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AbstrAct

As the proliferation of mobile devices has ignit-
ed cloud computing, it is expected that increasing 
development and deployment of IoT services will 
expedite the era of fog computing. Fog comput-
ing brings computing, storage, and networking 
even closer to end users and devices for services 
with better QoS. We introduce FogOS, a fog 
computing architecture for IoT services. We take 
the perspective of designing an operating sys-
tem, practicing the architectural lessons from the 
long history of operating systems. We focus on 
addressing the challenges raised by the diversity 
and heterogeneity of IoT services and edge devic-
es that are owned by individuals and different 
owners, and presenting how FogOS is designed 
to effectively and efficiently provide and manage 
such IoT services. We provide a city-scale surveil-
lance use case to demonstrate FogOS in action.

IntroductIon
The Internet of Things (IoT) is no longer a vision, 
but a reality. We are already witnessing and expe-
riencing many interesting IoT applications. Gart-
ner predicts that about 21 billion “things” across 
industry sections will be connected to the net-
work by 2020 [1]. These devices generate and 
transmit data that have diverse requirements in 
terms of not only volume, but also variety and 
velocity.

With the ever increasing number of devices 
and data generated from the edge, the classical 
cloud-based computing paradigm is faced with 
challenges, as IDC estimates that the amount of 
data analyzed on the IoT that are physically at 
or near the devices is approaching 40 percent 
[2]. To address these networking and computing 
trends, fog computing brings the cloud closer to 
the “things” that produce and act on IoT data as 
depicted in Fig. 1. It is an architectural paradigm 
that is more appropriate for the fast-growing IoT 
as it brings computing, storage, and networking 
closer and faster to the edge devices. We pro-
pose Fog Operating System (FogOS), a fog com-
puting architecture for IoT services. We view the 
whole IoT ecosystem as a computer, and take 
the perspective of an operating system for our 
FogOS architecture. The role of traditional oper-
ating systems in computers is managing computer 
hardware and software resources and providing 
common services for computer programs. FogOS, 
on the other hand, regards IoT applications (that 

correspond to programs in OS) as X-as-a-service 
(X-aaS, e.g., lighting-as-a-service, temperature-sens-
ing-as-a-service) for which common interfaces 
are provided. The set of resources managed by 
FogOS include all fog and cloud (e.g., nano/edge 
cloud) and edge devices (e.g., sensors/actuators). 
They can also be connected to any level of cloud 
(e.g., central/regional/metro) when FogOS has an 
appropriate peering contract.

We particularly consider the case where edge 
devices are possibly owned by different individ-
uals and providers. Many current IoT devices 
are deployed by infrastructure providers, but we 
argue that many more sensors/actuators will be 
increasingly individually owned and shared in the 
future when they are appropriately incentivized. 
In that scenario, there is a complex economic 
interplay between different players (e.g., IoT users, 
IoT application providers, infrastructure provid-
ers, and edge device owners). Hence, FogOS can 
function as a distributed operating system that 
manages the cloud and the resources at the edge, 
and a platform of incentivizing and connecting 
individually owned edge devices.1

An OS for network resource management, 
such as Open Network Operating System 
(ONOS) [3], is a seemingly similar concept to 
FogOS. For example, ONOS has been proposed 
as a control platform of software defined net-
working (SDN) for carrier and cloud provider 
networks, with scalability, availability, and perfor-
mance in mind. However, there are two main dif-
ferences between FogOS and ONOS.

First, ONOS operators directly own and con-
trol all network devices that are fixed with rela-
tively stable operating conditions, while FogOS 
needs to control significantly diverse edge devices 
that are highly dynamic and owned by different 
parties. Thus, FogOS needs to play the role of a 
broker of pooling/slicing edge devices’ resourc-
es and coordinating all the players with self-inter-
est. Second, ONOS participates in standardizing 
device interfacing (e.g., OpenFlow [4]). However, 
in IoT, diversity in devices, services, and protocols 
is inevitable, resulting in a more challenging envi-
ronment. A cloud computing OS, such as Open-
Stack [5], also aims to orchestrate the large-scale 
computing resources in a shared infrastructure 
built on top of standard and commodity hardware 
under the same administrative domain. Hence, 
FogOS has similar major differences compared to 
the traditional cloud computing OS.

