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Abstract
We present CrashSniffer , an anchor-free pedestrian collision
prediction system for personal mobility (PM) vehicles such as
e-scooters and e-bikes using Ultra-Wideband (UWB) sensing.
CrashSniffer introduces a Virtual Antenna Array technique
that harnesses the natural motion of PM vehicles to enhance
localization accuracy without relying on external infrastruc-
ture. Coupled with a least-squares estimator, CrashSniffer
enables pedestrian tracking under the challenging vehicle
occlusion scenario. We then propose a Mobility-Aware Col-
lision Prediction algorithm that considers pedestrian tra-
jectories and directional intent to predict collisions. Field
experiments demonstrate that CrashSniffer outperforms GPS
and baseline UWB-based methods in pedestrian localization
and collision prediction in realistic scenarios. Our scalable
system offers a practical pathway to safer PM operation in
pedestrian environments.

CCS Concepts
•Networks→Location based services; •Human-centered
computing→ Ubiquitous and mobile computing.
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1 Introduction
Personal mobility (PM) vehicles such as e-scooters and e-
bikes have rapidly grown in popularity, transforming urban
transportation by offering convenient and eco-friendlymobil-
ity options. However, pedestrians often share sidewalks and
crosswalks with these fast-moving PM vehicles, which fre-
quently leads to collisions or near-misses [1]. This highlights
a need to improve pedestrian safety around PM vehicles.

A key challenge arises when pedestrians are occluded from
the rider’s view, such as when they emerge behind parked
vehicles. Vision-based systems like cameras and LiDAR often
fail in these situations, as they can only detect pedestrians at
the last moment. While RF-based alternatives such as GPS,
Wi-Fi, and Bluetooth can penetrate occlusions, they suffer
from low localization accuracy. Ultra-Wideband (UWB) of-
fers both high ranging precision and robustness to multipath
interference. However, most existing UWB approaches de-
pend on pre-installed anchors, making them unsuitable for
personal mobility (PM) vehicles, which typically lack dedi-
cated infrastructure. This limitation highlights the need for
a scalable, anchor-free localization solution in shared pedes-
trian environments.

To overcome these limitations, we propose CrashSniffer , a
pedestrian collision prediction system for PM vehicles with-
out any external anchors. CrashSniffer leverages UWB rang-
ing between the PM and pedestrian, enhanced by a Virtual
Antenna Array (VAA) that synthesizes a wider spatial base-
line using the PM’s natural motion. Building on the local-
ization results, CrashSniffer further integrates a trajectory-
aware collision prediction algorithm that estimates pedes-
trian intent and filters benign movements.

https://doi.org/10.1145/3742460.3742982
https://doi.org/10.1145/3742460.3742982


EnvSys ’25, June 23–27, 2025, Anaheim, CA, USA Lee, et al.

Our prototype CrashSniffer system, tested under realistic
occlusion scenarios, achieved an average pedestrian local-
ization error of only 1.00 m, outperforming GPS and UWB
trilateration-based methods. With accurate localization, our
algorithm predicts potential collisions with 0.93 F1-score.
These findings demonstrate the potential of our lightweight,
anchor-free UWB-based approach as a scalable and practical
foundation for enhancing pedestrian safety in future urban
mobility systems.

2 Related Work
Various localization techniques have been explored to sup-
port collision prediction between vehicles and pedestrians.
GPS provides reliable positioning [5], but performs poorly
in urban settings due to multipath effects. Approaches such
as RTK/DGPS [9] were proposed to resolve this issue, but
they incur high costs and infrastructure overhead. Alterna-
tives using Wi-Fi [7], Bluetooth [3], and BLE [6] have been
developed, but they suffer from lower time resolution and re-
duced ranging accuracy resulting from high signal noise and
narrow bandwidths. Pedestrian Dead Reckoning (PDR) [4]
improves GPS localization but accumulates drift over time.
UWB has recently achieved decimeter-level ranging er-

rors in stationary conditions through time-of-flight measure-
ments [2]. For instance, PedLoc [8] employs vehicle-mounted
anchors to track pedestrians using overhearing-based UWB
communication. Zhang et al. [11] demonstrated inter-vehicle
localization through UWB-based vehicle-to-vehicle commu-
nication. Other works integrate UWB with IMU or PDR
for challenging environments [10, 12]. While effective, ex-
isting approaches depend on fixed anchors, calibration, or
pre-installed infrastructures that limit scalability in urban
conditions.

