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ABSTRACT

Overheating smartphones could hamper user experiences.

While there have been numerous reports on smartphone

overheating, a systematic measurement and user experience

study on the thermal aspect of smartphones is missing. Us-

ing thermal imaging cameras, we measure and analyze the

temperatures of various smartphones running diverse ap-

plication workloads such as voice calling, video recording,

video chatting, and 3D online gaming. Our experiments show

that running popular applications such as video chat, could

raise the smartphone’s surface temperature to over 50◦C
in only 10 minutes, which could easily cause thermal pain

to users. Recent ubiquitous scenarios such as augmented

reality and mobile deep learning also have considerable ther-

mal issues. We then perform a user study to examine when

the users perceive heat discomfort from the smartphones

and how they react to overheating. Most of our user study

participants reported considerable thermal discomfort while

playing a mobile game, and that overheating disrupted in-

teraction flows. With this in mind, we devise a smartphone

surface temperature prediction model, by using only system

statistics and internal sensor values. Our evaluation showed

high prediction accuracy with root-mean-square errors of

less than 2◦C. We discuss several insights from our findings

and recommendations for user experience, OS design, and

developer support for better user-thermal interactions.
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1 INTRODUCTION

Electronic devices, including smartphones contain electric

elements that generate heat. In a competitive smartphones

market, the manufacturers constantly enhance the comput-

ing performance and diversify functionalities, which could

result in generating a great amount of heat. Users have rec-

ognized the smartphone thermal problem, as many reviews

and articles [4, 38] empirically highlight the smartphone

overheating issues.

Heat, if not handled properly, can not only degrade the

processors’ performance and damage the battery, but also de-

grade user experiences [57], aggravate a thermal-regulatory

disorder [65], and pose health threats (e.g., thermal pain [37],

skin burns [33], skin aging [54]).

Overheating problem is well-known in the field of elec-

tronic devices and various cooling technologies have been

proposed (e.g., using proper thermal conductivity materials,

dynamic voltage and frequency scaling (DVFS), etc.). Despite

such techniques, overheating in smartphones is challenging

due to small form factors, high power density, and close phys-

ical contact with the human body [53], and thus needs careful

investigation. Prior work highlighted the importance and



challenges of thermal management in mobile and wearable

devices [53]: thermal models of smartphones [27], thermal

management schemes [24], and thermal characteristics of

smart glasses [39]. However, what is missing is systemati-

cally exploring when and how much heat smartphones (and

each of their components) generate in practical scenarios

and what impact thermal issues have on user experiences.

We aim to deepen our understanding of the thermal issues of

smartphones with systematic thermal measurements under

various usage scenarios.

Using thermographic cameras [3], we first investigate the

thermal characteristics of recent smartphones. We measure

the surface temperature of a wide range of smartphones such

as Android reference phones (Nexus 5, Nexus 5X, Nexus 6,

Pixel, and Pixel 2), iOS phones (iPhone 7, iPhone 7+, and

iPhone 8), and Android phones (Galaxy S7 and Huawei P20)

by considering representative workloads such as video chat-

ting, video recording, voice calling, and gaming. We believe

our extensive measurement is the first of its kind on smart-

phones. We discover that our test smartphones easily reach

over 45◦C, which can cause thermal pain. The temperature

rises in short duration, especially for the camera usage sce-

narios; e.g., only 6 minutes for video chat. Applications that

require video encoding especially generate excessive heat

quickly.

Our component-specific analyses reveal that intensive AP

(Application Processor), powermanagement circuit, and cam-

era usage are the major heat sources. An AP generates the

most heat as it houses multiple sub-components such as CPU,

GPU, and multimedia codec, whereas GPS does not generate

much heat despite its relatively high power consumption.

Furthermore, we report that recent ubiquitous scenarios such

as augmented reality, virtual reality andmobile deep learning

have considerable thermal issues.

In addition to systematic measurements, we analyze how

smartphone overheating affects user experiences through a

user study. A majority of our participants (75%) reported con-

siderable thermal discomfort while playing a mobile game

and complained that overheating disrupted interaction flows

and caused interaction errors. We find the major reasons for

thermal discomfort are concerns on health risks and sweat-

ing related issues, including sensor malfunction and user

input errors due to slip caused by sweat.

With the understanding of thermal issues in user experi-

ences, we propose a model that estimates the surface temper-

ature of a smartphone using only system statistics (e.g., CPU

usage) and internal sensors (e.g., battery temperature), with-

out kernel-level hardware usage information (e.g., current

video recording resolution, clock frequency information).

After selecting the dominant features, we train a time-series

regression model each for Nexus 5X and Galaxy S7. For each

smartphone, our model shows high accuracy (less than 1.2◦C

root-mean-square error (RMSE) for Nexus 5X and 0.523◦C
RMSE for Galaxy S7) in both real-time and one minute look-

ahead predictions. Our model requires only one-time train-

ing, and thus is easily applicable to other smartphone models.

We stress that no prior studies systematically examine

the overheating patterns under various workloads and their

impact on user experiences. Our experiments show that var-

ious real-world workloads generate excessive heat, and our

user study confirm that overheating degrades user experi-

ences. Furthermore, emerging ubiquitous applications such

as AR/VR and mobile deep learning also have significant

thermal issues. Our results indicate that DVFS alone is not

sufficient for managing smartphone surface temperature.

There should be a holistic thermal management framework

that simultaneously considers multiple components’ thermal

characteristics (e.g., PMIC, cameras, sensors, and wireless

chipsets). We call for further studies on this important and

difficult thermal problem.

2 BACKGROUND

2.1 Thermal Concerns on Mobile Devices

Thermal concerns are broadly classified as follows: perfor-

mance degradation, negative user experiences, and health

risks. System performance degrades as the temperature in-

creases as mobile thermal management algorithms throttle

operating CPU clock frequencies and switch off cores when

devices overheat. In addition, overheating could hamper user

experience and might even result in skin damage. Discomfort

due to overheating is a concern that smartphone users often

complain [4]. A recent user experience research [57] showed

that user burdens, including physical discomfort and pain,

negatively influence overall user experiences. Prior human

perception studies showed that a person’s thermal threshold

for warm sensation is in the range of 33.0◦C to 35.0◦C [28].

At a temperature higher than this threshold, a user is likely to

feel discomfort and starts to feel pain at around 42–45◦C [37].

Beside such discomfort, there are several health concerns.

Heat can accelerate premature skin aging, which gradually

happens over time due to lack of awareness [54]. In addi-

tion, long-term exposure to such thermal condition of mild

heating could lead to erythema ab igne, known as the toasted

skin syndrome [33]. These temperature thresholds are also

used in the European Standard (EN563) that provides the

ergonomic temperature limits for surfaces [17].

2.2 Heat Transfer Basics

In electric devices, there are two major heat transfer routes:

conduction and convection depending on whether heat trans-

fer happens through a solid medium or a fluid (e.g., liq-

uid/gas). According to thermodynamics principles [19], the

heat transfer rates of conduction and convection (q̇) can be



modeled as: kA
d
×ΔT , andhA×ΔT , respectively. Here, k is the

medium’s conductivity, and h is the convection heat transfer

coefficient, which are dependent on material/fluid properties

(e.g., copper’s conductivity is 10,000 times larger than that of

plastic). A is the area, ΔT is the temperature difference (e.g.,

between the phone body and its surroundings), and d is the

thickness of the medium. According to these equations, the

heat transfer rate between two points is proportional to the

temperature difference, the area through which heat transfer

occurs, and the heat transfer coefficient of the material/fluid.

