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Abstract—HTTP is a popular channel for malware to com-
municate with malicious servers (e.g., Command & Control,
drive-by download, drop-zone), as well as to attack benign
servers. By utilizing HTTP requests, malware easily disguises
itself under a large amount of benign HTTP traffic. Thus, iden-
tifying malicious HTTP activities is challenging. We leverage
an insight that cyber criminals are increasingly using dynamic
malicious infrastructures with multiple servers to be efficient
and anonymous in (i) malware distribution (using redirectors
and exploit servers), (ii) control (using C&C servers) and (iii)
monetization (using payment servers), and (iv) being robust
against server takedowns (using multiple backups for each
type of servers). Instead of focusing on detecting individual
malicious domains, we propose a complementary approach to
identify a group of closely related servers that are potentially
involved in the same malware campaign, which we term as As-
sociated Server Herd (ASH). Our solution, SMASH (Systematic
Mining of Associated Server Herds), utilizes an unsupervised
framework to infer malware ASHs by systematically mining the
relations among all servers from multiple dimensions. We build
a prototype system of SMASH and evaluate it with traces from
a large ISP. The result shows that SMASH successfully infers
a large number of previously undetected malicious servers and
possible zero-day attacks, with low false positives. We believe
the inferred ASHs provide a better global view of the attack
campaign that may not be easily captured by detecting only
individual servers.

I. INTRODUCTION

Malware is a critical security threat to the Internet. Mal-

ware is increasingly using HTTP as its communication and

attacking channel due to the following reasons: (i) HTTP

is allowed in most networks, and thus malware has a good

chance to infect victims and communicate with attackers. (ii)

Since HTTP now is the majority of network traffic, malware

can easily disguise its activities under huge benign HTTP

traffic, making it difficult to be detected. (iii) Most HTTP

requests use domain names to find servers, thus malware

can easily evade IP blocking or hide their servers by using

Fast-Flux [25]. As a result, 75 % of malware is observed to

generate HTTP traffic [28], and the number of Web-based

attacks increased by almost three-fold since 2012 [9].
Given the severity and popularity of HTTP based mal-

ware, we focus on such threats. In particular, we concentrate

on detecting malicious HTTP activities from the server side
communication perspective.1 We define two types of mali-

*Work done while working at Narus Inc.
1By servers, we mean both IP addresses and domain names.

(a) Communication activity (b) Attacking activity

Figure 1. Malicious campaigns examples.

cious activities: (i) communication activity and (ii) attacking

activity. Communication activity involves malware’s com-

munication with malicious servers, while attacking activity

involves malware’s attack on benign servers. We define a

malicious campaign as a set of servers that are involved

in these malicious activities. We observe that malicious

campaigns in both types of malicious activities typically

share very similar server-side properties. Figure 1 shows

real examples. In the communication activity (Figure 1(a)),

there are two clients sending HTTP requests to multiple

C&C domains. Malware often uses such domain fluxing to

evade detection, leading to sharing the same IP address. In

addition, since these C&C servers use the same communi-

cation protocol, they utilize the same script “login.php” to

handle the requests from their bots. These multiples C&C

domains form a malicious communication campaign. In the

attacking activity (Figure 1(b)), which is a ZmEu scanning

campaign, there are two clients/bots that kept scanning seven

benign servers targeting on “setup.php” script, which has a

known code injection vulnerability. In this case, those two

clients/bots scan the default path of phpMyAdmin for the

exploitation leading to sharing the same file “setup.php”.

Those seven targeted servers form a malicious attacking

campaign.

Many approaches have been proposed to detect malware

activities. Different from existing work that relies on signa-

tures [27], client side behavior patterns [21], or supervised

learning of individual server reputation [17], we propose an

unsupervised approach that focuses on server side communi-

cation patterns and does not rely on signatures. We leverage

an insight that cyber criminals are increasingly using a

dynamic malicious infrastructure with multiple servers to be
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efficient and anonymous in (i) malware distribution (using

redirectors and exploit servers), (ii) control (using C&C

servers), (iii) monetization (using payment servers), and

(iv) being robust against server takedown (using multiple

backups for each type of servers). As a result, in each mal-

ware campaign, there are multiple malware servers used as

well as common benign servers they attacked. As illustrated

in Figure 1, these servers are correlated, e.g., they share

similar client sets. This is typically not true for benign

servers because different (independent) servers usually have

different sets of clients.2

This insight comes from an inquisition that benign servers

usually serve different benign users whose behaviors might

be diverse while malicious servers are set up for certain mali-

cious clients. Not only connected by a similar set of clients,

but also if these servers are the same type (e.g., both are

exploit or C&C servers), they are likely to receive requests

targeting the same/similar URI files (e.g., vulnerable files

or exploit scripts) from malware clients. For benign servers,

each server usually has lots of scripts/pages and different

users likely visit different pages for different purposes. On

the other hand, as malicious servers are set up for certain

purpose (e.g., C&C, malware downloading), it only uses

certain scripts/pages to handle all their bots’ requests. In

addition, we observe many other correlation among malware

servers in the same campaign. For example, they may have

the same IP address although with many different domain

names (i.e., domain-fluxing, as shown in Figure 1(a)), or

their domains are registered by the same organization at a

similar time.
Based on the above insights, instead of focusing on detect-

ing individual malicious domains, we propose a complemen-

tary approach to identify a group of closely related servers

that are involved in the same malware campaign, which

we term as Associated Server Herd (ASH). Our scheme,

SMASH (Systematic Mining of Associated Server Herds),

is designed to be deployed at enterprise or ISP networks

to automatically detect malicious servers that communicate

with their bot/malware armies. It uses an unsupervised com-

munity detection technique to characterize the relationship

among the servers from multiple dimensions, e.g. if they are

contacted by common clients, if the same or similar files are

accessed/downloaded from them, or if they have the same

Whois information, etc. Our data mining based approach

exposes that often servers involved in an attack retain some

similarity at multiple dimensions and we can detect such

groups by combining them. Therefore, SMASH is not a real-

time detection system, however, it can be run everyday to

detect daily malicious activities in a large ISP/Enterprise

networks or be run on a large network traffic trace to dig

out previously unknown malicious activities.