In contrast, CrashSniffer introduces an anchor-free UWB
localization system tailored for PM vehicles and pedestrians.
By leveraging a VAA formed through the natural motion
of the device, we estimate location without requiring fixed
reference points. Our design offers accurate and scalable
localization in infrastructure-limited environments.

3 CrashSniffer Overview
WeproposeCrashSniffer , a UWB-based system for pedestrian
localization and collision prediction that operates without
any pre-installed anchors. CrashSniffer first estimates the
pedestrian’s relative 2D position to a PM vehicle using Vir-
tual Antenna Array-Enhanced Localization (V-Loc), which
improves trilateration by leveraging motion-induced spatial
resolution for robust accuracy under occlusion. Section 4.1
presents the baseline trilateration method, and Section 4.2
introduces V-Loc, which applies virtual antenna array over
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Figure 1: Overview of trilateration-based localization
of a pedestrian occluded behind a parked vehicle. Two
UWB transceivers are placed on PM, and a pedestrian
holds one transceiver. Ranging results (𝑟1, 𝑟2) and a
known distance between transceivers (𝑤 ) are used to
calculate the pedestrian position (𝑥,𝑦) via trilateration.

multiple timestamps to improve estimation accuracy. Build-
ing on the localization results, Section 5 describes a mobility-
aware collision prediction algorithm that anticipates actual
threats while filtering out benign movements.

4 Anchor-Free Pedestrian Localization
CrashSniffer estimates a pedestrian’s position relative to a PM
vehicle using UWB ranging measurements. This section de-
scribes the underlying localization techniques, starting from
a baseline trilateration method and extending to a motion-
enhanced approach that leverages a virtual antenna array
for improved accuracy under real-world conditions.

4.1 Trilateration-Based Localization
We localize pedestrians relative to the PM using UWB trilat-
eration, with two transceivers on the PM’s handlebars and
one on the pedestrian. As more smartphones are equipped
with UWBs, we expect the transceiver on pedestrians would
be smartphones.
Figure 1 illustrates our approach. The PM moves along

the 𝑥-axis, with transceivers (𝑇1 and 𝑇2) at opposite ends of
the handlebar with distance 𝑤 , at

(
0,±𝑤

2
)
. The pedestrian

is located at an unknown position 𝑃 = (𝑥,𝑦). Using single-
sided two-way ranging, we measure the distances 𝑟1 and 𝑟2
from the pedestrian to 𝑇1 and 𝑇2, respectively.

The pedestrian’s position is estimated as the point where
these two circles, centered at 𝑇1 and 𝑇2 with radii 𝑟1 and 𝑟2,
respectively, intersect:

𝑥2 +
(
𝑦 − 𝑤

2

)2
= 𝑟 21 , 𝑥2 +

(
𝑦 + 𝑤

2

)2
= 𝑟 22 . (1)

We can easily derive the solution since the system comprises
two equations with two unknowns. Subtracting these equa-
tions eliminates 𝑥2:(

𝑦 − 𝑤

2

)2
−

(
𝑦 + 𝑤

2

)2
= 𝑟 21 − 𝑟 22 ⇒ 𝑦 =

𝑟 22 − 𝑟 21
2𝑤

. (2)
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Figure 2: Overview of VAA-enhanced localization (V-
Loc). V-Loc utilizes ranging results in two different
timestamps (𝑡prev and 𝑡curr), PM moving distance (𝑑),
and distance between transceivers (𝑤 ).

Substituting 𝑦 back into the first equation, we solve for 𝑥 :

𝑥 = ±
√︂
𝑟 21 −

(
𝑦 − 𝑤

2

)2
. (3)

Challenges with Trilateration. Trilateration offers a simple,
anchor-free method for estimating the pedestrian’s lateral
(side-to-side) position relative to the PM. However, it lacks
the ability to resolve front–back ambiguity along the PM’s
direction of motion. Additionally, its localization accuracy is
highly sensitive to the inter-transceiver distance𝑤 ; specifi-
cally, the estimation error increases quadratically as 𝑤 de-
creases (see Section 4.2). A smaller𝑤 amplifies the impact of
ranging noise, necessitating a more robust approach.

