Poster Session

MobiSys 19, June 17-21, 2019, Seoul, Korea

Poster: Prototyping Functional Android
App Features with ProDroid

Donghwi Kim Soo Young Park Jihoon Ko Steven Y. Ko Sung-Ju Lee
KAIST KAIST KAIST University at Buffalo KAIST
dhkim09@kaist.ac.kr sypark0614@kaist.ackr jthoonko@kaist.ac.kr stevko@buffalo.edu profsj@kaist.ac.kr
Abstract prototypes, it still requires significant development effort due to

We present ProDroid, a framework that provides Android app de-
velopers an ability to quickly produce functional prototypes. With
ProDroid, developers can create a new app that imports various
kinds of functionality provided by other existing Android apps. Our
evaluation shows that with the help of ProDroid, a developer was
able to import a function from an existing Android app into a new
prototype with only 55 lines of Java code, while the function itself
requires 10,334 lines of Java code to implement.

CCS Concepts

- Software and its engineering — Reusability.

Keywords

Android; Functional prototyping; Development frameworks

ACM Reference Format:

Donghwi Kim, Soo Young Park, Jihoon Ko, Steven Y. Ko, and Sung-Ju Lee.
2019. Poster: Prototyping Functional Android App Features with ProDroid.
In The 17th Annual International Conference on Mobile Systems, Applications,
and Services (MobiSys ’19), June 17-21, 2019, Seoul, Republic of Korea. ACM,
New York, NY, USA, 2 pages. https://doi.org/10.1145/3307334.3328621

1 Introduction

The ability to quickly prototype an application is critical in software
development. Using prototypes, developers can evaluate their de-
sign decisions in a realistic fashion, solicit feedback from potential
users to check if their applications meet the users’ specifications
or expectations, and shape the final designs and features before
releasing actual products. The process of iterating over different
prototypes can significantly improve the final user experience and
save the cost of having to fix problems after release.

When developing a prototype, it is crucial to be able to demon-
strate not only the UI of an application, but also the functionality
of it. This is especially true for mid- to final-stage prototypes. In an
early stage of development, it is perhaps acceptable to just show a
set of static images of Ul mockups [1] or a prototype with limited in-
teractivity (e.g., mockup UI clicks and transitions). However, at later
stages of development, it is necessary to be able to use a prototype
and evaluate it in real-life situations [3]. A functional prototype
is also necessary for software development outside commercial
domains, such as academic research, where resource constraints of-
ten prevent investing in full-scale software development. Although
leveraging open source projects can help in creating functional

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

MobiSys 19, June 17-21, 2019, Seoul, Republic of Korea

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6661-8/19/06.

https://doi.org/10.1145/3307334.3328621

552

the need for extracting code from an unfamilar code base that is
potentially large.

We present ProDroid, a framework for Android app devel-
opers to quickly prototype experimental features for ongoing
app development. ProDroid enables developers to import dif-
ferent kinds of functionality from other existing Android apps
without having the source code or understanding the inter-
nals of those apps. By allowing developers to leverage exist-
ing apps’ functions quickly and easily, ProDroid enables devel-
opers to iterate over functional prototypes and test out differ-
ent features rapidly. ProDroid makes this possible by adopting
programming by demonstration [2] and combining it with our pro-
posed background execution of existing Android apps.

ProDroid adopts programming by demonstration in its develop-
ment tool, where a developer “demonstrates” a series of Ul actions
on an existing Android app. The Ul actions are the ones that trigger
the functionality that the developer wants to use from the existing
app in her prototype. Once a developer demonstrates such Ul ac-
tions, ProDroid generates a piece of code that the developer can
embed into her prototype. This generated code is essentially a series
of ProDroid commands that ProDroid executes at run time.

In order to execute those commands, ProDroid implements a new
run-time system that directly performs Ul actions on an existing
app to ultimately execute the function that the UI actions trigger.
The salient feature of this run-time system is that it performs all
Ul interactions with an existing app completely in the background,
without displaying anything on the screen. This provides an illusion
that a prototype tester is interacting with a single app, which is
important when evaluating the UX of a prototype.

The main contributions of ProDroid are as follows. First, We de-
sign and develop a new Android app development tool for easy pro-
totyping of functional app features. Second, We develop a technique
to execute an existing app’s functionality completely in the back-
ground. The novelty of our technique lies in converting user-visible,
foreground tasks into background ones. Our technique works with
existing apps on off-the-shelf Android devices; we do not impose
any disruptive barrier to entry, such as operating system modifica-
tions or source code access to existing apps. Third, We evaluate the
usefulness of ProDroid by conducting a developer study with three
Android developers involving app feature prototyping. Our result
shows that ProDroid has enabled a participant to import an app
function from an existing app by writing only 55 lines of Java code.
Without ProDroid, the participant would have needed to migrate
10,344 lines of Java code from an open-source code base.

2 ProDroid Overview

Figure 1 summarizes a prototype development process using Pro-
Droid. We present three design principles (DP) and app development

https://doi.org/10.1145/3307334.3328621
https://doi.org/10.1145/3307334.3328621

Poster Session

1) Download an App to
Borrow Functions from

2) Demonstrate a
Function to Borrow

3) Generate FPK
& Integrate

J |l = | ™~
» B > x

| DevTool

- - g

Figure 1: ProDroid usage model.

4) Deploy

@
iy

App Market FPK Generator|

steps with the following example use case scenario: Alice and her
team are developing a chatting app. Alice has an idea of a new app
feature, smart snoozing, that snoozes chat notifications while users
are asleep. To collect feedback from her team members, she decides
to quickly build a functional prototype with ProDroid.