2Even in the case of load balancing or Content Distribution Networks
where multiple benign servers are used, these servers are likely to serve
different set of clients (e.g., based on their locations).

SMASH detects malicious campaigns by correlating

ASHs generated from multiple dimensions. Although each

dimension itself might not be sufficient to distinguish mali-

cious severs from benign servers, the combination of these

dimensions can generate ASHs involved in malicious cam-

paigns. The suspicious score of correlated ASHs is based on

different combinations. The more close relationship an ASH

has, the higher the probability the servers in it are involved

in malicious activities.

Our main contributions are summarized as follows:

• We propose SMASH, a system that detects a variety

of attacking campaigns and malicious communication cam-

paigns using an unsupervised data mining approach. Since

our approach is unsupervised, it can detect zero-day malware

campaigns.

• We propose a two-step method to identify groups of

servers involved in a malware campaign. In the first step,

we generate multiple ASHs using graph based clustering

on individual dimensions. In the second step, we detect

malicious ASHs by correlating them. Rather than detecting

a single server in isolation, SMASH infers ASHs by looking

at the global, holistic network view. Moreover, by correlating

in multiple dimensions, SMASH is robust to manipulation

and evasion from attackers.

• We evaluate SMASH with 9 days of large ISP data and

present the details of the malicious campaigns it discovered.

SMASH detected servers involved in both attacking and

communication campaigns with the highest false positive

rate of only 0.064%. SMASH found a total of 236 con-

firmed malicious campaigns with more than 10,000 servers

involved in malicious activities. SMASH discovered nearly

7× the number of servers detected by a commercial IDS

and blacklists. SMASH also revealed 600 benign servers

suffering from web injection campaigns while IDS detected

only four. Other examples of inferred real world campaigns

include Bagle botnet, Conficker botnet, Zeus botnet, Sality

botnet, TDSS botnet, etc.

II. RELATED WORK

Detecting malicious domains has been widely studied

from different angles. Many schemes detect malicious do-

mains from the DNS point of view. In [15, 17], the au-

thors used different features (e.g., number of distinct TLDs,

number of distinct malware samples that contacted the

domain, changes in the number of requests to a domain) to

evaluate the reputation of each single domain in isolation.

However, such methods can not detect servers involved in

attacking activities, and need malicious domain seeds to train

their system. In [16], Antonkakis et. al. focused only on

malicious domains generated by DGA malware, and such

method can not be applied to general malicious domains.

Kopis [15] can be used to detect general malicious domains.

However, it needs to monitor DNS traffic at the upper DNS

hierarchy, which dramatically limits its application.
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Another line of research detects malicious domains by

extracting signatures from malware traffic and applying

generated signatures to live network to detect malware

traffic [27, 28]. Perdisci et al. [28] proposed a system

that clusters malware samples requesting similar URLs and

generates structure signatures from them. The generated

signatures can be used to detect infected hosts on live

networks. SMASH targets both malicious IP addresses and

domains that are involved in attacking and communication

activities. In addition, our system is an completely unsuper-

vised system that does not need malicious traffic seeds to

train features or build templates/signatures.

Gao et al. [20] studied the temporal relationship among

servers to infer malicious domains that always appear with

the seed malicious domains. Li et al. [26] studied the topol-

ogy among malicious servers and inferred other malicious

servers from a small set of malicious severs seeds. However,

the limitation of these propagation based detection systems is

that their effectiveness depends on the malicious seeds, thus

can not be used to detect servers involved in new, unknown

activities that malicious seeds can not cover.

Community/clustering based techniques have also been

widely researched in both spam and malware detection.

Zhang et al. [31] proposed to detect comment spam by

exploiting the relationship among benign servers that are

targeted by comment spammers. Recently, Invernizzi et

al. [24] proposed a system to detect malware distribution

networks. It explored four techniques to group candidate

connections and built a neighbor graph to further filter false

positives. Stringhini et al. [29] detected malicious web pages

by focusing on HTTP redirections. Their approach first

grouped URLs based on the different combination of TLD,

Domain, Pages, IP and Parameters, and further classified

malicious groups with 28 features. All above systems either

target on specific attack channels (e.g., Forum spam, HTTP

redirections and malware distribution network) or require

a large and diverse user base [29], which limits their

practicality. In contrast, SMASH targets on more generic

malicious servers and with fewer prerequisites.

Gu et al. [21, 22] proposed anomaly-based botnet detec-

tion systems that look for similar network behaviors across

client hosts. A set of bots that share similar anomaly patterns

are detected as botnets. Yen et al. [30] detected malware by

aggregating traffic that share the same external destinations

or similar payload, and involve internal hosts with similar

OS platforms. The intuition behind these work is that hosts

infected with the same bot malware usually have common

C&C communication patterns. Therefore, they infer the

infected clients by analyzing the relationship among clients.

Different from these work, SMASH focuses on malicious

servers; we study the relations among servers because server-

side infrastructure is more robust and stable. While mal-

ware can easily randomize client-side traffic patterns (e.g.,

injecting random content in their packets, sending requests

to random benign websites), they inevitably need to contact

their malicious servers to fulfill their desired functions. In

addition, client based approaches usually require multiple

infections of clients in a network. We believe SMASH

is an excellent complementary system to client-side based

detection systems.

III. SYSTEM DESIGN

The primary goal of SMASH is to detect suspicious

correlated servers that are involved in malicious activities

by passively looking at the network-wide HTTP communi-

cations. Such malicious activities include launching HTTP

attacks on benign severs and communicating with malicious

servers through the HTTP channel. Instead of detecting each

server in isolation, we study the different relationship among

all the servers involved in similar activities. Those servers

involved in the same malicious activity are inferred as a

malicious campaign by SMASH.

Figure 2 depicts the architecture of SMASH. The system

takes HTTP network traffic as input, and has five compo-

nents: traffic preprocessing, ASH mining, ASH correlation,

pruning, and malicious campaign inference.