4.2 Virtual Antenna Array-Enhanced
Localization

To overcome the limitations of the trilateration-based ap-
proach, we introduce V-Loc, a VAA-enhanced localization
method (Figure 2). While the original VAA concept assumes a
static array of transceivers, we extend this idea to a dynamic
setting by treating the same UWB transceiver at different
timestamps as distinct virtual elements. By leveraging the for-
ward motion of the PM vehicle, V-Loc effectively synthesizes
a larger virtual array over time, thereby increasing spatial
resolution and improving localization accuracy without addi-
tional hardware. Furthermore, VAA formulation resolves the
front-back ambiguity along the 𝑥-axis, which the original
trilateration approach cannot distinguish.
We consider a PM heading straight along the positive 𝑥-

axis with a known speed. Two UWB devices are attached to
the handlebar of the PM, positioned vertically at (0, 𝑤2 ) and
(0,−𝑤

2 ). Due to vehicle movement, these devices occupied
positions (−𝑑, 𝑤2 ) and (−𝑑,−𝑤

2 ) at a previous time instance
𝑡 − Δ𝑡 . Thus, the virtual baseline 𝑑 represents the horizontal
displacement generated by the PM’s forward motion.

The pedestrian is positioned at unknown coordinates 𝑃 =

(𝑥,𝑦). Leveraging VAA, we obtain UWB rangings in two dif-
ferent timings: currentmeasurements (𝑟1 (𝑡curr) and 𝑟2 (𝑡curr))
and previous measurements (𝑟1 (𝑡prev) and 𝑟2 (𝑡prev)) :

𝑟 2𝑖 (𝑡prev) = (𝑥 + 𝑑)2 +
(
𝑦 + (−1)𝑖𝑤

2

)2
,

𝑟 2𝑖 (𝑡curr) = 𝑥2 +
(
𝑦 + (−1)𝑖𝑤

2

)2
. (𝑖 = 1, 2) (4)

As a result, we have four measurements with two variables
(𝑥,𝑦). While two equations are sufficient to obtain a closed-
form solution for two unknowns, we minimize the residuals
across all equations using the least-squares method for a
more accurate and stable estimate, especially in noisy envi-
ronments (e.g., vehicles between transceivers). Rewriting the
equations in matrix form, we have:

Ax = b, (5)

where

A =


0 −2𝑤
2𝑑 0
2𝑑 −2𝑤
2𝑑 2𝑤

 , x =

[
𝑥

𝑦

]
, b =


𝑟1 (𝑡curr)2 − 𝑟2 (𝑡curr)2

𝑟1 (𝑡curr)2 − 𝑟1 (𝑡prev)2 − 𝑑2

𝑟1 (𝑡curr)2 − 𝑟2 (𝑡prev)2 − 𝑑2

𝑟2 (𝑡curr)2 − 𝑟1 (𝑡prev)2 − 𝑑2

 .
(6)

The pedestrian’s position (𝑥,𝑦) can thus be accurately esti-
mated using the least-squares solution:

x̂ = (A⊺A)−1A⊺b. (7)

With the estimated position x̂, we keep track of the pedes-
trian’s position and apply the Extended Kalman filter to
further suppress the error.

Estimation Error Reduction from V-Loc. We analyze the esti-
mation error of the trilateration-based method and compare
it with the error characteristics of our V-Loc approach.
Trilateration-based estimation of 𝑦Tri is given in Eq. (2).

Suppose each measured distance 𝑟𝑖 is modeled as

𝑟𝑖 = 𝑟 ′𝑖 + 𝜖𝑖 , (8)

where 𝑟 ′𝑖 is the true distance and 𝜖𝑖 ∼ N(0, 𝜎2) represents
independent Gaussian noise with 𝜎 ≪ 𝑟 ′𝑖 . Then, the variance
of the squared distance is approximated as:

Var(𝑟 2𝑖 ) ≈ 4𝑟 2𝑖 𝜎
2. (9)

Using Eq. (2), the variance of 𝑦Tri becomes:

Var(𝑦Tri) =
4𝑟 21 + 4𝑟 22
4𝑤2 𝜎2 =

𝑟 21 + 𝑟 22
𝑤2 𝜎2. (10)

Assuming 𝑟1 ≈ 𝑟2 ≈ 𝑟 for simplicity, Eq. (10) simplifies to:

Var(𝑦Tri) ≈
2𝑟 2

𝑤2 𝜎
2 . (11)

For 𝑥Tri, the sign ambiguity in Eq. (3) complicates the anal-
ysis. To enable the analysis, we ideally assume the positive
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Table 1: Comparison of position estimation variances
between trilateration-based and V-Loc methods.