Smartphones are comprised of multiple layers of elec-

tric components (integrated circuits and wires) with differ-

ent thermal conductivities that generate heat due to power

dissipation and Joule heating. Because of the layers’ wide

surface area and thinness, heat transfer mostly occurs in

vertical directions across multiple layers, while relatively mi-

nor transfer occurs in horizontal directions. This means that

more heat transfer occurs via conduction than convection,

and the air gap between layers acts as an insulator. Overall,

the heat generated from a number of heat sources is trans-

ferred through the adjacent materials and is finally released

to the atmosphere. Typically, the rate of temperature change

steadily decreases and reaches the steady-state (called the

steady-state temperature).

2.3 Mobile Thermal Managements

Various cooling methods have been proposed that are gener-

ally categorized into passive and active cooling. Passive cool-

ing [59] includes the techniques that use the heat pipe [26],

heat sink [22], and thermal-interface materials. Active cool-

ing [45] includes forced air and forced liquid cooling tech-

niques. However, the small form factor and light weight re-

quirements of smartphones prevent adopting active cooling

and smartphones thus mostly rely on passive cooling.

Besides these cooling techniques, thermal management

also happens at an electronic component level. Modern ap-

plication processors (APs) support DVFS and CPU hot-plug

to manage power consumption and protect devices from

overheating [16, 58, 61] . A thermal protection mechanism

suppresses temperature increase by reducing power con-

sumption via lowering operating voltage/frequency of a CPU,

or turning off CPU cores.

The thermal management in Android smartphones is car-

ried out by the Linux kernel’s thermal engine. This engine
monitors CPU temperatures from on-die sensors and con-

trols the temperature by mainly using two algorithms: dy-

namic control and threshold control. The dynamic control

algorithm checks whether the core temperatures exceeds

the threshold values and determines whether to throttle

clock frequency or turn off cores. The threshold values are

manufacturer-dependent and set by the threshold control

Target smartphone

Thermographic camera

Cradle

Figure 1: Measurement setup.

algorithm. Android also implements an additional thermal

protection mechanism by which a device is shut down when

the battery temperature exceeds the threshold (e.g., 68◦C). In
practice, device manufactures may configure different thresh-

olds owing to the heterogeneity of temperature sensors and

device characteristics (e.g., Qualcomm DragonBoard 410c’s

threshold of 70◦C for dynamic controlling [50]).

3 PRELIMINARY STUDY

We performed a preliminary measurement study to evalu-

ate whether smartphones show thermal issues that could

influence user experiences and even cause health problems.

3.1 Measurement Setup

We used FLIR ONE [3], a thermographic camera (also known

as infrared (IR) camera or thermal imaging camera) as the

temperature measurement device. An IR camera is popularly

used in research communities [14, 36, 44, 52] as it shows

comparable accuracy and precision to those of thermocou-

ple, which is known to provide the most accurate tempera-

ture measurements. We used FLIR ONE’s Android SDK to

implement an app for automated data collection.

We conducted experiments to investigate the thermal char-

acteristics of the smartphones, shown through the surface

of both the front and back. We fastened a cradle on the

target smartphone and the distance between the thermal

camera and the target smartphone was fixed, as shown in

Figure 1. The main goal of this preliminary study is to iden-

tify whether well-known use cases of smartphones could

generate significant amount of heat, which could provide

thermal discomfort, or even skin damage to the users; recall

that users start to feel heat pain at 42–45◦C [37].

To check thermal issues across different phones, we chose

Android reference phones (Nexus 5, Nexus 5X, Nexus 6, Pixel,

and Pixel 2), iOS phones (iPhone 7, iPhone 7+, and iPhone

8), and Android phones (Galaxy S7 and Huawei P20 lite). We

considered experimental applications often used in our daily

lives, ranging from instant messaging to cameras and mobile

games. Our focus was on the major use scenarios that utilize



various hardware components, such as the application pro-

cessor, camera, and wireless network chipset: real-time video

conversations, video recording, mobile gaming, and voice

calling. For video conversations, we chose Google Hang-

outs [5] and Microsoft Skype [11], as they are two of the

most popular video chat apps. For mobile gaming, we se-

lected Abyssrium [12] and PUBG MOBILE (PUBG) [10], two

of the popular games in recent years. For video recording and

voice calling, we used the default app on the smartphones.

We considered the mobile operating systems of Android

6.0.1 and iOS 10.2. Note that Galaxy S7 uses Android 7.0,

Pixel and P20 lite use Android 8.0.0, Pixel 2 uses Android

8.1.0, and iPhone 8 uses iOS 11.4.1; these are the default

operating systems shipped. We controlled the running envi-

ronments as follows. There were no background processes.

All experiments started with the battery fully charged. Auto-

update, battery saving, and adaptive screen brightness con-

trol modes were disabled. For video recording, we set the

same video resolution (1080p) across multiple devices. For

wireless connectivity, we used Wi-Fi unless otherwise noted.

We restricted touch interactions, which happen only when

starting or ending an app. The mobile gaming scenarios re-

quired more touch interactions than others, but we made our

best effort to minimize the interactions (e.g., by leveraging

autoplay modes). The ambient temperature of the labora-

tory was maintained between 24◦C and 28◦C. As the heat
transfer equation shows, the amount of heat transferred due

to convection (air cooling) is much smaller than that due to

direct conduction across multiple components from the heat

sources. Thus, a 4◦C variation of room temperature had a

negligible effect on our measurement result.

We ran each app for 30 minutes, because all our tested

smartphones reached steady-state temperature within 30

minutes. The steady-state temperature is considered as the

mean value of the samples measured for 2 minutes starting

from the peak temperature in each 30-minute experiment (a

total of 3 measurements performed). Since our measurement

tool indicates a 0.3 Hz sampling rate on average, every steady-

state temperature is calculated from at least 100 samples.

3.2 Results

Figure 2 presents the overall thermal characteristics of the

smartphones under various use cases. The apps for each cate-

gory show similar temperature change tendencies. After the

initial temperature ramp-up, a smartphone quickly reaches

its steady-state. After the running app is closed, it then grad-

ually dissipates its heat. The smartphones under considera-

tion converged to their steady-state temperatures within 20

minutes. Table 1 summarizes the steady-state temperature

for each smartphone while running various scenarios. Our

tested smartphones reached the steady-state temperatures
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(a) Video chat - Hangouts.
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(b) Video chat - Skype.
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(c) Game - Abyssrium.
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(d) Game - PUBG.
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(e) Video recording.
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(f) Voice calling.

Figure 2: Temperature changes of the hottest region

on each phone while running various target apps.

Table 1: Steady-state temperature (◦C) for each smart-

phone while running various target scenarios (stan-

dard Deviation in parenthesis).