A. Preprocessing

The goal of preprocessing is to reduce the traffic that

need to be processed by SMASH. We explore two steps

to reduce the number of input servers to SMASH. First,

we assume that domains with the same second-level domain

belong to the same organization.3 For example, a.xyx.com.cn

and b.xyz.com.cn both belong to xyz.com.cn, thus there is

no need to differentiate them. Some CDN/Cloud servers

will be also aggregated as one server in this case. For

example, all the Facebook CDN servers will be aggregated

as “fbcdn.net”. Amazon cloud servers will be aggregated as

“amazonaws.com”. The aggregation of all domains based

on their second-level domains leads to 60% reduction of all

servers.

We further remove most benign servers based on their

popularity.4 To measure the “popularity” of servers, we

utilize the concept of inverse document frequency (IDF),

which is a measure of whether the term is common across

all documents in information retrieval. In our case, we try to

remove common servers across all the clients’ requests. We

define the popularity of a server as the number of clients that

communicated with the server. The more clients the server

is connected to, the more popular the server is.

We select an IDF threshold of 200 based on the popularity

distribution of IDS confirmed malicious servers, which filters

3There are some exceptions such as cloud servers, dynamic DNS. We
will discuss them in Section VI.

4We acknowledge that we may miss some compromised popular do-
mains. However, we argue that this represents a necessary tradeoff between
performance and accuracy. In reality most popular servers have resources
and incentives to secure their websites and thus have a lower possibility to
be compromised than less popular ones.
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Figure 2. System overview.

very popular servers but still keeps 99% of the servers. After

the preprocessing process, we reduced 58.6% of traffic in our

dataset.

B. Associated Server Herd Mining

The goal of ASH mining is to find closely related servers

that are involved in the same malware campaign. We define

one main dimension and three secondary dimensions to

characterize the relationship among the servers, and system-

atically mine ASHs. ASH generated from each dimension

itself might not be sufficient to distinguish malicious group

of servers from benign servers, but ASHs associated with the

combination of these dimensions are more likely to generate

server groups involved in malicious campaigns.

To find the correlated servers, a simple way is to assign

each server with a feature vector and perform clustering

on this multi-dimension feature vector. However, the di-

mensions are different in nature and it is inefficient to

combine them to evaluate similarity. Also, as we show in

Section V-C, it is hard to assign a unique weight for each

dimension because different malicious campaigns rely on

different combinations of those dimensions. We observe that

malicious servers in the same malicious campaign usually

share a very similar (if not the same) set of malware clients

while those malicious servers are usually not connected by

benign clients. Thus, we use client similarity as the main

dimension, which is much more robust against manipulation

from attackers than other dimensions, and can reliably group

the servers.

We see that although client similarity alone may not

directly distinguish malicious servers from benign servers,

it separates benign server groups from malicious server

groups. Thus, the main dimension must be satisfied for all

campaigns.

Each secondary dimension characterizes the relationship

among different servers from a certain perspective. We

evaluate how their combinations can be used to infer ma-

licious campaigns in Section V-C. Note that we envision

SMASH, as an extensible system, can easily incorporate new

dimensions. For example, to keep our system lightweight, we

have not included all payload downloaded from each host.

However, this can be an interesting dimension to consider

and can be easily added as another dimension.

1) Main Dimension: We use client similarity as the main

dimension. Client similarity between two servers depends

on the common set of clients contacting them. We define

the client similarity between servers Si and Sj as:

Client(Si, Sj) =
|Csi

⋂
Csj |

|Csi |
∗ |Csj

⋂
Csi |

|Csj |
(1)

where CSi denotes the set of clients contacting server

Si. The ratio
|CSi

⋂
CSj

|
|CSi

| represents the importance of the

common clients for server Si. The intuition here is that if

two servers with many clients are similar, there will be large

overlap between their clients. Thus, two servers are similar

when their common clients are important to both servers.

Since malicious servers are usually not connected by

benign clients while infected clients are usually connected to

a same set of suspicious servers, two servers sharing similar

sets of client connections should belong to the same ASH.

Specifically, we build a communication graph G = (V,E),
where V denotes all the servers and each edge (i, j) ∈ E
denotes that servers i and j share a set of clients. The weight

of the edges reflects the strength of similarity between the

two servers in terms of client similarity.

To extract ASH from G, we adopt a graph based clustering

algorithm [18] that is designed to efficiently uncover com-

munities in large networks. It uses modularity to measure

the quality of extracted community, which is a scalar value

between -1 and 1, and represents the density of the links

inside the community as compared with the links between

communities. It automatically finds high modularity parti-

tions of large networks in short time. The nodes that are

still connected to each other after this process form ASHs

of the main dimension.

2) Secondary Dimensions: We present our current sec-

ondary dimensions.

URI File Similarity: We study the relationship among

servers based on URI files as servers in the same malicious

activities might share similar/same URI files. For example,
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Figure 3. Obfuscated filenames.

web attacks target certain vulnerable files, and thus different

targeted servers share the same destination files. Different

C&C servers in the same campaign may use the same scripts

to handle the requests from the infected clients, and hence

they might also share the same files. We extract all the URI

files of the servers by checking the HTTP requests. Here we

focus on URI files rather than the whole URI path because

in attacking activities, some benign servers share the same

vulnerable file but have different paths due to the different

configurations on each web server.

We define a URI file as the substring of a URI starting

from the last ‘/’ until the end before the question mark,

which usually is the file or script used for handling clients’

requests. As shown in Figure 3, sometimes attackers use

obfuscated filenames for different malicious servers that are

involved in the same malicious campaign. We define URI

file similarity between the two files as follows. If the length

of the filename is shorter than or equal to len, we define the

similarity function of files fi and fj as:

sim(fi, fj) =

{
1 iffi = fj , (2)

0 otherwise. (3)

Thus, two files are similar if they are exactly the same,

since short filenames are usually not obfuscated. However,

if the length of a filename is longer than len5, we define the

similarity function as:

sim(fi, fj) =

{
1 if cos(θ) > 0.8 (4)

0 otherwise (5)

where

cos(θ) =
CharSetfi · Charsetfj

‖CharSetfi‖ · ‖CharSetfj‖
. (6)

where CharSetfi is the character distribution vector of file

name fi. Thus, for long filenames, we check the characters

frequency distribution (CharSet in Eq. (6)) of the file-

names. Two filenames are similar as long as their names

have similar character distributions. For the exact same

filenames, the similarity score is 1. While our similarity

function works well in our evaluation, it can be replaced by

any similarity functions such as Levenshtein distance and

Hamming Distance.