Var(𝑦) Var(𝑥)
Trilateration 2𝑟 2𝜎2/𝑤2 (𝑟 2𝜎2/𝑥2Tri)

(
1/2 + 2𝑦2Tri/𝑤2)

V-Loc 10𝑟 2𝜎2/9𝑤2 10𝑟 2𝜎2/9𝑑2

sign for estimating𝑥Tri.We compute the variance of𝑥 consid-
ering that 𝑦 is a function of 𝑟1 and 𝑟2. Using the multivariate
error propagation rule:

Var(𝑥Tri) =
(
𝜕𝑥Tri

𝜕𝑟1

)2
𝜎2 +

(
𝜕𝑥Tri

𝜕𝑟2

)2
𝜎2. (12)

To calculate, we first derive 𝑥Tri from Eq. (2) and Eq. (3):

𝑥Tri =

√︄
𝑟 21 −

(
𝑟 22 − 𝑟 21
2𝑤

− 𝑤

2

)2
. (13)

Then, using the chain rule:
𝜕𝑥Tri

𝜕𝑟1
=

𝑟1

𝑥Tri

(
1
2
+ 𝑦

𝑤

)
,

𝜕𝑥Tri

𝜕𝑟2
=

𝑟2

𝑥Tri

(
1
2
− 𝑦

𝑤

)
. (14)

Therefore, the full expression for the variance is:

Var(𝑥Tri) =
(
𝑟1

𝑥Tri

(
1
2
+ 𝑦Tri

𝑤

))2
𝜎2+

(
𝑟2

𝑥Tri

(
1
2
− 𝑦Tri

𝑤

))2
𝜎2 .

(15)
Simplifying with 𝑟1 ≈ 𝑟2 ≈ 𝑟 gives:

Var(𝑥Tri) ≈
𝑟 2𝜎2

𝑥2Tri

(
1
2
+
2𝑦2Tri
𝑤2

)
. (16)

We now consider the V-Loc-based estimation in Eq. (7).
We start from the least-squares solution x̂ = (A⊺A)−1A⊺b.
Here, (A⊺A)−1A⊺ is calculates as:

(A⊺A)−1A⊺ =

[
0 1

6𝑑
1
6𝑑

1
6𝑑

− 1
6𝑤 0 − 1

6𝑤
1
6𝑤

]
. (17)

The variances of 𝑥V−Loc and 𝑦V−Loc are calculated as:

Var(𝑥V−Loc) = Var

(∑︁
𝑖

(
(A⊺A)−1A⊺ )

1,𝑖 · 𝑏𝑖

)
,

Var(𝑦V−Loc) = Var

(∑︁
𝑖

(
(A⊺A)−1A⊺ )

2,𝑖 · 𝑏𝑖

)
. (18)

By calculating each 𝑥V−Loc, 𝑦V−Loc with Eq. (18) and applying
the variance of each 𝑟 with simplification 𝑟𝑖 ≈ 𝑟 results in:

Var(𝑥) ≈ 10𝑟 2𝜎2

9𝑑2
, Var(𝑦) ≈ 10𝑟 2𝜎2

9𝑤2 . (19)

Table 1 summarizes the estimated variances of V-Loc and
the trilateration-based baseline. For the 𝑦-coordinate, V-Loc
reduces the variance from 2𝑟 2𝜎2/𝑤2 to 10𝑟 2𝜎2/9𝑤2. For the
𝑥-coordinate, the variance under trilateration depends on

both the measurement noise and the pedestrian position
(𝑥,𝑦), making it more sensitive to spatial configuration and
noise propagation. In contrast, V-Loc yields a closed-form
bound of 10𝑟 2𝜎2/9𝑑2, which is not only tighter via a large
PMmoving distance𝑑 but also independent of 𝑥 and𝑦. These
results demonstrate that V-Loc consistently achieves a more
robust estimation than trilateration.