DP1 Utilizing existing apps without manual modification. To de-
tect whether a user is sleeping or not, Alice wants to import sleep
tracking functionality from an existing app. From an online app
market, she finds a sleep tracker app that uses smartphone sensors
to infer a user’s sleep state. She downloads the sleep tracker app,
and uses its package file (called APK) as input to ProDroid.

DP2 Providing ease of programming for developers. After obtain-
ing the APK file, Alice feeds the file to ProDroid’s developer tool
named DevTool running on her computer. DevTool allows Alice
to demonstrate UI actions that trigger the sleep tracking function
provided by the downloaded sleep tracker app. To do so, DevTool
launches the sleep tracker app in a special Android emulator that
Alice can use to demonstrate UI actions. Using the emulator, Al-
ice navigates through the sleep tracker app’s Uls to where sleep
states are displayed. Alice then informs DevTool that the UI action
demonstration is finished and DevTool generates a corresponding
code segment. This code segment uses ProDroid’s API to describe
ProDroid commands that perform demonstrated Ul actions.Alice
embeds this code segment into a new method that she implements
for her prototype, isSleeping(), which returns true if ‘sleeping”
is displayed or false otherwise. Since ProDroid’s API is provided
as a library (named LibP), Alice links LibP with her chatting app,
which now contains isSleeping() method.

ProDroid transforms an APK file into an ProDroid-compatible
form named Functionality Package (FPK). ProDroid provides a tool
named FPK Generator for this purpose. Thus, Alice runs FPK Gen-
erator on her computer to generate an FPK file for the sleep tracker
app. At run time, ProDroid uses this FPK file to execute the sleep
tracking functionality that Alice uses in her prototype app.

DP3 Making new apps easily deployable on off-the-shelf Android
devices. To test Alice’s new prototype, she and her team install two
apps; Alice’s new prototype and a special Android app named PEx-
ecutor provided by ProDroid. After installing the two apps, Alice
or her team member uses the new prototype just like any regular
Android app. When the prototype app must execute the embedded
sleep tracking functionality, the app communicates with PExecutor
and PExecutor executes the function in the background using the
sleep tracking app’s FPK. PExecutor does all of the above as a regu-
lar Android app, and there is no need to implement anything in the
Android OS. This makes it possible to easily deploy our solution
on off-the-shelf Android devices.

3 Developer Study
To evaluate the usability of ProDroid, we have conducted a user
study with three Android app developers. We asked them to pro-

553

MobiSys 19, June 17-21, 2019, Seoul, Korea

Table 1: Developer study outcome.

‘ D ‘ Android skill ‘ LoC ‘ Time ‘ API understanding
P1 | Intermediate | 55 90 mins | 5 (out of 5)
P2 | Beginner 59 150 mins | 5 (out of 5)
P3 | Beginner - - 4 (out of 5)

totype an app feature by borrowing the function of reading an
encrypted DB from an unfamiliar app. We provided ProDroid with
ProDroid API documents. Before the experiment, we explained the
basic mechanism of ProDroid and how to use the provided API. All
three participants have Android app developing experience, while
the quality of the developed apps and the depth of Android under-
standing vary widely. We labeled their skills by the longest lines
of code they have ever contributed for a single Android project—
beginner (< 1,000 LoC), intermediate (< 10,000 LoC), and otherwise.
For each developer, we measured how long one took to com-
plete the task. As Table 1 shows, P1 successfully completed the task
within 90 minutes, requiring only 55 lines of code. P2 had less An-
droid experience and took 150 minutes to complete the task, with 59
lines of code. P3 had difficulties completing the task, as he barely had
experience with the event-driven programming model of Android.
Despite this, we observed that he had no trouble accessing provider
app’s UI components. Regardless, all three developers, including
the last, rated their API understanding fairly well. According to our
analysis, 10,334 lines Java/C code must be migrated from 28,996 lines
of codebase to accomplish the same task without ProDroid. This
shows that although prior development experience can influence
the outcome, ProDroid AP is easily usable, and ProDroid effectively
lightens the development burden for the given prototyping task.

4 Conclusions

We have presented ProDroid that enables developers to quickly
produce functional prototypes of an Android app. ProDroid repur-
poses the Ul of an Android app as an interface where developers
define functions to import. Compared to existing prototyping ap-
proaches, ProDroid is the only solution that enables the creation of
a functional prototype and it requires neither the understanding
of function implementation details nor access to source code for
other Android apps where imported functions are implemented.
We have conducted a usability study with three Android app de-
velopers and they have indicated that ProDroid provides an API
that is easy to understand and usable. With ProDroid, a devel-
oper has imported an another app’s function that requires 10,334
lines of Java code by writing only 55 lines of Java code. We be-
lieve ProDroid makes a step toward new mobile app prototyp-
ing where developers can quickly produce functional prototypes.

Acknowledgments

This research was financially supported by the Ministry of Trade, Indus-
try and Energy(MOTIE) and Korea Institute for Advancement of Technol-
ogy(KIAT) through the International Cooperative R&D program (N0002099).
This work was also supported in part by the generous funding from the
National Science Foundation, CNS-1350883 (CAREER) and CNS-1618531.

References
[1] 2019. Marvel app. https://marvelapp.com/.
[2] Allen Cypher and Daniel Conrad Halbert. 1993. Watch what I do: programming

by demonstration. MIT press.

[3] M Cameron Jones, Ingbert R Floyd, and Michael B Twidale. 2009. Patchwork
prototyping with open source software. In Software Applications: Concepts,
Methodologies, Tools, and Applications. IGI Global, 1641-1656.

https://marvelapp.com/

	Abstract
	1 Introduction
	2 ProDroid Overview
	3 Developer Study
	4 Conclusions
	Acknowledgments
	References