5len is empirically set to 25 in this paper, which is based on the length
distribution of the filenames whose servers have been labeled by IDS.

Figure 4. Whois similarity.

We now define the file similarity between the two servers
Si and Sj as

File(Si, Sj) =

∑
m

maxn(sim(fSim
, fSjn

))∑
m

1
∗
∑

n
maxm(sim(fSjn

, fSim
))∑

n
1

(7)

where fSim is the m-th file from server Si. Similar to client

similarity, the first term of the right hand side of Eq. (7)

reflects the importance of similar files to server Si, and the

second term of the right hand side of the equation reflects

the importance of similar files to server Sj . Thus, if two

servers share enough similar files, they might be involved in

the same activities, and should be in the same ASH.

IP Address Set Similarity: We investigate the relation-

ship among the servers based on their IP addresses because

malicious domains may share a similar set of IP addresses.

For example, malicious servers may use fast flux to evade

domain based detection, and thus multiple domains may

share the same IP address. In our dataset, skolewcho.com,

switcho81.com, jikdooty0.com and swltch081.com all used

the same IP address. Similar to client similarity, we define

IP address set similarity as:

IP (Si, Sj) =
|ISi

⋂
ISj
|

|ISi
| ∗

|ISj

⋂
ISi
|

|ISj
| (8)

where ISi is the set of IPs that server Si is associated

with. Thus, if two servers share similar IP addresses, they

might be involved in the same activities and should be in

the same ASH.

Whois Similarity: We study the relationship among

servers based on their whois information as malicious server-

s may be registered with similar information, such as register

name, home address, email address, phone number and

name servers. Figure 4 shows the whois information of

two example malicious servers. Although they have different

registrants, they share the same home address, phone number

and name servers. We use the whois similarity to measure

the relationship among servers, which is defined as the

number of shared fields between the two servers over the

union of fields. We require that the two servers share at least

two above mentioned fields to be considered as associated

servers to avoid the case that two servers only share the

domain name registration proxy.

3) ASH Generation: After studying the similarity among

servers from different multiple dimensions, we build sim-

ilarity graphs for different dimensions, and use the same

graph based community detection algorithm mentioned in

Section III-B1 to generate ASHs. The nodes connected to
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each other after this process form ASHs for each dimension.

C. Associated Server Herd Correlation

Once we obtain the ASHs from different dimensions,

we perform ASH correlation. The goal of multi-dimension

correlation is to distinguish malicious ASHs from benign

ASHs. To achieve this, we consider ASHs in different

dimensions and extract their common associated servers to

form new ASHs. Ideally, the more dimensions an ASH be-

longs to, the more likely it is involved in malicious activities.

The intersection of ASHs between the main dimension and

secondary dimensions forms the new suspicious ASHs.

For example, (ASHd
j

⋂
ASHm

i ) forms a new ASH com-

bining ASHm
i from the main dimension m and ASHd

j from

a secondary dimension d. We compute the suspicious score

for each server in the new ASH as follows:

S(Si) =
∑

d∈Sec Dimensions

wd(C
d
Si
)wm(Cm

Si
)Φ(|Cd

Si

⋂
Cm

Si
|)

(9)

where Φ(x) = 1
2 (1 + erf(x−μ

γ )), erf(·) is the “S” shaped

Gaussian error function, and μ and γ are user specified

parameters.6 Cm
Si

is an ASH from dimension m that includes

server Si and wd(C
d
Si
) represents the ASH density. Density

is measured as the number of edges |e| in one group over

the number of edges in the fully connected graph with

|v| vertices in that group (2 ∗ |e|/(|v| ∗ (|v| − 1)). The

intuition here is that the more dense a group is, the more

likely it belongs to a malicious group, as benign servers

are less likely to be well connected. When we obtain the

suspicious score for each server in the newly formed ASH,

the servers whose scores are below the threshold thresh are

removed. In addition, the groups with only one server left

are also removed because that server can not be associated

with others. We discuss the selection of thresh value in

Section V.

In Eq. (9), Φ(ASHm
i

⋂
ASHd

j ) measures the suspicious-

ness of the newly formed ASH, created with the servers

common in two ASHs formed based on dimensions m and

d. It is based on the size of the ASH and promotes the

ASHs with a large number of servers. A smaller value of

|ASHm
i

⋂
ASHd

j | means that there are only few servers in

the ASH, and we have less confidence in its maliciousness.

Hence we need to cross check with more dimensions to

make a decision.

The “S” shaped Φ() normalizes Φ(ASHm
i

⋂
ASHd

j ) into

a value between 0 and 1. After the normalization, a group

with less than four servers receives a low score, and need

to be cross checked with more dimensions to accumulate

higher suspicious scores. For each dimension, the highest

score is 1. In this case, the correlation score reflects how

6We empirically set μ = 4 and γ = 5.5. Choice of μ promotes the
clusters with size larger than 4. γ determines the desired steepness of the
curve.

the ASHs are formed. Suspiciousness score S(.) of each

server then accumulates scores from all ASHs it belongs

to. The higher the score, the more suspicious the server is.

If a server has suspiciousness score below thresh, it gets

removed from all the ASHs. After the removal, the ASHs

(created by combining multiple dimensions) are left with

only servers with high scores. For example, a score higher

than 1.0 means that the server is inferred through one main

dimension and at least two secondary dimensions. We then

call the ASHs with high scoring servers as suspicious.
D. Pruning

After the correlation, we define and prune two types of

noisy ASHs: (i) Redirection Group and (ii) Referrer Group.

For the redirection group, some servers are associated with

each other because they belong to the same redirection

chain. Hence they share exactly the same sets of clients, IP

addresses, and sometimes URI files. For the referrer group,

some servers are associated with each other because they are

referred by the same landing server (e.g, landing websites

are embedded with other websites).

To remove these noisy servers without eliminating ma-

licious servers, we use their landing servers to replace all

the servers in the same redirection chain instead of simply

dropping those groups, if all the servers in the chain share

same IP addresses, URI files or Whois information. Similar

to the redirection group, we also use landing servers to

replace all the referred servers. The intuition here is that

for the redirection and the referrer groups, if a client visits

the landing server, it automatically visits other servers in the

redirection chain or the embedded servers. We therefore use

only the landing server to represent those servers.