5 Mobility-Aware Collision Prediction
To complement the pedestrian localization algorithm V-Loc,
CrashSniffer integrates a trajectory-aware collision predic-
tion algorithm called MACP (Mobility-Aware Collision Pre-
diction). MACP builds upon conventional sector-based col-
lision detection methods [5] by incorporating pedestrian
trajectory extrapolation and direction-aware filtering. This
enables CrashSniffer to accurately distinguish between col-
lision threats and benign pass-by movements, even under
occlusion or blind spot scenarios.
To assess collision risk, we define a probable area as a

forward-facing sector originating from the PM’s current
position, parameterized by a radius and angular span:

𝜃 = 2 arctan
(𝛼
𝑣

)
, 𝑟 = 𝑇 · 𝑣, (20)

where 𝑣 denotes the PM’s speed, 𝑇 is a tunable prediction
horizon, and 𝛼 represents an empirically determined lateral
safety margin (set to 2.334 [5]). This sector models the spa-
tial extent of the PM’s potential movement over time 𝑇 . A
pedestrian localized within this area using real-time UWB
measurements is identified as a potential collision risk.
While the forward-facing sector captures the immediate

risk area, it is insufficient in scenarios where pedestrians
emerge abruptly, particularly from blind spots near the front
of the PM, leaving little time for reaction. To address this
issue, we perform linear extrapolation using the two most
recent pedestrian positions, denoted as p𝑡−1 and p𝑡 , and
predict an estimated future position p𝑡+1 as:

p𝑡+1 = p𝑡 + (p𝑡 − p𝑡−1). (21)

This extrapolated position p𝑡+1 is then used in place of p𝑡
for the sector inclusion test, enabling earlier detection of
fast-approaching pedestrians whose current positions may
lie just outside the predefined probable area.
To reduce false positives from non-collision cases (e.g.,

pedestrians passing by), we introduce an additional direc-
tional filter that checks whether the pedestrian’s recent tra-
jectory intersects a circular safety boundary around the PM.
This boundary, with radius 𝜌 = 0.7m, reflects the PM’s phys-
ical footprint. The trajectory is modeled as a line segment ℓ
between p𝑡−1 and p𝑡 , and the perpendicular distance from
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Figure 3: Illustration of our mobility-aware collision
prediction: (a) a colliding case and (b) a filtered non-
colliding case.

the PM’s position c to ℓ is computed as:

𝑑 =
|d × f |
|d| , (22)

where d = p𝑡 −p𝑡−1 and f = p𝑡−1−c. We predict the collision
only if both the extrapolated position falls within the prob-
able area and the trajectory ℓ directs to PM with a certain
threshold, i.e., 𝑑 ≤ 𝜌 .

Figure 3 illustrates the effectiveness of this direction-aware
filtering. In the collision case (left), the pedestrian’s trajec-
tory intersects the boundary and aligns with the PM’s di-
rection of motion, satisfying both spatial and directional
constraints. Conversely, the non-collision case (right) shows
a pedestrian passing near the PM along a parallel path that
does not intersect the critical zone. These examples high-
light the importance of incorporating trajectory orientation
into collision prediction, enabling the system to disregard
non-threatening movements and focus on actual risks.

6 Experiments
6.1 Setup
We evaluate CrashSniffer , our anchor-free pedestrian colli-
sion prediction system, through controlled testbed exper-
iments designed to reflect urban scenarios (Figure 4). The
experimental setup replicates potential collisions between
a PM vehicle and a pedestrian obscured by occlusion (e.g.,
parked vehicles).
To simulate PM operation, we use a remote-controlled

vehicle equipped with two UWB transceivers mounted at
handlebar height. The pedestrian is equipped with a hand-
held device, mimicking smartphone usage. Both PM and
pedestrian devices are built using Raspberry Pi 4 units, in-
tegrated with UWB (Qorvo DWM3001C) and GPS (u-blox
NEO-6M) modules.

For ground-truth localization, we employ a high-precision
LiDAR sensor (Benewake TF03) and constrain movement
paths using a custom rail track to ensure consistent position-
ing across trials. The PM accelerates from a stationary state,

Table 2: Pedestrian localization error (m) under two
pedestrian scenarios: standing (w/o collision) and cross-
ing (w/ collision). Each averaged over seven rounds.

