
Rushmore: Securely Displaying Static and Animated Images
Using TrustZone

Chang Min Park 1,3, Donghwi Kim 2, Deepesh Veersen Sidhwani 1, Andrew Fuchs 1, Arnob Paul 1,
Sung-Ju Lee 2, Karthik Dantu 1, Steven Y. Ko 1,3

1University at Buffalo, {cpark22, deepeshv, afuchs2, arnobpau, kdantu}@buffalo.edu
2KAIST, {dhkim09, profsj}@kaist.ac.kr

3Simon Fraser University, steveyko@sfu.ca

ABSTRACT
We present Rushmore, a system that securely displays static or
animated images using TrustZone. The core functionality of Rush-
more is to securely decrypt and display encrypted images (sent by
a trusted party) on a mobile device. Although previous approaches
have shown that it is possible to securely display encrypted images
using TrustZone, they exhibit a critical limitation that significantly
hampers the applicability of using TrustZone for display security.
The limitation is that, when the trusted domain of TrustZone (the
secure world) takes control of the display, the untrusted domain
(the normal world) cannot display anything simultaneously. This
limitation comes from the fact that previous approaches give the
secure world exclusive access to the display hardware to preserve
security. With Rushmore, we overcome this limitation by leverag-
ing a well-known, yet overlooked hardware feature called an IPU
(Image Processing Unit) that provides multiple display channels. By
partitioning these channels across the normal world and the secure
world, we enable the two worlds to simultaneously display pixels on
the screen without sacrificing security. Furthermore, we show that
with the right type of cryptographic method, we can decrypt and
display encrypted animated images at 30 FPS or higher for medium-
to-small images and at around 30 FPS for large images. One notable
cryptographic method we adapt for Rushmore is visual cryptogra-
phy, and we demonstrate that it is a light-weight alternative to other
cryptographic methods for certain use cases. Our evaluation shows
that in addition to providing usable frame rates, Rushmore incurs
less than 5% overhead to the applications running in the normal
world.

CCS CONCEPTS
• Security and privacy → Mobile platform security; Trusted com-
puting.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8443-8/21/07. . . $15.00
https://doi.org/10.1145/3458864.3467887

KEYWORDS
secure image display; visual cryptography; TrustZone

ACM Reference Format:
Chang Min Park 1,3, Donghwi Kim 2, Deepesh Veersen Sidhwani 1, Andrew
Fuchs 1, Arnob Paul 1, Sung-Ju Lee 2, Karthik Dantu 1, Steven Y. Ko 1,3.
2021. Rushmore: Securely Displaying Static and Animated Images Using
TrustZone. In The 19th Annual International Conference on Mobile Systems,
Applications, and Services (MobiSys ’21), June 24-July 2, 2021, Virtual,
WI, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3458864.3467887

1 INTRODUCTION
Mobile app users desire to display images and animations without
compromising on their privacy or confidentiality. For example, users
of a photo sharing app want to share their personal photos and
videos without worrying that their privacy might be violated. Medical
professionals who use a patient portal app want to view medical
images without worrying that confidential patient images could be
compromised. Private sector employees who use an enterprise app
want to look at their company’s confidential animations without
worrying that they could be leaked to their competitors. Although
encryption provides a way to securely deliver images to a mobile
device and store them, the “last mile” of on-device protection—
securely decrypting and displaying an encrypted image—is still an
open problem.

Fortunately, previous approaches [11, 33–36, 56, 61, 65, 68]
have shown that by leveraging a Trusted Execution Environment
(TEE) [9, 32, 53, 63], more specifically ARM TrustZone [63] for mo-
bile devices, it is possible to securely display private or confidential
images. In essence, these approaches share a common mechanism to
enable such a capability—they use the secure execution environment
provided by TrustZone (called the secure world), to which they give
exclusive access for display hardware. This access control prevents
the software running in the normal execution environment (called the
normal world) from accessing the content the secure world displays.
As a result, it protects the integrity and confidentiality of image data
displayed by the secure world from the threats posed by the software
running in the normal world.