We collect the redirection chains by sending a HTTP

request to each server in the ASHs, and obtain referrer

information by extracting the HTTP “referrer” field from

the input network traffic. After the pruning process, if there

still exist more than one server in the ASH, we keep that

group as a candidate malicious ASH.

E. Malicious Campaign Inference

ASH correlation process typically captures specific ma-

licious activities, but not the whole malicious activities.

For example, bots first download encrypted files from some

servers and then connect to other C&C servers. In this case,

ASH correlation process might separate these two processes

into two different herds, making it difficult to analyze the

file downloading activities. Towards this end, we apply a

refinement step in which we rebuild the original attack

campaign based on the client similarity. Two malicious

ASHs are merged when their servers are in the same herd

for the main dimension, i.e., they share a very similar set of

clients. The intuition is that the main dimension captures the

group connection behaviors of malicious activities, and the

infected clients that connect to different files or IPs could

still belong to the same malicious campaign.
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Table I
ISP NETWORK TRAFFIC STATISTICS.

Data2011day Data2012day Data2012week

# of clients 14,649 18,354 28,285
# of HTTP requests 28,544,473 40,522,026 168,726,091

# of Servers 92,517 117,507 354,578
# of URI Files 1,521,249 2,936,082 12,698,176

IV. EVALUATION DATA

We now describe the details of the network dataset and

the ground truth used to evaluate SMASH.

A. Network Trace

To evaluate our system, we experiment with real network

traffic traces collected at the edges of a large ISP. We mon-

itored all the incoming and outgoing traffic in the network.

The monitored users were mostly residential, and connected

to the Internet via high-end ADSL links. Our traces are

PCAP files and for every TCP connection and UDP flow, we

collected the first 5000 bytes, including the IP addresses and

domain names of the destination servers. Table I presents the

information of the ISP traffic we collected at different times:

one day data from October 2011 (Data2011day), one day

data from August 2012 (Data2012day), and one week data

from October 2012 (Data2012week). We choose data from

different periods to evaluate the performance of SMASH

over time.

B. Ground Truth

To estimate the false positives and negatives of our

inference results, we use the following data sources as the

ground truth.

Intrusion Detection System (IDS): We used a well-known

commercial IDS with signatures to label malicious flows

with corresponding threat identifiers. Note that since IDS

signatures are constantly updated, we used two versions of

the same IDS, one from early 2012 and the other from June

2013. We run all the collected network traces through both

IDS versions and generate two ground truth datasets: the

servers (IDS2012) labeled by the 2012 IDS signatures and

the servers (IDS2013) labeled by the 2013 signatures but

not in IDS2012.

Online Blacklist: We also check our inferred results

with popular blacklists, including Malware Domain Block

List [4], Malware Domain List [5], Phishtank [6], SpyEye

Tracker [8], ZeuS Tracker [14] and online services such as

Virustotal [11], Web of Trust (WOT) [12] and WhatIsMyI-

PAddress [2]. If a server is listed as malicious by any of

these blacklists, except WhatISMyIPAddress, we confirm it

as a malicious server. As for WhatIsMyIPAddress, which

integrates results from 78 blacklist services, we require a

malicious report from at least two blacklists to confirm as a

malicious server.

Table II
NUMBER OF MALICIOUS CAMPAIGNS.

Data2011day Data2012day

Infer Thresh. 0.5 0.8 1.0 1.5 0.5 0.8 1.0 1.5

SMASH 34 17 11 6 38 19 12 2

IDS 2012 total 1 1 1 0 0 0 0 0
IDS 2013 total 0 0 0 0 0 0 0 0

IDS 2012 partial 4 3 3 0 0 0 0 0
IDS 2013 partial 1 0 0 0 2 0 0 0
Blacklist partial 16 10 5 6 13 12 7 1

Suspicious 4 0 0 0 9 2 1 0
False Positives 8 3 2 0 14 5 4 1

FP (Updated) 4 1 1 0 7 1 1 0

V. EVALUATION RESULTS

A. Inference Results

1) Number of Malicious Campaigns: We first evaluate

inference results in terms of malicious campaigns.7 Table II

reports the number of malicious campaigns the SMASH

inferred with different thresh we described in Section III-C.

For those inferred campaigns, we verify them with our

ground truth. If all the servers of a campaign are confirmed

by the IDS, we term it as “IDS 2012/2013 total.” If only

a subset of the servers in a campaign are confirmed by

the IDS, we term it as “IDS 2012/2013 partial.” If none

of the servers of a campaign are confirmed by IDS but

confirmed by online blacklist, we term it as “Blacklist.” For

the campaigns that can not be confirmed by either IDS or

Blacklist, we further check the HTTP request status code

of those servers from the network traffic, and send the

HTTP requests to verify the existence of those servers.8

If at least half of the servers in a campaign have error

code in their network traffic or do not exist any more,

we consider this as a “suspicious” campaign. All other

campaigns are considered as false positives. Note that there

may exist malicious campaigns that are labelled as false

positives because we do not have enough information to

confirm them. Thus, the false positives here should be an

upper bound for our system.

For Data2011day with threshold 0.8, SMASH infers 17

malicious campaigns. Among these, one campaign has all

the servers confirmed by 2012 IDS signatures. There are

three campaigns where some of their servers are confirmed

by 2012 IDS signatures. There are ten campaigns that

have their servers partially detected by blacklists. Three

campaigns are false positives. If we reduce the threshold

to 0.5, SMASH identifies 34 malicious campaigns but the

false positives increase to eight. On the other hand, if we

increase the threshold to 1.0 and then to 1.5, SMASH detects

11 and 6 campaigns, but with two and zero false positives,

respectively. Similar results are observed from Data2012day .

7Due to the page limit, here we only discuss the campaigns that have at
least two involved clients.