There are three groups actively designing 
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architectures for fog computing: the Open Fog 
Consortium [6], the European Telecommunica-
tions Standards Institute’s (ETSI’s) mobile edge 
computing (MEC) [7], and cloudlets [8], each 
with slightly different visions and emphasis (see 
[9] for comparison). We believe that FogOS can 
be applied to or even merged with any of these 
architectures, as our focus is on handling the 
diversity and heterogeneity of user-oriented IoT 
services and edge devices that are owned by indi-
viduals and different owners using fog computing.

Fog operAtIng system: ArchItecture
key chAllenges

We describe the challenges of fog computing 
architecture for highly diverse IoT applications 
with heterogeneous edge devices owned by dif-
ferent individuals and providers (see Table 1 for a 
summary and existing solutions).

Scalability: Being at exponential growth, there 
would be a significant number of IoT devices, 
which in turn run various IoT applications and 
generate a sheer amount of data.

Complex Inter-Networking: Due to the large 
scale and diversity, IoT devices will be physical-
ly connected in various forms and under diverse 
conditions, for example, wireless multihop con-
nectivity using heterogeneous radio access tech-
nologies, often with mobility.

Dynamics and Adaptation: With wireless con-
nectivity and mobility, IoT devices experience fre-
quent environmental changes in topology and 
communication conditions. In addition, IoT appli-
cations may have diverse lifetimes and quality of 
service (QoS) requirements, requiring prompt 
allocation of edge resources and re-embedding of 
IoT applications.

Diversity and Heterogeneity: Edge devices 
have various capabilities in communication radios, 
sensors, computing powers, storage, and so on. 
This requires seamless interfacing and interopera-
bility, often incurring non-negligible overhead and 
yielding implementation/operation complexity.

In FogOS, we tackle the above challenges 
using a reference architecture. as depicted in Fig. 
2, consisting of the following four main compo-
nents:
• Service and device abstraction
• Resource management
• Application management
• Edge resource: registration, ID/addressing, 

and control interface
The challenges due to diversity and heteroge-

neity are resolved by an abstraction layer for ser-
vices and devices (see the following subsection). 
The application and resource managers work 
closely together to provide complex internetwork-
ing services and adaptively allocate  edge/fog 
resources to accommodate the dynamics of appli-
cations and resources (see “Resource Manage-
ment” and “Application Management” below). In 
the “Edge Resource: Registration, Identification, 
and ControlInterface” section, we describe ways 
of improving network and service scalability.

servIce And devIce AbstrActIon

In the fog computing environment where FogOS 
operates, there is a common property in IoT appli-
cations and edge devices: diversity. This diversi-

ty complicates the process of developing an IoT 
application and the control of edge devices. It is 
therefore necessary to provide flexible but con-
sistent abstraction as application programming 
interfaces (APIs), both from FogOS to applica-
tions (service abstraction or service API) and from 
FogOS to edge devices (device API). These APIs 
are designed and categorized by the degree of 
generalization and exposure, where generaliza-
tion refers to how concrete abstraction should 
be, and exposure deals with how controllable 
we should make service and device through the 
designed APIs.

Service Abstraction
Generalization: In operating systems, users can 
directly access OS resources by invoking low-level 
system calls or using a high-level programming 
language dependent standard library. FogOS 
defines the following three hierarchical service 
APIs from low to high level:
• Level 1: Resource service API: This API 

resides at the lowest level, providing services 
that can control each individual edge device 
resource such as computing, storage, sens-
ing, actuating, and radio access (or link) to 
applications. For example, a service call of 
“read the temperature from sensor X” can 
be invoked by an application.

• Level 2: Network service API: Using a col-
lection of resource service APIs, this API 
provides the service of creating a networked 
slice that consists of some set of edge device 
resources. For example, to create a video 
surveillance service, a service call of “form 
a wireless video sensor network with video 
sensors X, Y, Z and an edge cloud C, where 
all wireless sensor nodes are connected to 
C with statistical bandwidth guarantee of 1 
Mb/s.” Note that there can be a multihop 
path from X to C, where the resource match-
ing module of the service manager deter-
mines the “optimal” path (see “Application 
Management” later in the article).