Temp. (◦C) Skype Hangouts Abyssrium PUBG Video rec. Voice call

Nexus 5 56.30 (2.76) 53.30 (0.67) 43.90 (0.53) 46.20 (0.62) 49.44 (1.77) 36.86 (1.83)

Nexus 6 51.88 (2.66) 49.34 (2.95) 44.13 (1.96) 40.66 (0.08) 47.64 (1.31) 36.88 (0.39)

Nexus 5X 58.13 (3.10) 62.28 (3.50) 45.94 (1.18) 45.19 (0.76) 50.79 (0.52) 33.02 (1.61)

Pixel 49.90 (1.45) 50.02 (1.19) 45.58 (0.25) 43.74 (1.52) 46.61 (2.51) 38.78 (2.54)

Pixel 2 51.12 (0.62) 52.65 (0.12) 36.16 (0.44) 38.27 (0.76) 51.64 (0.75) 36.63 (0.72)

Galaxy S7 46.93 (1.44) 45.69 (0.59) 42.68 (0.90) 40.69 (0.51) 45.12 (1.63) 36.52 (0.96)

P20 lite 43.36 (0.56) 47.33 (0.46) 37.63 (0.63) 41.48 (1.33) 43.12 (0.94) 36.94 (0.51)

iPhone 7 45.85 (2.10) 44.29 (0.89) 39.52 (0.46) 42.32 (0.52) 45.72 (1.21) 35.61 (2.32)

iPhone 7+ 46.53 (2.99) 44.34 (0.92) 36.16 (0.71) 41.92 (0.81) 46.57 (1.32) 36.39 (1.32)

iPhone 8 39.69 (0.27) 45.30 (0.36) 33.59 (0.42) 38.27 (0.76) 40.05 (0.90) 31.86 (0.23)

that were even higher than 45◦C in some cases (i.e., video

chatting, video recording, and mobile gaming). The results

clearly show that thermal issues are prevalent in modern

smartphones, and users could be exposed to high tempera-

tures that lead to considerable thermal discomfort.

4 IN-DEPTH THERMAL MEASUREMENT

We learned from Section 3 that thermal concerns are not

confined to specific smartphone models, as all tested smart-

phones exhibit thermal issues. To deepen our understanding

on thermal characteristics of smartphones, we performed

in-depth thermal measurements by focusing on an Android

reference phone (i.e., Nexus 5X). This model has hardware

information provided by the kernel, and it is one of the re-

cent reference phones with modern thermal management

techniques. We also performed measurements at the compo-

nent level (e.g., AP, power management IC, camera modules)

to identify the root causes of excessive heat generation. In



(a) Visible light image. (b) Infrared image.

Figure 3: The relative positions of the rear camera, the

fingerprint sensor, and the AP of Nexus 5X.
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Figure 4: The temperature changes at the fingerprint

sensor while running each application.
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Figure 5: Mean steady-state temperatures of each sce-

nario with three Nexus 5X phones. The error bar

shows standard deviation.

addition, we measure the surface temperature of various

ubiquitous usage scenarios.

4.1 Surface Temperature Analysis

Figure 3 shows the rear side of Nexus 5X including an ex-

ample thermographic image captured by the IR camera. We

measured the temperature of the surface, both front and back,

when running a video chat (Hangouts [5], Skype [11]), video

recording, voice calling, or 3Dmobile games (Abyssrium [12],

PUBG [10]), and when charging the battery.

Figure 4 shows the temperature change of the smartphone

surface while running each application. For each experiment,

once the temperature reaches the maximum, it stabilizes.

When the application is closed, it slowly cools down. In

general, the areas near the fingerprint sensor show higher

temperatures than the other regions, as the fingerprint sen-

sor has lower thermal resistance than its surroundings. We

measured the surface temperature changes of three differ-
ent Nexus 5X phones for all the cases to check whether they

showed consistent trends. Our results in Figure 5 confirmed

that steady-state temperature differences were within the

error range, and only minor temperature variations were

observed among different phones of the same model.

Video chat: It took only 6 minutes to exceed the thermal

pain threshold, with Hangouts reaching 62◦C (SD: 3.50) and

Skype 58◦C (SD: 3.10) in 30 minutes. When we used the front

camera during a video chat, the surface temperature slightly

decreased to 55◦C (SD: 1.59). Since the rear-side camera is

located near the fingerprint sensor, the heat from the rear

camera affects the temperature measured at the fingerprint

sensor more than that from the front camera. For this rea-

son, the video chat using the rear camera showed a higher

temperature than that of using the front camera. Regardless,

the temperatures in both cases far exceeded the thermal pain

threshold. Note that when we turned off the cameras, the

temperature was only 38◦C during a 30-minute experiment.

We additionally ran Skype over LTE, and it showed similar

temperature changes (58◦C, SD: 1.04) as Skype over Wi-Fi.

Video recording: Video recording showed the second high-

est temperature in our experiment. The temperature took 8

minutes to exceed the thermal pain threshold, and the value

reached 51◦C (SD: 0.52) in 20 minutes. We examined video

recording with different resolutions. Since higher resolution

requires more computation, it shows slightly higher tempera-

tures than a lower resolution. According to a prior study [41],

video encoding typically requires more computation than

decoding. When we simply turned on the built-in camera

without recording, the temperature reached approximately

46◦C in 15 minutes, which is almost similar to that of the

video recording (48◦C at the 15th minute). In contrast, play-

ing a 1080p video (39◦C) or turning on the screen without

running any apps (34◦C) showed a much lower temperature

than in the camera-enabled case.

Game: We tested Abyssrium and PUBG. As the 3D games

show diverse graphic effects, the processors must handle var-

ious graphic rendering operations. The results revealed that

the temperatures settle around 45◦C (SD: 0.76), with several

minor peaks and valleys, depending on the occurrence of in-

game events. As 45◦C is the pain threshold temperature, this

result demonstrates that game playing on smartphones for a

long duration can also be a source of thermal discomfort.

Voice call: Voice calling generated the least amount of heat

in our experiment, approaching only 33◦C (SD: 1.61), which

is lower than when we only turned on the screen without

running any applications (34◦C). However, unlike other us-
age scenarios, the skin contact region for voice calling is the

user’s cheek, which is known to have a high level of thermal

sensation [46].

Charging: Simply charging the battery also showed mod-

erate temperature (about 37◦C), even when we applied fast

charging until the smartphone is fully charged (100 mins
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(a) Hangouts.
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(b) Skype.
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(c) Abyssrium.
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Figure 6: Temperature and power consumption.

from 2% to 100%). Therefore, battery charging by itself would

likely not cause thermal problems.

However, in our experiment, we found an interesting phe-

nomenon in the usage scenarios while charging, i.e., running

video chat or video recording at a low battery level. In the

beginning phase of the experiment (only 7% battery level),

the temperature at the fingerprint sensor showed similar

changes to that of the non-charging experiment. At this mo-

ment, the rate of discharging due to app usage was faster

than the rate of charging, so the battery level was falling.

Interestingly, when the battery level reached 0%, it suddenly

accelerated the rate of charging and in consequence, the rate

of heat generation significantly increased. In the end, the

temperature of the fingerprint sensor rose to 72◦C, which
was 14◦C higher than that of the non-charging experiment.

We observed a similar pattern when we ran video record-

ing while charging at 5% battery level. According to its tech-

nical manual, Nexus 5X uses a special charging algorithm [8]

that selects the charging rate based on the remaining battery

level and the computational intensity of the running appli-

cation. This phenomenon shows that charging algorithms

could be another heating factor that influences thermal char-

acteristics of smartphones.