8We only check the existence of those domains. Our intuition is that
malicious domains usually have a short lifetime, and thus might have
expired while benign domains usually have a longer lifetime.
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Further analyzing the false positives, we discovered two

major categories of false positives: Torrent and TeamView-

er [10], a remote online collaboration tool. For the Torrent

category, several P2P clients connect to a large number of

torrent servers by only requesting “scrape.php” files. Thus,

they share at least the same filename and sometimes the

same IP addresses. For TeamViewer, it has a large pool of

servers that are used by their clients to retrieve their ID,

which leads to sharing the same path name among those

servers. By removing the false positives of these two “noisy”

campaigns, we have very few false positives as shown in the

last row (FP Updated) of Table II.

2) Number of Servers in Malicious Campaigns: Table III

shows the inference results of the number of servers involved

in malicious activities. Similar to malicious campaign, if a

server is confirmed by the 2012 IDS signatures, we term

it as IDS 2012, and if a server is confirmed by the 2013

IDS signatures but not by the 2012 IDS signatures, we term

it as IDS 2013. For those servers that are not confirmed

by either IDS signatures but confirmed by the blacklist, we

term it as “Blacklist.” All the servers in “suspicious” attack

campaigns (as described in Section V-A1) are inferred as

“suspicious”. For the remaining servers, we compare them

with IDS and Blacklist confirmed servers in terms of the

requested path, User-Agent, and parameter patterns. Servers

confirmed through this way are termed as “New Servers”,

which are previously undetected servers. All other servers

are false positives.

For Data2011day with threshold 0.8, SMASH infers 3,156

servers that are involved in malicious campaigns. Among

these servers, only 20 are labeled by IDS signatures and 401

are confirmed by the blacklist. Our system can infer 2,701

more servers which is nearly 7 times the servers detected by

IDS and blacklists combined. There are 34 false positives

and only 16 after excluding the P2P and TeamViewer cases.

We can also see that we generate fewer false positives with

higher thresholds. For threshold 1.5, there were no false

positives for either Data2011day or Data2012day . However,

this comes at a price of missing many attack campaigns. We

therefore select 0.8 as the threshold, where we detect many

attack campaigns while the highest false positive rate is only

0.064%. After removing noise, the largest false positive rate

is 0.017%.

We see that SMASH discovers many malicious servers

that are not discovered by IDS and blacklist. In Table II

with threshold 0.8 for Data2011day , 13 clusters are partially

detected by IDS or blacklist. Among these clusters, IDS

detects only 20 servers and blacklists detect 401 servers.

On the other hand, SMASH inferred 2,701 servers that are

new, previously unknown malicious servers. Those servers

either share the similar pattern with IDS confirmed servers in

terms of User-Agent, parameter patterns and URI files, etc or

are detected by other researches based on the Google search

results. This indicates that about 86.5% of these malicious

Table III
NUMBER OF SERVERS IN MALICIOUS ACTIVITIES.

Data2011day Data2012day

Infer Thresh. 0.5 0.8 1.0 1.5 0.5 0.8 1.0 1.5

SMASH 3,222 3,156 3,039 845 407 287 150 9

IDS 2012 20 19 19 0 0 0 0 0
IDS 2013 2 1 1 0 3 0 0 0
Blacklist 413 401 389 74 67 55 29 2

New Servers 2,713 2,701 2,626 771 171 152 91 0
Suspicious 13 0 0 0 27 5 2 0

False Positives 61 34 4 0 139 75 28 7

FP (Updated) 22 16 2 0 32 5 2 0

Figure 5. Distribution of the client and campaign sizes.

servers could not be detected by simply relying on IDS or

blacklists.

Furthermore, we see from Table III that without any

training or signature updating, SMASH infers malicious

severs that are detected by new IDS signatures but missed by

old IDS signatures. This shows that SMASH can detect zero-

day malicious campaigns before IDS signatures get updated.

Finally we measure the malware servers detected by the

IDS but missed by SMASH, i.e., false negatives. To get

the ground truth of malware server groups from IDS labels,

we group the IDS-labeled malicious servers based on the

IDS threat identifier, assuming all the servers in the same

threat identifier belong to the same malicious campaign. We

have a total of 26 missed malware servers for Data2011day
and 27 for Data2012day . There are two major types of

false negatives. First, there are 40 malicious servers (in the

Cycbot, Fake AV and Tidserv threat labels) that do not

share any secondary dimension, thus are missed by our

system. However, most of those servers share the same

URI parameters pattern. Thus, if we extend our URI file

dimension to consider the parameter pattern, we could detect

these threats. Second, several false negatives are caused

by our pruning/filtering process because these servers share

the same referrer. SMASH has room for improvement and

nevertheless, it can be a great complementary tool to existing

approaches.

3) Activity Scale of Malware Campaigns: We measure

the scale of malware campaigns by observing the number

of clients and servers involved in each malicious campaign.

Figure 5 presents the distribution of the campaign size

and the client size. We see that about 75% of the attack

campaigns have the size smaller than 18, which indicates

that most attack campaigns do not connect to a large number
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Table IV
ATTACK CATEGORIES.

Activity Category # of Servers

Communication

C&C 30
Web exploit 1
Phishing 5
Drop zone 2
Other malicious servers 1,120

Attacking
Web scanner 23
iFrame injection 14

Table V
NUMBER OF MALICIOUS CAMPAIGNS DURING Data2012week .

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

SMASH 31 36 51 40 34 47 51

IDS 2013 total 1 1 1 0 1 1 1
IDS 2013 partial 3 5 7 4 3 8 8

Blacklist 14 19 28 19 16 18 25
Suspicious 4 5 3 4 3 4 6

False Positives 9 6 12 13 11 16 11

FP (Updated) 3 3 11 9 6 12 9

of malicious servers. However, campaigns with size larger

than 18 are usually attacking campaigns, which attack a

large number of benign servers (e.g, web scanning and

iFrame injection attacks). As for the number of involved

clients, 75% of attack campaigns have only one infected

client. This result suggests that most client-side clustering

systems [21, 22] might be ineffective because they need

to correlate among multiple infected clients in the same

network.

B. Attack Diversity & Persistency

To demonstrate that SMASH is not limited to only certain

types of malicious campaigns, we evaluate SMASH from

two different perspectives: attack categories and persistence

of servers involved in malicious activities.

SMASH infers diverse malicious campaigns: Our in-

ference results include the attack campaigns related to mali-

cious communication activities and web attacking activities.