Figure 1. Fog cloud and edge devices.

Edge devices

Fog cloud
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cloud



IEEE Communications Magazine • August 201746

• Level 3: Application service API: This API is 
at the highest abstraction and allows appli-
cation developers to easily create a service 
that is defined as a typical service a priori. 
An example could be a call of “create a 
video surveillance service at hotspots with 
high-definition TV quality.”
Note that there could be more levels in this 

hierarchy. Application developers are allowed to 
utilize any level of service APIs with different con-
trollability and programming proficiency.

Exposure: A FogOS designer may choose dif-
ferent exposure degrees even in each service API, 
based on programming friendliness and security 
level. For example, a video surveillance service 
can be created with the service requirement 
description {3 cameras} or {1 camera near gps-1, 
2 cameras near gps-2} at the level 3 resource API. 
Also, everything cannot be open to application 
developers. For example, network link resources 
in the resource API at level 1 cannot be acces-
sible because arbitrary change of link resources 
may negatively affect other applications; even the 
entire resource API at level 1 can be blocked to 
allow only high-level access.

Device Abstraction

Generalization: UNIX-like operating systems 
treat everything as a file, for example, /dev/sda1 
for a hard disk, /tmp/mongodb-27017.sock for 
a socket, and /proc filesystem (procfs) for a pro-
cess or other system information. FogOS could 
enjoy a similar level of generalization, but has 
more diversity to interface with various existing 
and emerging edge devices, which are possi-
bly manufactured by different vendors. To this 
end, multiple device data models are defined 
and exposed to FogOS, for example, “sensor 
device data model,” which is different from a sin-
gle device data model in operating systems (i.e., 
a file). Note that device data models might have 
inheritance relation as in the object oriented pro-
gramming language; for example, a tempera-
ture sensor device data model inherits a sensor 
device data model, or some device data models 

might be grouped. This generalized abstraction 
of edge devices enables emerging IoT devices to 
easily be incorporated without affecting existing 
applications.

Exposure: Typical OSs provide different con-
trol granularity to each managed resource. For 
example, a default WiFi device driver provides the 
interface to configure WiFi behaviors. However, 
a vendor-provided device driver can be activated 
to expose vendor-specific features with finer con-
trol granularity. Similarly, edge devices that are in 
the same device category might have their own 
specific features that can be differentiated from 
other edge devices. Hence, FogOS still requires 
vendor-specific/owner-specific device drivers to 
control devices’ details or new features, in addi-
tion to general and abstract IoT device data mod-
el-based control.

resource mAnAgement

FogOS manages the resources of edge devices 
and fog clouds that are spatially separated and 
often need to be controlled in a distributed man-
ner. We assume that the list of available resources 
are registered at the resource management mod-
ule for the process of edge resource registration. 
As in traditional OS, FogOS pools or slices the 
available resources whenever needed, but there 
are many challenges to be handled, as elaborated 
next.

Resource Pooling: The concept of resource 
pooling is used in a variety of contexts across dif-
ferent domains. In this article, we define resource 
pooling as a mechanism to collect the resources 
of the same “class.” A good example in a general 
OS is the notion of virtual memory in the hierar-
chical memory system, which enables the main 
memory and hard disk to be pooled, transparently 
seen as runtime storage by running processes.

In fog computing, similar resource pooling 
would be useful in furnishing IoT applications with 
larger service options and freedom. The unique 
challenges of resource pooling in fog computing 
are: 
• Pooling occurs among edge devices that 

might be placed in spatially different locations.

Table 1. Challenges and solutions: fog computing.