Cooling down: Although each app converges at different

temperatures at different heating phases, they tend to show

similar cooling down trends. After the heating phase ends,

the smartphone enters the sleep mode, consuming minimal

energy. The heat energy then spreads from the high temper-

ature regions to nearby low temperature materials. The rate

of heat dispersion into the nearby solid object is faster than

that into the air, and thus the hottest object shares the heat

energy with the neighboring solid materials. As the object

is cooling off, it finally arrives at the same temperature as

the surrounding materials. Afterward, it loses the remaining

heat energy at the same rate until the temperature becomes

the same as the ambient temperature.

Energy vs. surface temperature: In order to examine how

energy consumption patterns are related to corresponding
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Figure 7: Energy vs. surface temperature.

thermal behaviors, we recorded the power consumption and

temperature values simultaneously while running four most

heat generating apps (i.e., Skype, Hangouts, Abyssrium and

PUBG). We developed a measurement app that records volt-

age and current values at an approximately 0.3 Hz sampling

rate by accessing the Android system’s proc files [42].

The results in Figure 6 show two interesting observations.

There was a surge of power consumption in the beginning,

possibly due to app initialization (e.g., data fetching and con-

tent loading). Furthermore, there is a tendency of increasing

power consumption even with proactive thermal manage-

ment (e.g., DVFS). This phenomenon might be attributed to

the fact that the power leakage increases as the temperature

rises [23, 53].

Figure 7 shows the relationship between energy consump-

tion and surface temperature. It shows that four apps con-

sumed different amount of energy to reach the same tem-

perature, but similar apps showed resembling energy con-

sumption patterns. While the amount of heat generated is

generally proportional to energy consumption, surface tem-

perature increment before reaching the steady state is closely

related to the heat transfer rate, which is proportional to

the temperature difference (or ΔT ) as shown in Section 2.2.

This means that high power consumption associated with a

specific hardware component (e.g., AP) can significantly in-

crease a component’s temperature and thus expedite surface

overheating due to large temperature differences.

Impact of app restarting: The power graphs in Figure 6

hint that app restarting may result in different temperature

increment trends due to high power consumption during the

initialization phase. To validate this intuition, we measured

the temperature changes of two apps (i.e., video recording

and PUBG) by restarting the apps when the surface temper-

ature dropped by 50% of the temperature difference between

the steady-state temperature and the baseline temperature.

As discussed in Section 2.2, we can model the temperature

at time t as follows [39]: T (t ) = T∞ − (T∞ −T0)e−τ t where
T∞ is the peak temperature,T0 is the initial temperature, and

τ is a coefficient that represents how fast the temperature

changes. The curve fitting results showed that restarting has

a larger coefficient τ : video (45 vs. 62) and PUBG (61 vs. 73)

(in units of 10−4/s).
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behaviors (with an ambient

temperature of 28◦C).

Figure 8: AnTuTu benchmark test results of Nexus 5X.

Impact of a protection case: We measured the tempera-

ture changes of Skype with and without a plastic protection

case, which is made of Thermoplastic Poly-Urethane (TPU)

and Polycarbonate (PC) (thickness=1.5mm). Heat transfer

principles hint that the thicker the medium, the slower the

heat propagation. Our measurement results confirmed that

surface temperature rose slowly; e.g., to reach 45◦C, it took
418 seconds (SD: 22) without the case and 643 seconds (SD:

46) with the case. Furthermore, the steady-state temperature

with the case (48◦C, SD: 2.13) was slightly lower than that

without the case (54◦C, SD: 0.21).
Performance implications: Figure 8a shows the AnTuTu

benchmark [2] performance at different ambient tempera-

tures. The AnTuTu benchmark score represents the overall

performance of the smartphone as it measures computation

capability, video frame variance, etc. The result shows that

the performance is significantly influenced by the temper-

ature. The key reason for performance degradation is fre-

quency scaling as shown in Figure 8b. The clock frequencies

of two cores vary in accordance with the increase of CPU

temperature. The 1.8 GHz cores are switched off when the

temperature exceeds the threshold as determined by DVFS.

4.2 Component-specific Analysis

We next focus on analyzing the component-specific tem-

perature characteristics of smartphones to identify which

components contribute to heat generation. There are several

heat sinks, and each covers one or more components. To

identify the main heat source in each scenario, we removed

the heat sinks and measured the temperature changes on

both the front and back of the printed circuit board (PCB),

by using two IR cameras. We ran video chat (Skype), video

recording, and a 3D mobile game (Abyssrium), and these

applications combined with fast charging. We also measured

the component usages, such as CPU and GPU utilization, as

well as the network data rate and clock frequency changes.

Figure 9 illustrates the steady-state temperature of the

components while running each application and Table 2

summarizes the corresponding CPU/GPU utilization. The
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Figure 9: The steady-state temperature of each compo-

nent while running each application.

Table 2: Utilization statistics of each component when

running each application.

Utilization (%) Video chat - Skype Video recording Game - Abyssrium

CPU 69 (SD: 5) 32 (SD: 2) 20 (SD: 11)

GPU 4 (SD: 2) 0 (SD: 1) 58 (SD: 17)

components include application processor (AP), power man-

agement integrated circuits (PMICs), rear camera, and bat-

tery. Here, PMIC refers to a class of integrated circuits that

include various functions related to power requirements such

as DC to DC conversion, battery charging, power-source se-

lection, and voltage scaling. Nexus 5X has two PMICs; one is

a regulator for power supply to other components, and the

other is a battery charger for controlling the charging rate.

Figure 9 shows that AP and PMIC are generally the main

contributors of heat generation.

In Nexus 5X, the fingerprint sensor is located on top of the

AP and PMIC. The fingerprint sensor directly connects into

the PCB, and there is no air gap in between. Other regions

have additional plastic shields to isolate the heat sources and

the smartphone surface. The fingerprint sensor therefore

shows a higher temperature than other regions.

Video chatting and recording: Both video chatting and

recording display high temperatures as they involve heavy

computation and camera usage. With Skype, CPU utilization

was 69% on average, and the AP generated the most heat

(91◦C). Video recording also generated considerable heat

similar to Skype on the AP, even though CPU utilization

was about 30%. This is because the multimedia codec built

into the AP, which encodes/decodes videos, generates sig-

nificant heat. Regardless of Wi-Fi or LTE, the networking

components did not show notable temperature changes. We

measured the data rates of Skype using the Android monitor,

and they were Tx: 698 kb/s and Rx: 396 kb/s on average.

Game: Similar to the camera-based applications, AP is the

main source of heat generation in mobile gaming. During

the game play, the CPU usage rate was only 20% on average,

while the GPU usage rate increased to 58%. As both GPU

and CPU are built into the AP, the AP remains a main heat

source. Due to adaptive thermal management, the heat was

much lower than other application usage scenarios.
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Figure 11: The steady-state temperatures of AP and

Wi-Fi chip during 10 minute network transmissions.

Running applications while charging: Figure 10 shows

that the temperature changes of both AP and PMIC while

charging look similar to when non-charging. We started the

experiment at 10% battery level and the discharging rate was

faster than the charging rate. When the battery level dropped

to 0%, the charging rate increased, causing the temperatures

of both AP and PMIC to suddenly leap to nearly 100◦C. Un-
like other scenarios, PMIC exhibits a higher temperature

than the AP. The charging IC and its paired PMIC modulate

the voltage and the current. It appears that these compo-

nents can be overloaded when we simultaneously use and

charge the smartphone. This may be attributed to a charging

algorithm controlled by the PMIC when the battery level

reaches 0% [8].