Table IV categorizes part of our inferred servers involved

in malicious campaigns based on IDS labels and Online

Blacklists. The servers belonging to communication activ-

ities are typically malicious servers, such as those involved

in botnet activities and web exploits. The servers belonging

to attacking activities are usually benign websites that are

targeted by malware, such as web scanning and iFrame

injection.

SMASH infers both persistent and agile malicious
campaigns: Persistent malicious campaigns are a set of

servers that continue to communicate with infected clients

for multiple days. On the other hand, agile malicious cam-

paigns are a set of newly identified servers that are commu-

nicated by known infected clients. To study the evolution of

persistent and agile malicious campaigns, we test our system

with one week data from 2012, Data2012week. Tables V and

Table VI
NUMBER OF SERVERS INVOLVED IN MALICIOUS ACTIVITIES DURING

Data2012week .

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

SMASH 1023 1246 1481 1157 911 1286 1301

IDS 2013 7 15 27 11 7 13 13
Blacklist 371 645 726 348 253 354 698

New Servers 467 398 586 668 443 737 497
Suspicious 13 19 8 18 10 8 21

False Positives 165 169 134 122 198 174 72

FP (Updated) 82 14 130 36 24 89 52

Figure 6. Persistent vs dynamic campaigns.

VI show the inference results.9 We consider the first day of

the week data as the benchmark. Figure 6 shows the results

of each day, where there are 1,014 servers and 27 clients

involved in malicious activities at the benchmark day. We see

that SMASH infers both persistent (Old Server in Figure 6)

and agile malicious campaigns (New Server Old Client).

It can also infer new campaigns (New Server New Client

in Figure 6). In addition, we observe that most servers

belong to agile malicious campaigns. This result suggests

that malware may change their servers/domains every day

to evade existing domain-based detection.

C. Effectiveness of the Main and Secondary Dimensions

1) Main Dimension: 24,964 servers in Data2011day and

33,603 servers in Data2012day are dropped after the main

dimension processing because they can not be correlated

with other servers in client similarity. For those remaining

servers, we further investigate the relationship among those

servers in the same ASH.10 To do this, we manually study

50 randomly chosen campaigns from each day. 60% of

ASHs are “referrer groups,” in which all servers in the same

group are referred by the same server. Such groups can

be further filtered by the pruning process. 10% of ASHs

are “redirection groups,” in which all servers in the same

groups belong to a redirection chain. Such groups can be

also filtered by the pruning process. 8% of ASHs are “similar

content groups,” in which all servers share very similar

content. We further analyze those servers and most of them

belong to adult web servers. 18% of ASHs are “unknown

9For the campaign with one client, we use threshold 1.0 while for the
campaign with more than one client, we use threshold 0.8.

10Here, we ignore ASH with only one client, as all the servers in this
case are correlated together only because they are visited by one client.
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Figure 7. Effectiveness of secondary dimensions.

groups,” in which we can not directly find any relationship

among those servers. However, they are visited by similar

sets of clients. Most of these servers are different companies

selling different products or services. The remaining 4% of

ASHs belong to malicious ASHs. None of these servers is

detected by the IDS while SMASH did.
2) Secondary Dimensions: In SMASH, the ASHs need

not satisfy all secondary dimensions. Hence, we measure

the effectiveness of each secondary dimension. Figure 7 is

the decomposition of inferred servers. We see that 15.05% of

the servers satisfy all secondary dimensions and there is no

false positive for these herds. URI File dimension is the most

effective secondary dimension, which by itself contributes

to 53.71% of the detected servers. Although Whois and IP

Address Set dimensions individually are not very effective,

these two dimensions can help the URI File dimension to

confirm more suspicious ASHs. For example, 14.16% are

inferred through the combination of IP Address Set and URI

File dimensions, and 17.01% are inferred through URI File

and Whois dimension combination.

D. Attack Campaign Case Study

We investigate with case studies the advantages of S-

MASH over detecting each malicious server in isolation.
1) Capturing the Insight of Malicious Activities: ASHs

help us understand the malicious campaign in a holistic

fashion. Table VII shows the Bagle botnet [1], which is

a mass-mailing computer worm campaign that SMASH

inferred. In this campaign, the bot first goes to some servers

to download an encrypted file “file.txt” and then connects

to C&C servers by requesting “new.php” with the same

parameter pattern “p=[]&id=[]&e=[]”. There are 94 servers

involved in this campaign and they can be clustered in two

categories; 40 downloading servers and 54 C&C servers.

None of the downloading servers was detected by the IDS

or blacklists. Only three C&C servers were detected by

VirusTotal. Without the holistic approach of SMASH, we

would not have captured the downloading servers and many

additional C&C servers.

Table VIII shows a Sality botnet [7] campaign also

inferred by SMASH. There are 12 servers involved in this

campaign. All have been labeled by the IDS but only eight

have been labeled by the blacklists. Again, we cluster the

servers in this campaign into C&C servers and downloading

servers. Two C&C servers are inferred because they share

the same set of IP addresses, the same filename “/” and

Table IX
IFRAME INJECTION ATTACK.

Server URI UserAgent
smileenh????.co.uk /images/sm3.php ’-’

dorsets????.org /images/sm3.php ’-’
calu????.it /images/sm3.php ’-’

zi??.nl /wp-content/uploads/sm3.php ’-’
... ... ...

Note: for the privacy protection reason, we use ? to mask part of the
detected domains.

Table X
ZEUS BOTNET.

Zeus C&C Server URI
4k0t155m.cz.cc /login.php
4k0t177m.cz.cc /login.php
4k0t144m.cz.cc /login.php
4k0t166m.cz.cc /login.php
4k0t111m.cz.cc /login.php

... ...

the same registration information; thus they form a strong

ASH. Downloading servers form different ASHs based on

the shared filenames. Different from the Bagle botnet, only

downloading servers are benign websites compromised by

the attackers. Thus, they do not share IP addresses or Whois

information. The Sality botnet campaign is inferred by merg-

ing these ASHs. The bots might first go to the compromised

servers to download additional malware through requesting

“.gif” files. They then go to C&C servers to get further

instructions.