Components (FogOS) Task Example func. in general OS Challenges Existing solutions

Service and device 
abstraction

Providing a device 
data model

File as a universal resource 
identification

Diversity in devices Device data model in [10, 11]

Providing service 
APIs

System calls and standard 
libraries

Diversity in services
IoT service APIs (e.g., IoBridge, 
Evrythng)

Resource management
Pooling resources

Distributed system (e.g., Ha-
doop distributed file system)

Spatially separated resources, 
heterogeneous devices

Network controller for SDN (e.g., 
ONOS [3])

Slicing resources Virtual memory Lightweight slicing Hypervisor for compute resource 

Application manage-
ment

Matching services 
with resources

CPU scheduling
Adaptation to dynamics envi-
ronments (e.g., diverse service 
lifetime, devices’ mobility)

Virtual network embedding and 
adaptation 

Edge resource control

Registration and 
identification

Device manager Diversity and large scale
AllJoyn and IoTvity’s administra-
tion system [10, 11]

Control interface System bus
Heterogeneous network 
interfaces

Openflow, CoAP, MQTT



IEEE Communications Magazine • August 2017 47

• The resources to be pooled are highly het-
erogeneous.

• Limited resources of edge devices often 
require large-scale pooling. 

These unique features act as technical challenges 
that should be tackled by FogOS. A candidate list 
of resource pooling is as follows.

Computing/Storage Pooling: The process-
ing power of an edge device is likely limited. 
For intense data processing that requires fast 
response, we can use multiple edge devices in a 
distributed manner. Similarly, limited storage can 
be compensated by a distributed collection of 
storage of other devices.

Sensor/Actuator Pooling: Many IoT applica-
tions relying on data from sensors might increase 
information accuracy by exploiting similar data 
from multiple sensors. Also, different kinds of sen-
sors lead to more complete information on the 
monitoring status, for example, pooling and fusion 
of the data from a combination of gyroscopes, 
magnetometers, and accelerometers. In actuator 
pooling, a good example is multiple drones flying 

in a group, performing environmental sensing in a 
collaborative manner.

Network Link Pooling: IoT applications that 
generate large data or require low latency need 
high-speed access links. To that end, an edge 
device with multiple communication radios can 
pool them to create a thick communication pipe. 
Also, a device that is not directly connected to a 
fog cloud could use other edge nodes as relays.

Resource Slicing: As opposed to resource 
pooling, resource slicing corresponds to a mech-
anism that enables sharing of physical resources 
by multiple IoT applications. For example, in an 
OS, storage can be sliced through the concept of 
virtual memory space so that multiple processes 
can regard the entire (virtual) memory as if it is 
exclusively allocated to each single process. Mul-
ticore CPU allocating each core independently to 
each process is another example.

Slicing of the resources of edge devices can 
provide differential granularity and help use the 
resources efficiently. Sensor/actuator and process-
ing resources can be sliced temporally, and stor-

Figure 2. FogOS (Fog Operating System) reference model.
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age resource can be sliced spatially. The network 
link resource can also be sliced temporally as well 
as spatially (e.g., subdivision of the communica-
tion channel). Synchronization and scheduling 
among the distributed resources is a key chal-
lenge, as poor execution would result in serious 
resource waste.

ApplIcAtIon mAnAgement

As the resource manger manages all the edge 
device resources, the application manager man-
ages everything on the running IoT applications 
by matching the service requests to the edge 
resources, monitoring the running application’s 
resource usage status and enforcing service level 
agreements (SLAs), orchestrating the registered 
and available edge resources among multiple 
ones (e.g., prioritization), concurrent applications, 
and adapting to the changes of edge resource 
and application status.

Application-Edge Resource Matching: Dif-
ferent IoT applications need different types and 
amounts of edge resources, depending on their 
QoS requirements. One of the key functions of 
the application manager is to compute a match-
ing solution from such requirements to the 
edge resources, where the available resources 
are obtained by querying the resource manag-
er. In a typical OS, such a matching is trivial as 
the device resources are directly controllable and 
small scale. However, in IoT, there are many and 
diverse devices, often placed in spatially different 
locations, requiring networked control. Diversi-
ty requires the matching module to match the 
required resource “optimally” from many candi-
dates. Depending on how effective this match-
ing is, the number of IoT applications that can be 
accepted and run is determined, which has large 
impact on the revenue of IoT service providers 
and other economic players. Theoretical under-
standing of this matching problem must be made, 
and practically implementable algorithms with low 
complexity are of significant importance, which in 
turn depends on the type of applications provided 
as IoT application service APIs.