Wi-Fi communication:Wemeasured the temperature changes

of the application processor (AP) and the Wi-Fi chip while

transmitting UDP data packets with iPerf. Figure 11 reveals
the higher the Tx data rate, the higher the temperature. The

Wi-Fi chip showed a higher temperature than the AP, sug-

gesting that theWi-Fi chip could be a main heat source when

the smartphone uses high-speed wireless communication.

CPU intensive vs. video processing workload: APs typ-

ically contain multiple modules such as CPUs, GPUs, mul-

timedia codec, and memory. This means that simultaneous
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Figure 12: Nexus 5X’s surface temperature vs. fre-

quency scaling behaviors.

use of multiple modules would likely cause surface over-

heating. To check this, we conducted two experiments: CPU-

intensive workload (90% CPU utilization), and high-quality

video recording. The results are presented in Figure 12.

Interestingly, CPU intensive workload alone did not cause

significant overheating. The surface temperature did not

exceed 46◦C due to frequency scaling and core disabling.

During video recording, however, the surface temperature

continued to rise and reached 60◦C in 20 minutes, despite

frequency scaling and core disabling. This overheating orig-

inates largely from the video codec in the multimedia pro-

cessing component built into recent mobile APs such as

Qualcomm Snapdragon 808 in Nexus 5X. A hardware accel-

erator, such as a video codec in a mobile AP typically does

not have its own thermal management capability as it simply

runs the required workload. Thus, the higher the workload,

the more heat it generates.

4.3 Ubiquitous Usage Analysis

Our smartphone temperature measurement studies helped

us to characterize the surface temperature of well-known

app usage scenarios and to identify the major heat sources.

Beyond these scenarios, we measured the surface tempera-

ture in a variety of mobile and ubiquitous scenarios: virtual

reality (VR) gaming, mobile, augmented reality (AR) gaming,

GPS driving navigation, high-speed wireless data transfer,

and mobile deep learning. Note that for VR gaming and

high-speed wireless data transfer scenarios, we use Sam-

sung Galaxy S7, because Gear VR only supports Samsung

phones, and Nexus 5X’s Wi-Fi Direct does not fully support

high-speed data transfer (i.e., 300 Mb/s).

Virtual reality:We measured the temperature changes of

Galaxy S7 connected to a Gear VR headset. We considered a

scenario of playing a 3D runner game, called Temple Run 3.

We measured the temperature of the air confined in the VR

headset by using a K-type thermocouple attached inside the

headset. After 30 minutes of game playing, the temperature

of the smartphone surface rose to 42◦C, and the air tempera-

ture reached 38◦C. Although this level of temperature is less

concerning than that of other scenarios, the confined space

between the face and the device got wet with sweat due to



Figure 13: Dashboard navigation measurement.

the heat and the lack of ventilation, causing considerable

thermal discomfort.

Augmented reality gaming: Pokémon Go [9], a location-

based augmented reality game was considered for measure-

ment due to its popularity. This game consistently uses di-

verse hardware components, such as AP, Wi-Fi, LTE, GPS,

and camera, which could generate considerable heat. In par-

ticular, the AR mode displays the image captured by the

camera and renders 3D objects over the background. If this

mode was enabled, our measurement showed that the tem-

perature quickly reached 53◦C at the hot-spot of the surface.

In addition, over half of the surface reached higher than

45◦C. When the temperature was over 51◦C in the AR mode,

we observed unnatural and discontinuous rendering of 3D

graphics due to thermal throttling. When the AR mode was

disabled, the surface temperature was around 46◦C.
GPS navigation: Navigation is one of the most popular

vehicular smartphone applications. Since GPS is one of the

main sources of energy consumption in smartphones [18],

we hypothesized that continuous use of GPS and map ren-

dering could generate considerable heat. Furthermore, due

to direct sunlight exposure, there could be significant envi-

ronmental influence on the surface temperature. To inspect

the temperature/power relationship and an environmental

factor, we considered the following GPS navigation applica-

tions: KakaoNavi [6], NaverMap [7], and Waze [13]. Note

that Google and Apple Maps do not provide turn-by-turn

navigation services in the locations where the experiments

were performed.

We conducted an experiment by measuring the tempera-

ture of three smartphones (Fig. 13), each running a different

navigation app mentioned above, using thermal cameras

mounted on the dashboard in a car with air conditioning

(22–24◦C). We drove about 12 km for 30 minutes at four dif-

ferent times in the evening.Waze, KakaoNavi, and NaverMap

reached on average 44◦C, 42◦C, and 41◦C, respectively. Simi-

lar to the Pokémon Go results without the AR mode, these

results show that running the navigation applications does

not appear to cause serious thermal concerns, and GPS, while

consuming a lot of energy, does not generate excessive heat.

We then examine the effect of sunlight, by measuring the

surface temperature of the smartphones mounted on the

dashboard under direct sunlight without air conditioning

during the daytime. In this case, the temperature quickly

rose up to 64◦C in just 15 minutes. It appears that in-vehicle

usage of GPS navigation can cause considerable thermal

issues mainly due to the sunlight rather than the workload.

High-speed wireless communication: High-speed wire-

less networking scenarios such as local file sharing are be-

coming common as wireless networking technologies evolve

such as Wi-Fi Device-to-Device (D2D). We examine how

high speed data transmission affects the smartphone surface

temperature. For accurate temperature measurement, we

exchange a large video file using Galaxy S7 with the maxi-

mum throughput of 300 Mb/s. When transmitting the file,

the temperature of Galaxy S7 using Wi-Fi Direct quickly

rose to 51◦C. The location where the Wi-Fi module resides

showed the highest temperature, which is different from

when video chatting using Wi-Fi, where the application pro-

cessor generated the most heat. As discussed in Section 4.2,

the network throughput of Skype was less than 1 Mb/s. We

thus infer that the temperature of Wi-Fi module increases

considerably as network throughput increases. Furthermore,

the transmitter exhibits higher temperature (51◦C) than the

receiver (41◦C). This can be partly explained based on the

fact that the transmitter consumes more energy than the

receiver [15].

GPU-based mobile deep learning: There is a growing

demand of building deep learning platforms in mobile de-

vices (e.g., Caffe2Go [25] and DeepMon [30]) to support con-

tinuous vision applications such as real-time style transfer

and image recognition. As deep learning requires intensive

computation, we measure how much heat deep learning

applications generate.

For this measurement, we considered DeepMon, a mobile

deep learning inference system that runs various deep learn-

ing algorithms on a mobile device and supports mobile GPU

acceleration [30]. Using the DeepMon framework, we built

and ran a simple deep neural network (DNN) based image

processing app. We used Galaxy S7 for this measurement as

the DeepMon framework is optimized for Galaxy S7’s GPUs.

Our app continuously captures and classifies images for ob-

ject detection from the camera using the You Only Look

Once (YOLO) model [51]. Our test app runs the DNN image

processing method every three seconds, and the processing

time of single instance takes about a second.