Based on above two examples, most of downloading

servers and some C&C servers from the Bagle botnet are

compromised websites. Therefore, domain-reputation-based

systems [17] or similarity-based detection systems [16]

would not detect such malicious servers.

2) Finding More Malicious Activities: Table IX shows a

web injection attack campaign, where infected hosts inject

malicious iFrames to benign websites. SMASH inferred 600

benign servers suffering from such attacks while the IDS

labeled only four of such attacks, missing more than 99%

of the servers. All of these inferred servers are queried

by the same set of clients with the same file “sm3.php”

under different paths. The servers not labeled by the IDS

share the same UserAgent “-” in their HTTP requests to

the IDS labeled servers. This confirms that they belong to

the same attack campaign. Note that most of the URIs have

the path “wp-content,” which indicates that those servers

are installed with WordPress web application. This attack

campaign explores WordPress vulnerability to upload a

malicious script “sm3.php.”

Table X is the Zeus botnet [13] that SMASH also inferred.

This campaign includes eight C&C servers of Zeus. 2012

IDS signatures labeled none of these domains while the

blacklists detected only one domain. However, 2013 IDS

signatures detected all of these domains. This shows that, as
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Table VII
BAGLE BOTNET.

Categories Servers URI UserAgent Parameters

C&C Domain

novitacolori.it /images/news.php Internet Exploder p=16435&id=21799517&e=0
beachrugbyfestival.com /images/news.php Internet Exploder p=16435&id=21799517&e=0

beautywoman.sk /images/news.php Internet Exploder p=16435&id=21799517&e=0
... ... ... ...

Downloading

lajuve.org /images/file.txt Mozilla/4.0 ... na
shayestegansch.com /images/file.txt Mozilla/4.0 ... na

www.bigdaybreaker.com /images/file.txt Mozilla/4.0 ... na
... ... ... ...

Table VIII
SALITY BOTNET.

Categories Servers URI UserAgent Parameters

C&C Domain
kukutrustnet777.info / KUKU v5.05exp =22667130988 22adcdc=72726968
kjwre9fqwieluoi.info / KUKU v5.05exp =22667130988 e65564=135856260

Downloading

merc-connect.com /images/mainf.gif KUKU v5.05exp =22667130988 8fff57=84933135
meta-kit.com /images/logos.gif KUKU v5.05exp =22667130988 4f152d=10365530

fashionenigma.com /images/logos.gif KUKU v5.05exp =22667130988 6f2483=58270744
... ... ... ...

SMASH does not need to update signatures, it can detect

zero-day attack campaigns. This campaign seems to be

using a DGA-based algorithm to generate similar domain

names. All these domains are requested by the same set

of clients, and share the same IP addresses and filename

“login.php.” We searched these domains in Google, and only

“4k0t111m.cz.cc” is confirmed as “zeus tracker.”

VI. DISCUSSION

Overhead: SMASH is designed to monitor the traffic at the

edge of a network. Thus, it can be deployed at enterprise

or ISP networks. The most expensive computation part of

SMASH is on the similarity calculation, whose complexity

is N2 where N is the number of servers, as we need pairwise

similarity among different servers. However, the complexity

of similarity calculation can be significantly reduced by

using Bloom filters [3] or sparse matrix multiplication [19].

Extensions: In our current implementation, we have three

secondary dimensions. Since secondary dimensions are com-

plementary dimensions to further characterize the relation-

ship among servers, they can be extended. For example, we

can add time based dimensions [20] to characterize the rela-

tionship among servers. We can also add payload similarity

to characterize downloading similarity among servers.

Limitations: SMASH assumes that cyber criminals use

multiple servers to conduct their malicious activities. Thus,

if an attacker uses only a single server to conduct malicious

activities (which is now very rare), SMASH can not detect

it. In addition, since we use second-level domain for the in-

ference, we might miss the malicious servers using dynamic

DNS or hosted on third-party cloud servers. However, those

services could incur significant financial cost to the attackers.

Evasions: SMASH relies on the correlation between the

main and secondary dimensions. Thus, an attacker who gains

the knowledge of SMASH might try to mislead our system

by manipulating their relationships as follows:
Evading the Main Dimension: To mislead the main di-

mension, an attacker can make their bots visit many benign

domains with the same URI file.11 In this case, our main

dimension might generate ASHs that include both benign

and malicious servers. However, since our client similarity

looks at the similarity among all the client sets, it is

difficult for an attacker to assure that there are no other

benign clients that visit those benign domains. Even when

an attacker can use some benign servers to mislead our

system, their malicious servers are still included in ASHs

that SMASH inferred, which can be further filtered through

other heuristics. For example, benign domains might not

have such URI files, which may return an error code. In

addition, an attacker can also let different bots communicate

with different servers to prevent us from generating ASHs.

However, this would be a very costly method for attackers,

as the more bots they have, the more servers they need to

register.
Evading Secondary Dimensions: Compared with the main

dimension, secondary dimensions can be relatively easily

changed. However, the process is very inconvenient and

costly for the attackers. For example, to evade the IP

dimension, an attacker can fast flux the IP addresses of their

servers, which is very expensive yet easily detected [23].

To evade the URI File dimension, an attacker can assign

different names for different servers. However, it makes their

connections less scalable; for the attacking campaigns, it

usually targets the vulnerabilities of certain files, and thus an

attacker can not change such filenames. Although an attacker

may successfully evade one of the secondary dimensions, it

11There is a very low possibility that the benign domains share similar
IP addresses and Whois information with the malicious servers.
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is non-trivial to simultaneously evade all dimension to avoid

being detected by SMASH.

VII. CONCLUSION

We studied the malicious servers from a new perspective,

i.e., associated server herds. Instead of studying each mali-

cious domain in isolation, we investigated the relationship

among servers that are involved in the same malicious

activities. This approach enables us to find more malicious

servers including servers involved in attacking activities as

well as servers communicated with malware. We proposed

a novel unsupervised inference system, SMASH, to uncover

attack campaigns based on the correlation among associated

server herds. Our evaluation with real-world network traces

from a large ISP showed that SMASH detects new attack

campaigns with a low false positive rate of 0.064% without

any training data. Our inferred results also help us capture

the insight of the whole attack campaign.
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