Policing, Scheduling, and Orchestration: 
Once edge resources are appropriately allocat-
ed to incoming IoT applications, the application 
manager keeps track of their resource usage and 
monitors whether SLAs are violated. SLA violation 
of an application might degrade QoS of other 
applications, for which a certain level of resource 
partitioning often becomes of some value. The 
key challenge comes from the large scale of edge 
devices, where monitoring and policing for each 
would incur significant overhead even for a small 
edge device.

Dynamic creation and termination of IoT 
applications fluctuates available edge resources 
over time, often leading to the resource com-
petition among them. In addition, each applica-
tion would be assigned a different priority based 
on, for instance, security and pricing. All these 
motivate FogOS to employ a smart scheduler of 
running applications, similar to the job scheduler 
of an OS.

Adaptation to Resource and Service Changes: 
After the applications are matched to a set of edge 
resources, this matching result might not remain 
valid due to the change of application status and 

the change/fault of edge resources. Whenever 
applications with higher priority arrive or existing 
applications terminate, the application manager 
might need to re-match the resource among the 
running applications for better resource manage-
ment. This adaptation is also necessary when the 
edge resource topology changes as edge devices 
move or experience fault (e.g., battery shortage). 
In this case, the application manager must sup-
port continuous reconfiguration of the applica-
tion and edge resources in collaboration with the 
resource manager. However, we must consider 
the trade-off between operation cost efficiency of 
reconfiguration and performance.

edge resource: regIstrAtIon, IdentIFIcAtIon, And 
control InterFAce

Identification and Addressing: In fog comput-
ing, high dynamics and diversity of edge networks 
force FogOS to interact with edge resources 
frequently to keep an up-to-date snapshot of th 
resource store of the resource manager (Fig. 2), 
and pool/negotiate a proper set of resources to 
embed various IoT applications, where an effi-
cient identification of edge resources via IDing 
and addressing is essential. We propose to use 
both syntactic and semantic IDs in FogOS. Syn-
tactic IDs refer to the ones that directly identify 
the edge resource (e.g., a 5th sensor of room 2 of 
building 2 of the Korea Advanced Institute of Sci-
ence and Technology, KAIST), whereas semantic 
IDs support the context of what a service want to 
utilize (e.g., any temperature sensor sensing 10°C 
of room 2 of building 2). Each ID might use a dif-
ferent binding with its network address, for exam-
ple, static binding for syntactic IDs and dynamic 
binding for semantic IDs.

One can refer to IoTivity’s identification spec-
ification [10], AllJoyn [11], geocasting [12], or 
Named Data Networking (NDN) for IoT [13]. 
For example, AllJoyn requires each IoT device 
to know the minimum information (i.e., name) of 
destinations, and each device can find the destina-
tion device with this information by using mDNS 
(multicast). However, while AllJoyn is suited for a 
small-scale IoT network, FogOS targets networks 
with a large number of edge devices with high 
dynamics and diversity, and hence requires scal-
able solutions.

Resource Discovery, Registration, and Man-
agement: FogOS must discover edge devices and 
their resources, manage the list, and monitor their 
status. Two schemes are possible: proactive and 
reactive. In a proactive scheme, when an edge 
device enters our FogOS-administered network, 
it notifies FogOS of its intention to join with its 
list of available resources. FogOS then updates its 
resource store database to keep track of this new 
edge resource. In order to keep the information 
up to date, the available resource status must be 
periodically rteported to the resource manager 
of FogOS. In a reactive scheme, edge resourc-
es are queried on demand, whenever new edge 
resources are needed as new applications are 
about to be created. Proactive schemes provide 
faster response to resource lookup and match-
ing for new applications, but at the cost of larger 
overhead stemming from keeping track of the 
resource-related information. On the other hand, 
reactive schemes provide fresher information but 
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with slower response time. AllJoyn follows this 
reactive scheme, mainly because it is designed 
for home-scale one-hop IoT applications. We 
envision FogOS operating on a larger scale; thus, 
we believe that a scheme with a certain degree 
of proactivity is necessary for a possible hybrid 
approach.

