pay
the application service fee to service providers
under a variety of tariffs.

Edge Resource Owners (EROs): These are
individuals or large companies (e.g., mobile net-
work operators that have large-scale communi-
cation and sensor infrastructures) who own edge
resources or fog clouds. In particular, individual
edge resource owners share their resources and
partially or entirely sell the resources to an infra-
structure provider (InP). They act similarly to Uber
drivers. They need to be appropriately incentiv-
ized to share the resources, where the incentive
mechanism would be given by InPs.

Service Providers (SPs): SPs create diverse IoT
applications that attract SUs as over-the-top (OTT)
providers. Logically, they do not own the resourc-
es of fog clouds or edge devices, but rent them.
Thus, they make a contract with InPs that manage
the edge resources. Note that it is possible that
SPs and InPs are run by a single company. Appli-

cation development is made based on the service
APIs opened by FogOS.

Infrastructure Providers: They are the ones
who run FogOS. InPs have infrastructure of edge
devices and fog clouds, and might rely on individ-
ual EROs for a large portion of IoT infrastructure.
They are required to develop a nice incentive
mechanism to attract as many EROs as possible at
low cost. Their resources interface with FogOS via
device APIs, and they sell their owned and leased
resources to SPs. They make profit through busi-
ness with SPs and EROs.

Note that this market is open to many diverse
competition and cooperation scenarios. Edge
device owners may act selfishly to maximize their
individual revenue, or cooperate with InPs under
fair revenue sharing mechanisms. As mentioned
earlier, some big player might behave as multi-
ple players. For example, an InP such as a mobile
network operator that already has a large-scale
cellular and WiFi infrastructure minimally relies
on edge device owners by deploying city-scale
or even nation-wide sensor/actuator platforms;
in such cases, big players are highly likely to
provide IoT applications as well to make a large
profit from the IoT industry. Non-cooperative and
cooperative game theory helps understand the
complex interplay in this market and predict the
business landscape.

use cAse And demonstrAtor:
cIty-scAle surveIllAnce servIce

We now present the use case of FogOS, a large-
scale surveillance service, where Fig. 4 shows our
preliminary proof-of-concept implementation of
FogOS for a drone-based surveillance service.

scenArIo overvIew

This is an example of sensing-as-a-service that
deploys city-scale surveillance, originally start-
ing with a set of sensing of some target regions,
and extends to the service coverage change with
drone-driven moving sensors. In this case, an SP
can be an IoT sensor service provider, and SUs
may include a public safety agency.

Original Service:
• An SP requests a surveillance service to an

InP (running FogOS) with a service require-
ment description {K regions, M videos, N
audios, P sensors} through a level 3 applica-

Figure 3. Major economic players in fog computing
and their interaction patterns.

Service
price

Resource
price

Incentive

Service
subscription/contract

Service description

End service user

Service provider

Infrastructure provider

Edge resource owner

Edge resource

2 In earlier sections, we used
the term “IoT applications”
rather than “IoT service” as
“service” is also used as the
service provided by FogOS
to applications. However, in
this section, we use service
to mean IoT application ser-
vice, unless otherwise noted.

Proactive schemes

provide faster response

to resource look-up

and matching for new

applications, but at the

cost of larger overhead

stemming from keeping

track of the resource-re-

lated information. On

the other hand, reactive

schemes provide fresher

information but with

slower response time.

IEEE Communications Magazine • August 201750

tion service API.
• FogOS searches available edge resources

owned by itself as well as those owned by
EROs (possibly with different priorities), and
let the application manager allocate the
required resources to embed this applica-
tion (i.e., matching). These resources might
be ready in advance through a proac-
tive resource discovery mechanism, or be
searched through a reactive mechanism as
discussed earlier.

• The application manager’s matching algo-
rithm produces an embedding solution,
allocates the computed resource by com-
municating with the resource manager to
retrieve existing/available fog/edge resource
information, and commands the resource
manager to perform the allocation action.

• SUs enjoy this surveillance service.
• The resource manager periodically monitors

the resource usage at associated edge devic-
es, and collaborates with the service manag-
er whenever there is any change or fault of
the existing edge resources.

servIce extensIon

• The SP intends to observe more details of
a specific region, say R due to an expect-
ed crime, for instance. It requests to add a
drone-based video sensing of region R with
the modified service description {region R, 1
video sensing with drone, AVAILABLE sen-
sors through level 1 and 2 resource and net-
work service APIs. This service corresponds
to live video streaming at the edge cloud in
region R to a single or multiple SUs.

• FogOS searches its resource pool, and finds
a fog cloud as well as a group of WiFi APs
by the InP, but failed to find a drone. It
broadcasts a request to find a drone with a
video sensor to the EROs in R.

• The video scenes captured by drones and
sensing data from the original service reach
the allocated fog cloud in region R, which
performs augmented reality (AR) functions
to generate a richer content of the scene
view. This post-processed video stream is
delivered to multiple SUs.

prooF-oF-concept ImplementAtIon oF Fogos

To see the feasibility of FogOS, we implement
a prototype, where FogOS plays the following
two roles: controller and platform for IoT ecosys-
tem. In our implementation, the economic inter-
action between key players is simplified, that is,
when EROs register their resources to FogOS,
EROs’ resources are shared through InP. In this
article, we mainly focus on the control function of
FogOS, as follows:
• Drones and sensors are controlled by an

application running on the FogOS through
service and device abstraction layers. Thus,
we are able to control flying drones and
SDN IoT sensors through FogOS.

• Computing, sensing, and networking resourc-
es are pooled together and matched to this
service by the resource and service manag-
ers of FogOS.