However, this common mechanism has a critical limitation that,
because the secure world has exclusive access to display hardware,
it is not possible for the normal world to display anything simultane-
ously when the secure world displays its image data. This limitation
significantly hinders the applicability of using TrustZone for display

122

https://doi.org/10.1145/3458864.3467887
https://doi.org/10.1145/3458864.3467887
https://doi.org/10.1145/3458864.3467887
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA Chang Min Park et al.

security—for example, it would be impossible for the aforemen-
tioned medical app to simultaneously display new content in the
normal world (e.g., an incoming notification, updates for already-
displayed animations, etc.) while the secure world is displaying
confidential animated images (e.g., a patient’s fMRI animation).
One can reduce the impact of this limitation by using a technique
that existing approaches have used [33, 68], where the secure world
displays its content over a static “screenshot” (a pixel-wise copy) of
the content displayed by the normal world. However, this technique
still does not allow the normal world to actively display anything
on the screen since the secure world still has exclusive access to
the display hardware. The technique only captures and freezes the
normal world’s content when the secure world accesses the display
hardware.

We present Rushmore, a system that overcomes this limitation
by leveraging a well-known, yet overlooked hardware feature called
an IPU (Image Processing Unit) [15, 20, 45, 52]. On a typical sys-
tem, there is a main display channel called the frame buffer, and
writing pixels to the frame buffer drives the screen to display those
pixels. An IPU provides additional display channels controlled by
specialized cores that can process and display pixels simultaneously
from different sources (e.g., a camera). Rushmore uses one IPU core
and one of the additional channels to display pixels from the secure
world over the pixels from the frame buffer. By giving the secure
world exclusive access to the additional channel and the IPU core,
Rushmore protects the integrity and confidentiality of the image
data displayed by the secure world. The normal world, on the other
hand, can continue displaying its content simultaneously since the
secure world does not use the frame buffer. In addition, a user can
interact with the normal world’s content (e.g., UI elements) normally
without requiring any extra mechanisms in the secure world.

Moreover, Rushmore can decrypt and display encrypted animated
images in real time at around 30 FPS (Frames Per Second) 1 or
higher, depending on the image size and the cryptographic method
in use. We demonstrate this by implementing and comparing four
cryptographic methods: (i) software AES (Advanced Encryption
Standard) that performs AES decryption entirely in software, (ii)
hardware AES that uses a hardware AES accelerator, (iii) a fast
stream cipher called ChaCha20 [4, 8, 31, 41] implemented in soft-
ware, and (iv) an image-based cryptographic technique called vi-
sual cryptography [14, 40, 49, 64, 66]. Among these, we show that
ChaCha20 provides the best frame rates to display encrypted ani-
mated images with various sizes. Displaying encrypted animated
images was previously not possible due to the high overhead asso-
ciated with making a pixel-wise copy (a screenshot) of the normal
world’s content. Rushmore’s use of an IPU makes this capability
possible.

Lastly, we show that Rushmore enables a novel application for
visual cryptography. Visual cryptography encrypts and decrypts
confidential image data by constructing two images in such a way
that overlaying one image with the other would reveal a new image
with the confidential image data. Rushmore’s use of two display
channels where one channel overlays the other provides an ideal
opportunity for visual cryptography. We show that our adaptation

124 FPS is the lowest frame rate that allows a human eye to naturally perceive motion.
For example, movies are shot and displayed at 24 FPS. However, we aim for 30 FPS as
it provides smoother viewing experience.

Table 1: Our survey of 14 chipsets and the availability of IPUs
as well as hardware crypto accelerators on them from publicly-
available manuals.

Chipset (Manufacturer) Overlay HW crypto
TDA2x ADAS (TI) [26] yes yes
OMAP35xx (TI) [23] yes yes
i.MX 6 (NXP)* [52] yes yes
i.MX 6ULL (NXP) [42] yes yes
i.MX 28 (NXP) [51] yes yes
MC i.MX 51 (NXP) [18] yes yes
i.MX 53 (NXP) [46] yes yes
i.MX 21 (NXP) [43] yes no
i.MX 25 (NXP) [44] yes no
JZ4760 (Ingenic Semiconductor) [17] yes no
MT6797 (MediaTek) [21] yes no
MediaWall V (RGB Spectrum) [20] yes no
PXA27x (Intel) [16] yes no
Nios II (Intel) [22] no no

of visual cryptography not only is functional as an cryptographic
method for Rushmore but also provides high performance—for
static, black-and-white images, our results show that Rushmore’s
visual cryptography outperforms ChaCha20.