Heterogeneous Control and Network Pro-
tocols: As discussed earlier, FogOS uses device 
APIs to control each individual edge device and 
fog cloud. We argue that to control fog clouds, 
the current approach to SDN (i.e., OpenFlow) 
is a good option. However, to control diverse 
resource-constrained edge devices, the classical 
SDN approach might be too heavy and inflexible. 
Thus, a lightweight version of SDN could be a 
candidate solution for separating data and control 
planes. Many of the challenges are due to high 
heterogeneity in control, communication, and net-
working protocols of edge devices. The control 
plane should leverage existing IoT control pro-
tocols such as Constrained Application Protocol 
(CoAP) and Message Queuing Telemetry Trans-
port (MQTT), and also emerging architectures 
such as information-centric networking (ICN). 
Similarly, the data plane should support diverse 
wireless technologies, for example, WiFi, LTE, Low 
Power WAN (LPWAN) [14], and ZigBee, which 
is necessary to deliver data as well as control 
information. There are different proposals for this, 
where one is to employ a gateway that can under-
stand such heterogeneity, but such an approach 
of only a single hop at the last mile might restrict 
the service coverage, and thus limiting the scope 
of possible IoT applications that FogOS supports. 
To extend the reach of FogOS, seamless multihop 
communication over a large-scale wireless nodes 
would be highly valuable.

Fogos-drIven Iot ecosystem
In the fog computing market, there are four key 
economic players that compete and cooperate to 
increase their revenues. This is depicted in Fig. 3. 
We do not claim that the ecosystem mentioned 
in this article is the only one that would emerge. 
Rather, we believe that it might be one of the 
most basic and intuitive patterns where players 
interact.

End Service2 Users (SUs): These are end users 
who are ready to enjoy IoT applications. They pay 
the application service fee to service providers 
under a variety of tariffs.

Edge Resource Owners (EROs): These are 
individuals or large companies (e.g., mobile net-
work operators that have large-scale communi-
cation and sensor infrastructures) who own edge 
resources or fog clouds. In particular, individual 
edge resource owners share their resources and 
partially or entirely sell the resources to an infra-
structure provider (InP). They act similarly to Uber 
drivers. They need to be appropriately incentiv-
ized to share the resources, where the incentive 
mechanism would be given by InPs.

Service Providers (SPs): SPs create diverse IoT 
applications that attract SUs as over-the-top (OTT) 
providers. Logically, they do not own the resourc-
es of fog clouds or edge devices, but rent them. 
Thus, they make a contract with InPs that manage 
the edge resources. Note that it is possible that 
SPs and InPs are run by a single company. Appli-

cation development is made based on the service 
APIs opened by FogOS.

Infrastructure Providers: They are the ones 
who run FogOS. InPs have infrastructure of edge 
devices and fog clouds, and might rely on individ-
ual EROs for a large portion of IoT infrastructure. 
They are required to develop a nice incentive 
mechanism to attract as many EROs as possible at 
low cost. Their resources interface with FogOS via 
device APIs, and they sell their owned and leased 
resources to SPs. They make profit through busi-
ness with SPs and EROs.

Note that this market is open to many diverse 
competition and cooperation scenarios. Edge 
device owners may act selfishly to maximize their 
individual revenue, or cooperate with InPs under 
fair revenue sharing mechanisms. As mentioned 
earlier, some big player might behave as multi-
ple players. For example, an InP such as a mobile 
network operator that already has a large-scale 
cellular and WiFi infrastructure minimally relies 
on edge device owners by deploying city-scale 
or even nation-wide sensor/actuator platforms; 
in such cases, big players are highly likely to 
provide IoT applications as well to make a large 
profit from the IoT industry. Non-cooperative and 
cooperative game theory helps understand the 
complex interplay in this market and predict the 
business landscape.

use cAse And demonstrAtor: 
cIty-scAle surveIllAnce servIce

We now present the use case of FogOS, a large-
scale surveillance service, where Fig. 4 shows our 
preliminary proof-of-concept implementation of 
FogOS for a drone-based surveillance service.

scenArIo overvIew

This is an example of sensing-as-a-service that 
deploys city-scale surveillance, originally start-
ing with a set of sensing of some target regions, 
and extends to the service coverage change with 
drone-driven moving sensors. In this case, an SP 
can be an IoT sensor service provider, and SUs 
may include a public safety agency.