• A video from drones and sensing data is pro-
cessed/merged by the allocated computing
resources, and then multiple views for differ-
ent SUs are created, as shown in Fig. 4.

conclusIon
We introduce a fog computing and network-
ing architecture for IoT services, termed FogOS,
practicing architectural lessons from operating
systems. FogOS is composed of four major com-
ponents: service/resource abstraction, resource
manager, application manager, and edge resource
identification/registration, whose challenges and
main research directions are discussed. We hope
that our vision in FogOS will be shared by other
groups in academia and industry working on IoT
and fog computing, and more constructive discus-
sions will continue to follow, inspired by FogOS.
These future directions include the extension of
FogOS to support the key scenarios in the fifth
generation, that is, enhanced mobile broadband,
ultra-reliable and low-latency communications,
and massive machine type communications.

Acknowledgment

This work was partially supported by the Institute
for Information and Communications Technolo-
gy Promotion (IITP) grant funded by the Korea
government (MSIP) (No.B0717-17-0034,Versatile
Network System Architecture for Multi-Dimen-
sional Diversity).

Figure 4. Example implementation of surveillance service on FogOS: extension of drone-based moving video sensing.

Incentive Edge resource

FogOS

Application manager

Resource manager

Fog cloud/edge device

Service provider:
surveillance service
{K region, M video,
N audio, P sensor}

Drone
(camera, GPS)

Admin 2
Fog cloudEdge devices

Admin 1

View 2

View 1d id

vices

Price
Service
description

IEEE Communications Magazine • August 2017 51

reFerences
[1] Gartner, “Gartner Says 6.4 Billion Connected Things Will Be

in Use in 2016, Up 30 Percent from 2015”; http://www.
gartner.com/newsroom/id/3165317, accessed 4 May 2017.

[2] V. Turner et al., “IDC FutureScape: Worldwide Internet of
Things 2015 Predictions,” Int’l. Data Corp., 2014.

[3] ON.LAB. “ONOS — A New Carrier-Grade SDN Network
Operating System Designed for High Availability, Perfor-
mance, Scale-out”; http://onosproject.org, accessed 4 May
2017.

[4] ONF, OpenFlow Switch Specificatio, v. 1.5.1, 2015.
[5] “OpenStack: Open Source Software for Creating Private

and Public Clouds”; https://www.openstack.org/, accessed
4 May 2017.

[6] Open Fog Consortium; https://www.openfog consortium.
org/, accessed 4 May 2017.

[7] M. Patel et al., “Mobile-Edge Computing Introductory Tech-
nical White Paper,” MEC Industry Initiative, 2014.

[8] M. Satyanarayanan et al., “Cloudlets: At the Leading Edge Of
Mobile-Cloud Convergence,” Proc. IEEE Mobile Computing,
Applications and Services, 2014.

[9] G. I. Klas, “Fog Computing and Mobile Edge Cloud Gain
Momentum Open Fog Consortium, ETSI MEC and Cloud-
lets,” 2015.

[10] OCF, “OIC Core Candidate Specification,” 2016.
[11] A. Alliance, “AllJoyn Framework,” 2016; https://allseenalli-

ance.org/framework, accessed 4 May 2017.
[12] Y.-B. Ko and N. H. Vaidya, “Geotora: A Protocol for Geo-

casting in Mobile Ad Hoc Networks,” Proc. IEEE Int’l. Conf.
Network Protocols, 2000.

[13] E. Baccelli et al., “Information Centric Networking in the
IoT: Experiments with NDN in the Wild,” Proc. ACM Infor-
mation-Centric Networking, 2014.

[14] Nokia Networks, “LTE-M - Optimizing LTE for the Internet
of Things,” white paper, Aug. 2015.

bIogrAphIes
NakjuNg Choi (nakjung.choi@nokia-bell-labs.com) is a mem-
ber of technical staff at Nokia Bell Labs, Murray Hill, New Jer-
sey, since April 2010. He received his B.S. (magna cum laude)
and Ph.D. at the School of Computer Science and Engineering,
Seoul National University in 2002 and 2009, respectively. Also,
he has received several awards such as Best Paper Awards and
Awards of Excellence. His research is focused on SDN/NFV/
cloud, 4G/5G/IoT, and future converged services.

Daewoo kim (daewookim@kaist.ac.kr) received his B.S. from
the Department of Electrical Engineering, Yonsei University,
South Korea, in 2013. He is a doctoral student at the School of
Electrical Engineering, KAIST, since 2013. His research interests
include sensor networks, network economics, fog computing,
and machine learning in networking.

SuNg-ju Lee (profsj@kaist.ac.kr) is an associate professor and
KAIST Endowed Chair Professor at KAIST. He received his Ph.D.
in computer science from the University of California, Los Ange-
les in 2000, and spent 15 years in the industry in Silicon Valley
before joining KAIST. His research interests include computer
networks, mobile computing, network security, and HCI. He is
the winner of the HP CEO Innovation Award, the Best Paper
Award at IEEE ICDCS 2016, and the Test-of-Time Paper Award
at ACM WINTECH 2016.

YuNg Yi (yiyung@kaist.ac.kr) is an associate professor at the
Department of Electrical Engineering at KAIST. He received his
Ph.D. from the Department of Electrical and Computer Engi-
neering, University of Texas at Austin in 2006. His research
interests include computer networks and machine learning.
He received the best paper awards at IEEE SECON and ACM
Mobihoc in 2013, and he was the winner of the IEEE William R.
Bennet Prize in 2016.