Our results showed that running this deep learning al-

gorithm generated a temperature (54◦C) that is 9◦C higher

than simply capturing images from the rear camera (45◦C).
While it took 21 minutes to reach this temperature, it eas-

ily exceeds the highest temperature that we measured from

Galaxy S7 (47◦C when running video chat). Given that the

processing time of the DNN algorithm is less than about 33%

of the total processing time, we expect that more heat could

be generated depending on the GPU workload. Our results
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Figure 14: Surface temperature during a gameplay.

clearly show that the chipset vendors and smartphone man-

ufacturers should pay more attention to overheating issues

particularly when GPUs are highly utilized as in the deep

learning scenarios.

5 USER EXPERIENCE STUDY ON HEAT
SENSATION AND DISCOMFORT

We conducted a user experience study to understand how

surface heat affects user experiences: (i) how much heat

and discomfort users feel when they use a smartphone for

a prolonged time (e.g., 20 minutes of a game play), and (ii)

what are user reaction patterns due to the surface heat.

5.1 Experiment Design

We recruited 20 participants (10 male and 10 female), with

the average age of 21.45 (min=19, max=26). We asked the

participants to play Yokai Saga [1], a popular 3D mobile ac-

tion game. This game was chosen because (i) it received a

good user rating (i.e., fun to play), (ii) its controls are intuitive

and simple to handle, (iii) it requires frequent screen touches,

and (iv) it caused smartphone surface heating with consis-

tent trends. We used Nexus 5X and Galaxy S7 smartphones

to account for variations on heat sensation and discomfort

across different devices. As shown earlier, Nexus 5X had a

slightly higher surface temperature (44.33◦C) than Galaxy

S7 (39.14◦C), and took much shorter time (352 sec) than

Galaxy S7 (606 sec) to reach the steady-state temperature

(see Figure 14). When participants played the game, we rec-

ommended them to hold the phone in the landscape-mode

with their hands; this recommendation was made to avoid

the case of laying the phone on the desk.

We conducted an IRB-approved within-subjects experi-

ment. The participants performed in two conditions, chang-

ing the smartphone models (i.e., Nexus 5X and Galaxy S7). To

reduce the order effect, we counter-balanced the order such

that a half of them used Nexus 5X first, and the other half

used Galaxy S7 first. Each participant was rewarded with a

$10 gift voucher.

We asked the participants to rate the level of heat sensa-

tion and discomfort every 4 minutes on a 5-point Likert scale:

1: Not at all, 2: Little, 3: Somewhat, 4: Very much, and 5: Ex-

tremely. These questions have been widely used in the field
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Figure 15:Heat sensation anddiscomfort during game-

play (error bars denote standard deviation).

of ergonomics [62, 63]. While heat sensation and discomfort

levels were known to be correlated [63, 64], it is interesting

to study the overall user experiences with smartphone usage

scenarios. During the experiment, we video recorded the

grabbing patterns to investigate their reactions to surface

heat. After game plays, we conducted a follow-up interview.

5.2 User Study Results

Figure 15 shows the mean levels of heat sensation and dis-

comfort during gameplay. The level of heat sensation in-

creased at a similar rate to the temperature increase shown

in Figure 14. A few participants indicated that the smart-

phone was very hot for the first 8 minutes during which the

temperature rapidly increased. As the temperature increased

so did the heat sensation and discomfort levels. Unlike heat

sensation, we observed that the discomfort level increased

almost linearly. As a result, 75% of the participants responded

that they felt discomfort due to surface heat (levels 3 to 5 in

Fig. 15b). P1 commented “Because the smartphone was hot,
my fingers became numb just like when the electricity flowed”
and P20 mentioned “It was uncomfortable to keep holding the
smartphone as it got slippery.”
To verify the time-series differences, we applied paired

samples t-tests between two consecutive measurements (e.g.,

the 0-th minute and the 4-th minute measurements). The

levels of heat and discomfort from the 0-th minute to the 16-

th minute were significantly different. However, at the 16-th

and the 20-th minutes, the levels of heat sensation were not

different (p=0.159, Cohen’s d=0.143), whereas the levels of

thermal discomfort were different (p=0.003, Cohen’s d=0.323).

This shows that the participants did not perceive a significant

difference in heat sensation at the 16th minute mark, but

felt more discomfort as time passed. Despite slightly lower

temperature, prolonged usage still can cause considerable

discomfort, thereby negatively influencing user experiences.

In the post-interview, the participants reported thermal

discomfort for various reasons: (i) heat sensation, (ii) con-

cerns on skin burn, (iii) sweating, (iv) sensor malfunction

caused by sweat, and (v) slip caused by sweat. Most partic-

ipants said that Galaxy S7 was especially slippery because

of its glass-based surface material. While discomfort levels

were not significantly different, our participants consistently

reported that using Galaxy S7 was more uncomfortable than



Table 3: Measured data types for prediction modeling.

System Statistics (21)

CPU

Statistics

(17)

(1) Time spent on un-niced user processes, (2) Time spent on

niced user processes (UserTime), (3) Time spent on kernel pro-

cesses (SysTime), (4) Time spent in kernel idle handler, (5) Time

waiting for I/O completion, (6/7) Time spent servicing HW/SW

interrupts, (8) Total elapsed time for above seven items, (9) Per-

centage of time running user space (User%), (10) Percentage

of time running kernel space (System%), (11) Percentage of

time running I/O completion, (12) Percentage of time running

HW interrupts, (13) Percentage of total CPU time (CPU%), (14)

CPU’s clock freq. (CPUfreq), (15) Total accessible address space

of a process, (16) Total memory held in RAM for a process, (17)

Number of threads

On-device

Sensors (2)
(1) CPU temp. (cpuTemp), (2) Battery temp. (batTemp)

Network (2) (1) Tx data rate (netTx), (2) Rx data rate (netRx)

Nexus 5X even though Nexus 5X showed a higher tempera-

ture during the experiments. Participants mentioned that the

whole surface of Galaxy S7 was heated, whereas only one

side of the surface (near the fingerprint sensor) of Nexus 5X

was heated.

Our video recording analysis showed that as this game

requires landscape-mode user interaction, 75% of the partici-

pants grabbed the smartphone with both hands, but some

users played with one hand (left: 20%, right: 5%).

All participants were hence exposed to the hottest areas of

each device during gameplay. We observed that most (95%)

participants repeatedly changed their grips and stretched

their hands. At the end of the experiment, we asked them

why they changed the grip and 35% said that it was because

the smartphone was too hot or their hands were sweaty. The

other participants (65%) responded that it was a less con-

scious behavior and they wanted to resolve the discomfort

in keep holding the smartphone.

6 INFERRING SURFACE TEMPERATURE

Our experiments have shown that smartphones could quickly

overheat during popular usage scenarios and cause user dis-

comfort or even injury. Estimating and predicting high sur-

face temperatures could be a first step in lowering user dis-

comfort due to heat. However, current smartphones only

monitor the temperature of specific components and do not

provide surface temperature measurement. We explore the

feasibility of estimating surface temperature by using only

Android system statistics and internal sensors (e.g., CPU and

battery temperature).

6.1 Model Design

We collected two datasets from Nexus 5X and Galaxy S7:

the surface temperature of each device and system statistics

while running several usage scenarios. We selected features

to identify the dominant factors that relate to surface temper-

ature. We ran pre-processing to handle the time correlation

factor to better predict upcoming temperature changes.