Original Service:
• An SP requests a surveillance service to an 

InP (running FogOS) with a service require-
ment description {K regions, M videos, N 
audios, P sensors} through a level 3 applica-

Figure 3. Major economic players in fog computing 
and their interaction patterns.
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tion service API.
• FogOS searches available edge resources 

owned by itself as well as those owned by 
EROs (possibly with different priorities), and 
let the application manager allocate the 
required resources to embed this applica-
tion (i.e., matching). These resources might 
be ready in advance through a proac-
tive resource discovery mechanism, or be 
searched through a reactive mechanism as 
discussed earlier.

• The application manager’s matching algo-
rithm produces an embedding solution, 
allocates the computed resource by com-
municating with the resource manager to 
retrieve existing/available fog/edge resource 
information, and commands the resource 
manager to perform the allocation action.

• SUs enjoy this surveillance service.
• The resource manager periodically monitors 

the resource usage at associated edge devic-
es, and collaborates with the service manag-
er whenever there is any change or fault of 
the existing edge resources.

servIce extensIon

• The SP intends to observe more details of 
a specific region, say R due to an expect-
ed crime, for instance. It requests to add a 
drone-based video sensing of region R with 
the modified service description {region R, 1 
video sensing with drone, AVAILABLE sen-
sors through level 1 and 2 resource and net-
work service APIs. This service corresponds 
to live video streaming at the edge cloud in 
region R to a single or multiple SUs.

• FogOS searches its resource pool, and finds 
a fog cloud as well as a group of WiFi APs 
by the InP, but failed to find a drone. It 
broadcasts a request to find a drone with a 
video sensor to the EROs in R.

• The video scenes captured by drones and 
sensing data from the original service reach 
the allocated fog cloud in region R, which 
performs augmented reality (AR) functions 
to generate a richer content of the scene 
view. This post-processed video stream is 
delivered to multiple SUs.

prooF-oF-concept ImplementAtIon oF Fogos

To see the feasibility of FogOS, we implement 
a prototype, where FogOS plays the following 
two roles: controller and platform for IoT ecosys-
tem. In our implementation, the economic inter-
action between key players is simplified, that is, 
when EROs register their resources to FogOS, 
EROs’ resources are shared through InP. In this 
article, we mainly focus on the control function of 
FogOS, as follows: 
• Drones and sensors are controlled by an 

application running on the FogOS through 
service and device abstraction layers. Thus, 
we are able to control flying drones and 
SDN IoT sensors through FogOS.

• Computing, sensing, and networking resourc-
es are pooled together and matched to this 
service by the resource and service manag-
ers of FogOS.

• A video from drones and sensing data is pro-
cessed/merged by the allocated computing 
resources, and then multiple views for differ-
ent SUs are created, as shown in Fig. 4.

conclusIon
We introduce a fog computing and network-
ing architecture for IoT services, termed FogOS, 
practicing architectural lessons from operating 
systems. FogOS is composed of four major com-
ponents: service/resource abstraction, resource 
manager, application manager, and edge resource 
identification/registration, whose challenges and 
main research directions are discussed. We hope 
that our vision in FogOS will be shared by other 
groups in academia and industry working on IoT 
and fog computing, and more constructive discus-
sions will continue to follow, inspired by FogOS. 
These future directions include the extension of 
FogOS to support the key scenarios in the fifth 
generation, that is, enhanced mobile broadband, 
ultra-reliable and low-latency communications, 
and massive machine type communications.
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Figure 4. Example implementation of surveillance service on FogOS: extension of drone-based moving video sensing.
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