Standing Crossing Avg.

GPS 5.54±1.55 2.79±1.66 4.17±2.11
Trilateration 2.99±2.78 0.86±0.42 1.93±2.26
V-Loc (Ours) 1.32±0.47 0.69±0.19 1.00±0.48

reaching an average speed of 7.2 km/h, with an initial sep-
aration of 11 meters from the pedestrian. Each experiment
concludes when the PM passes the potential collision point.
We test two pedestrian scenarios across multiple rounds:

(1) Non-collision, the pedestrian stands still near the crossing
point; and (2) Collision, the pedestrian crosses the PM’s path
with limited visibility.

Throughout the experiment, V-Loc is used for real-time
pedestrian localization, and MACP is applied to assess colli-
sion risk. Together, these components enable CrashSniffer to
track pedestrian motion and predict collisions in real-time.

6.2 Results
6.2.1 Relative Localization Performance. To evaluate the ac-
curacy of our UWB-based relative localization system, we
performed seven rounds each for collision and non-collision
scenarios. CrashSniffer’s performance was assessed by com-
paring the estimated positions of pedestrians relative to the
PM vehicle against ground-truth measurements obtained via
a high-precision LiDAR system.
Table 2 presents the average localization errors across

both scenarios using three methods: GPS localization, UWB
trilateration, and VAA-enhanced localization (V-Loc). Our
approach achieved the lowest average localization error at
1.00± 0.48meters, significantly outperforming the GPS base-
line (4.17 ± 2.11 meters) and the UWB trilateration method
(1.93 ± 2.26 meters). The results validate our VAA-based lo-
calization’s improved accuracy and robustness, especially
under dynamic occlusion conditions.

6.2.2 Collision Prediction Performance. We evaluated the
collision prediction performance by measuring the ability of
various systems to correctly identify potential collisions in
challenging conditions such as occlusion. Metrics are true
positive rate, true negative rate, and F1-score, with results
reported in Table 3. We compare our system with the sector-
based algorithm inspired by pSafety [5], predicting the colli-
sion when PM enters the safety zone.
By combining the collision prediction algorithm MACP

with the localization algorithm V-Loc, CrashSniffer achieved
the best-performing accuracy (F1=0.93), detecting 1.33 ±
0.29 seconds before collision. This highlights CrashSniffer’s
effectiveness in timely alerts with minimal false positives.
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(a) Bird’s-eye view of the experiment. (b) Real-world scene with a pedestrian standing.

Figure 4: Experimental setup for evaluating UWB-based pedestrian collision prediction.

Table 3: Collision prediction performance. True pos-
itive/negative ratio (TPR/TNR) denotes accuracy for
collision/non-collision experiments.

TPR TNR F1

GPS Sector-only 0.14 0.57 0.18

Trilateration Sector-only 0.86 0.00 0.60
MACP (Ours) 0.71 0.29 0.59

V-Loc (Ours) Sector-only 1.00 0.00 0.67
MACP (Ours) 1.00 0.86 0.93

In contrast, the sector-only baseline method often mis-
classifies situations where a pedestrian briefly enters the
collision range but ultimately passes by without intersecting
the PM’s path. This leads to false positives and unnecessary
alerts. Our MACP approach, by modeling pedestrian trajec-
tory and motion direction, accurately distinguishes between
true collision courses and non-threatening pass-by scenarios,
ensuring only meaningful threats trigger warnings.

These results show the advantage of combining accurate
localization with trajectory-aware prediction: CrashSniffer
predicts true collisions and dynamically filters out benign
interactions, improving safety without overwhelming users
with false alarms.

7 Conclusion
We presented CrashSniffer , a novel UWB-based pedestrian
collision prediction system for personal mobility vehicles,
featuring a Virtual Antenna Array-based localization to en-
able accurate, anchor-free pedestrian tracking. Combined
with ourMobility-Aware Collision Prediction algorithm,Crash-
Sniffer reliably distinguishes between true collision risks and
benign interactions by incorporating trajectory and direc-
tional cues. Experiments under occlusion conditions show
CrashSniffer achieves 58% lower localization error and 39%
higher F1-score comparedwith the best performing baselines.

As future work, we plan to extend the system beyond one-
to-one communication to support multi-pedestrian tracking
and evaluate its deployment in complex urban environments.
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