We present a prediction model for each device by means

of smartphone system statistics without any additional hard-

ware. We collected 21 system statistics by using the top com-

mand of the Android debug bridge and the Android system

API (see Table 3) and measured the corresponding surface

temperature every 5 seconds. The maximum CPU utiliza-

tion of the logging app was about 3% for both Nexus 5X

and Galaxy S7, suggesting that the logging process has a

negligible overhead to collect proper amount of data.

To collect a dataset, we categorized a variety of popular

smartphone usage scenarios and selected 11 representative

scenarios. We selected six apps to cover the usage scenar-

ios for training: games (HIT, Yokai Saga), cameras (Skype,

video recording), networking (iPerf), and video streaming

(YouTube). Each dataset was collected as follows. For each

scenario, we performed temperature measurements four

times, 30 minutes each. After removing erroneous measure-

ments in some scenarios, the number of total measurements

was 40 instances, and thus the total duration was 1,200

minutes. For evaluation, we used a leave-one-scenario-out

method, by randomly choosing one scenario for testing and

the rest for training.

Different smartphones might have different thermal man-

agement methods and their heat dissipation could be dif-

ferent due to the differences in internal components. For

each phone, we thus must obtain representative features that

could best predict temperature changes. For feature selec-

tion, we used the correlation-based feature selection (CFS)

method [29], which selects the features that are highly cor-

related with the predictive variable but are less correlated

with one another. We used CorrelationAttributeEval in Weka

3.8.2 for feature selection and chose the top 8 features each

for Nexus 5X and Galaxy S7.

For prediction, while multiple regression could be a vi-

able choice, it is known that simple multiple regression is

less accurate when there is time correlation of neighboring

data rows [20]. To address this concern, we performed pre-

processing called time lagging (i.e., attaching neighboring

data pairs) to make our data attain time dependency informa-

tion as follows: yt = �αTXt + �βTXt−L + ϵt where yt denotes
the temperature at time t , Xt denotes the system log vector

at time t , L is a lag number, �α and �β are regression coefficient

vectors, and ϵt denotes the corresponding error term. Note

that L = 0 represents a regular multiple regression.

6.2 Evaluation

The dominant features are listed in Table 4. There are seven

common features (e.g., the percentage of time running user/kernel



Table 4: The dominant features for each smartphone

in descending order of correlation coefficient.

Selected Features

Nexus 5X batTemp, cpuTemp, CPUfreq, System%, User%, UserTime, SysTime, CPU%

Galaxy S7 batTemp, cpuTemp, CPU%, SysTime, UserTime, User%, System%, netTx

0

1

2

Real-time 30 sec. ahead 60 sec. ahead

R
M

SE
 (

)

Base Lag 1min Lag 2min Lag 3min

(a) Nexus 5X.

0

1

2

Real-time 30 sec. ahead 60 sec. ahead
R

M
SE

 (
)

Base Lag 1min Lag 2min Lag 3min

(b) Galaxy S7.

Figure 16: Prediction accuracy with time lagging.

space, total CPU utilization, CPU time spent in user/kernel

space, CPU temperature, and battery temperature) for both

smartphone models, and one distinct feature for each smart-

phone. The high utilization and run-time means that the

CPU is intensively working and hence, the temperature will

rise. The clock frequency has negatively correlated with the

surface temperature due to DVFS. While Nexus 5X actively

manipulated the clock frequency as shown in Figure 12b,

Galaxy S7 did not show such frequency scaling behavior.

Thus, the clock frequency feature was not included in Galaxy

S7. Instead, the data transmission rate showed a high corre-

lation with the surface temperature.

With these dominant factors as shown in Table 4, we

trained our model for each smartphone to estimate the sur-

face temperature. To do this, we assembled all training data

from multiple apps to build a single model for each smart-

phone. The real-time prediction performance of our multiple

regression model is shown in Figure 16. As an accuracy mea-

sure we used RMSE that denotes the root mean square error.

Our model accurately predicts the surface temperature, with

errors less than 2◦C in most cases. This performance is su-

perior to the model that uses only internal thermometers;

a model using only cpuTemp and batTemp showed R2: 0.87

and RMSE: 3.81◦C for Nexus 5X. This pattern is also true

for Galaxy S7: R2: 0.82 and RMSE: 1.51◦C. Since our mea-

surement tool, the IR camera, has approximately 2◦C error

bounds at most, we conclude that our prediction method

estimates the temperature changes accurately.

Figure 17 summarizes the model performance of predict-

ing temperature changes. The overall prediction error was

1.24◦C RMSE for Nexus 5X and 0.64◦C RMSE for Galaxy S7.

The models could also predict the temperature changes while

running several new test apps that were not included in the

training apps. Eachmodel of Nexus 5X andGalaxy S7 showed

1.96◦C and 0.983◦C RMSE for Google Hangouts, and 2.46◦C
and 0.676◦C RMSE for Abyssrium, respectively. We can im-

prove the performance with the time lagging technique as

shown in Figure 16. The Lag t min means each temperature

datum is attached with two system log of t minutes away.
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(a) 5X: Game HIT.
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(b) S7: Game HIT.
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(c) 5X: Game Yokai Saga.
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(d) S7: Game Yokai Saga.
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(e) 5X: Video chat Skype.
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(f) S7: Video chat Skype.
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(g) 5X: 1080p video rec.
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(h) S7: 1080p video rec.
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(i) 5X: Tx 1Mbps networking.
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(j) S7: Tx 1Mbps networking.
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(k) 5X: 4K stream YouTube.
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(l) S7: 4K stream YouTube.

Figure 17: Model performance over various apps.

It is natural that the farther the model predicts, the lower

performance it shows. However, we observe that our model

yields better performance when we attach the farther lag-

ging data. Thus, when we choose 3 minutes lagging data,

we can estimate the temperature within 1.20◦C RMSE for

Nexus 5X and 0.523◦C RMSE for Galaxy S7.

7 DISCUSSION

7.1 Implications and Recommendations

User experiences:While user interface research extensively

studied how heat can be used as an output modality (e.g., sub-

tle information delivery) [32], no prior studies systematically

examined the overheating patterns under various workloads



and their impact on smartphone user experiences. Our exper-

iment showed that various real-world workloads generate ex-

cessive heat, and our user study confirmed that overheating

degrades user experiences. Emerging ubiquitous applications

such as AR/VR and mobile deep learning also showed signifi-

cant thermal issues. Indeed, overheating might incur serious

discomfort or even pain since the smartphones can directly

touch heat-sensitive facial regions [46]. Our VR results indi-

cate that wearable devices (e.g., glasses, virtual reality head-

sets) are likely to have more serious thermal issues, as they

are worn and attached to the body. LiKamWa et al.’s work

on thermal concerns of smart glasses [39] emphasized the

importance of placement and power control of heat sources.

OS design: Mobile operating systems can provide options

for users: system-forced regulation that the device cannot

exceed the temperature threshold, and user-imposed regula-

tion whether to take a (mildly) high temperature per user’s

setting. Currently only few phones show warning messages

before they turn off due to high temperature; others switch

off even without any warning. It would be helpful for users

to be notified and make them respond in advance before

their smartphones shut down. Our prediction model would

be very useful to enable these options. Furthermore, we sug-

gest a new evaluation criterion of smartphones and apps for

thermal awareness. As in PowerForecaster [43] that allows

users to check power efficiency before app downloading, we

can display thermal ratings for informed app downloading.

There was an attempt to consider a smartphone’s sur-

face temperature for DVFS based thermal management [24].

However, our results demonstrated that DVFS alone is not

sufficient for managing surface temperature. There should

be a holistic thermal management framework that simulta-

neously considers multiple components’ thermal character-

istics (e.g., PMIC, cameras, sensors, and wireless chipsets).

Our prediction model can be integrated into this framework.

Developer support:Our participants commented that over-

heating disrupted interaction flows and degraded interaction

performance (e.g., input errors due to sweat). We recommend

that app developers systematically consider user interaction

as well as user reaction patterns (e.g., phone grab patterns,

body part contact patterns). Overall, our thermal model can

be useful for understanding the thermal impacts of their apps,

including user interaction patterns. Our prediction model

only requires one-time training per phone model and works

in a real-time system without using external thermometers.

As in several power profilers (e.g., Eprof [49] and PowerFore-

caster [43]), our model can track which components generate

heat and also can be integrated into the Android IDE. This

allows app developers to simulate the thermal characteristics

of their apps. Besides such profilers, OS-level API supports

for real-time surface temperature measurement will enable

an array of user level applications including temperature

warning.

7.2 Limitations and Future Work

For generalizability of our findings, we need further mea-

surement studies on a wide range of recent phones and ap-

plication workloads. We believe that our measurement of ten

recent phones provided ample evidence of thermal issues in

smartphones. Our deep learning results demand further stud-

ies on emerging mobile AI applications (e.g., real-time image

processing and intelligent assistants) [35, 40] as they also re-

quire high computation power and large data transfer. Note

that 3D gaming requires careful measurement considerations

because various in-game events may cause heterogeneous

CPU/GPU workloads. In this case, surface heating happens

over a longer period of time (say at least several minutes)

as opposed to temporal variations of in-game events. Thus,

we hypothesize that the impact of in-game events and their

variations would not be significant. Nonetheless, furthermea-

surements are required to accurately understand the impact

of diverse in-game events.

Our prediction model is device-dependent and requires

new model building with new phones. This model can be ap-

plicable to Android smartphone models, and it only requires

one-time training per model. The model can be extended

to predict multiple points by adding more measured points

during the training stage. In our work, we have not consid-

ered running multiple apps at the same time, as the Android

system prioritizes resource allocation to the foreground app.

It is likely that background apps are mostly CPU-intensive

workloads. According to our results, their thermal issues

may not be significant. However, examining diverse coexis-

tent scenarios including app restarting would still be a very

interesting direction for future work. Furthermore, it would

be interesting to explore various methods of improving pre-

diction accuracy, by considering diverse hardware stats (e.g.,

GPU utilization), and leveraging advanced prediction algo-

rithms (e.g., recurrent neural networks).

8 RELATEDWORK

A number of studies proposed thermal models and manage-

ment methods for mobile and wearable devices. Sekar [53]

discussed major challenges in power and thermal manage-

ment of mobile devices and emphasized the critical role of

heat in the power context, calling for further studies on

thermal measurement, modeling, management, and user ex-

perience research.

Singla et al. [55] presented a dynamic thermal and power

management algorithm for heterogeneous multiprocessor

systems-on-chip (MPSoCs) powering mobile platforms. Im

et al. [31] designed a circuit-level temperature prediction



method for electronic devices. Kwon et al. [34] proposed a

thermal prediction method for N-App N-Screen (NANS) ser-

vices on smartphones by considering the multi-core CPU and

the display interface chipsets. All of these studies focused

on measuring and predicting the temperature changes of

APs, and none of the studies measured the surface tempera-

tures, which could directly impact user experiences. Egilmez

et al. [24] showed the feasibility of surface temperature es-

timation using CPU usage and CPU/battery temperature

and proposed a novel DVFS method that considers surface

temperature. This work however did not consider various

system statistics information, and only basic linear regres-

sion was considered for modeling. Our model includes the

basic regression model as well (i.e., no lagging case). Our

results showed that the temporal series modeling with lag-

ging considerably improves the prediction accuracy, when

compared with the basic regression case. Park et al. [47, 48]

considered power consumption characteristics of hardware

components to predict surface temperature, but this model re-

quires kernel-level hardware usage information (e.g., current

video recording resolution, clock frequency information) for

model construction. Our prediction model differs from these

prior studies in that we use a variety of system stats and

on-device sensors that are accessible at user-level processes

to train time-series regression models, and we validate the

accuracy of our real-time prediction model by considering

diverse application workloads with different smartphones.

Xie et al. [60] developed a compact-thermal-modeling-

based thermal simulator that simulates how heat is dissipated

from its source to the surface. This work focused onmodeling

the thermal resistance network of smartphones, while our

work mainly investigates how different applications affect

the thermal conditions of the smartphones and the impact

on user experiences. Chiriac et al. [21] developed a heat

spreading metric, namely coefficient of thermal spreading

that quantifies how well the generated heat is spread on

smartphone surface. This metric helps hardware designers to

better analyze the thermal design effectiveness. The authors

used surface temperature data to estimate the spreading

metric, but they did not report comprehensive measurement

results with diverse workloads.

Several studies investigated the relationship between vari-

ous thermal conditions of mobile/wearable devices and user

experiences. Suh et al. [57] proposed the user burden scale

that quantifies how user burdens including physical discom-

fort affect user experiences. In practice, physical burdens due

to overheating can result in a negative effect on initial adop-

tion, retention, and overall user experience. Zhang et al. [63]

studied how laptop temperature is related to user discomfort

by conducting thermal measurements of laptops at different

relative positions. LiKamWa et al. [39] measured the energy

and thermal characteristics of Google Glass. They found that

video chatting reached around 50◦C in 10 minutes, which far

exceeded the thermal pain threshold. Thus, they suggested

that head-mounted devices carefully regulate surface tem-

perature. Straume et al. [56] analyzed the health risks of

mobile phone use due to RF radiation and heat exposure by

measuring a user’s skin temperature in the head.

While these studies emphasized the effect of thermal is-

sues in mobile/wearable devices on user experiences and

health risks, there is still a lack of systematic analyses of

surface and component-specific temperature measurements

of various recent smartphones under various application

workloads, and the overall impact of surface temperature on

user experiences.

9 CONCLUSIONS

With emerging energy demanding applications, smartphones

with powerful processors are being introduced, thereby chal-

lenging thermal management practices. Our research pro-

vides a first step towards investigating thermal issues as-

sociated with smartphones under various workloads. We

performed extensive measurements and analyzed whether

practical smartphone use gives rise to thermal concerns. We

discovered that many applications, especially those using

the camera, generated excessive heat, often surpassing the

thermal pain threshold. The major heat sources include appli-

cation processors, camera, and power management modules.

Furthermore, we conducted a user study to examine how

users perceive heat and discomfort while using smartphones.

75% of our study participants reported discomfort due to heat

while playing a mobile game. Overheating disrupted user

interaction flows and sometimes caused interaction errors.

We also built a system statistics-based smartphone surface

temperature prediction model and showed that our model

yielded a mean squared error less than 2◦C.
Many of us use smartphones often and for long duration.

We make direct physical contact with smartphones, and thus

thermal problems affect user experiences. We believe that the

thermal issue associated with smartphones is an important

and difficult problem. We hope our study raises awareness

of this topic, and the mobile computing communities, both

research and industry, actively work together to improve

smartphone thermal computing.
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