Overall, Rushmore provides low latency for displaying static
images (less than 36.0 ms with ChaCha20), usable frame rates for
displaying animated images (around 30 FPS for large sizes and 30
FPS or higher for medium-to-small sizes), and low overhead to the
applications running in the normal world (less than 5%) compared
to a baseline that runs the same workload without using Rushmore

(thus insecure).

2 BACKGROUND
This section presents the background necessary to understand Rush-

more’s design and introduces the terminology that we use in this
paper.

2.1 ARM TrustZone
Rushmore uses TrustZone [63] as the foundation of its security guar-
antees. TrustZone is widely deployed on mobile devices thanks to
the popularity of ARM CPUs. It provides a secure execution environ-
ment called the secure world and a normal execution environment
called the normal world. At any given moment, a CPU core executes
in the context of either the secure world or the normal world. ARM
provides a privileged instruction called SMC (Secure Monitor Call)
for CPU cores to make a switch between the secure world and the
normal world. This operation is called a world switch. All hard-
ware components, e.g., memory and I/O devices, can be configured
via TZASC (TrustZone Address Space Controller) so that access
is granted to a CPU core only when the CPU core executes in the
secure world. This hardware-based isolation of the secure world
from the normal world is the basis of the security guarantees of
TrustZone.

2.2 Image Processing Unit
In addition to TrustZone, Rushmore uses another hardware feature
called an IPU (Image Processing Unit). An IPU provides specialized

123

Rushmore: Securely Displaying Static and Animated Images Using TrustZone MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA

Table 2: Our survey of 5 chipsets and the availability of IPUs on
them from the Linux kernel source code.

Chipset (Manufacturer) Overlay
Exynos (Samsung) [25] yes
MSM (Qualcomm) [24] yes
OMAP (TI) [27] yes
Mediatek (Mediatek) [19] yes
Tegra (Nvidia) no

Normal Display

Secure Display

Web Service App

Rushmore
Service

Receive

Decrypt
Rushmore

Display on
Mobile Device

Frame Buffer

Overlay Buffer

Figure 1: Typical workflow of an application to display an en-
crypted image using Rushmore.

cores and display channels that can process and display pixels com-
ing from various sources such as a camera. The presence and the
implementation of an IPU for a mobile device depends on the SoC
(System-on-a-Chip) that the device uses. A well-known example is
Google’s Pixel Visual Core [47], which is an IPU used by Google’s
Pixel 2 and 3 phones.

An IPU can provide different types of display channels in addition
to the main display channel (the frame buffer). However, the most
basic channel is often referred to as an overlay buffer. Pixels in the
overlay buffer are displayed over the pixels coming from the frame
buffer. Rushmore uses this overlay buffer to display pixels from the
secure world over the pixels from the normal world.

Since Rushmore relies on the capability of overlaying pixels, we
have surveyed publicly available mobile chipset manuals to deter-
mine whether mobile chipsets provide such a capability via an IPU.
We have investigated 14 chipsets as shown in Table 1 and found that
every chipset except Intel Nois II provides an overlay capability via
their IPU. Table 1 also shows the availability of a hardware crypto
accelerator for the same chipsets as a comparison point, and only
a half of the chipsets have it. As shown in Table 2, we have fur-
ther investigated the Linux kernel source code of five commercially
successful chipset families which lack publicly-available manuals—
Samsung’s Exynos, Qualcomm’s MSM, TI’s OMAP, Nvidia’s Tegra,
and Mediatek. We have found a pixel overlay feature from all of
those chipsets’ kernel code except Nvidia’s Tegra. Our results in-
dicate that an IPU with an overlay capability is a common feature
available for many chipsets that mobile devices use. Furthermore,
recent neural processing units from major mobile device vendors,
e.g., Apple’s Neural Engine [54] and Samsung’s NPU [50], pro-
vide image processing capabilities. Although details are not publicly
available, we expect that they also provide additional display chan-
nels that are paired with their image processing capabilities since
competing for the frame buffer causes unnecessary difficulty for
software that uses the capabilities.

2.3 Threat Model
As with other TrustZone-based systems, we assume that (i) device
hardware including TrustZone is trusted, (ii) software in the normal
world (including the OS and user applications) is untrusted, and
(iii) software in the secure world is trusted. This applies to our own
software as well, i.e., Rushmore’s normal world components are
untrusted while secure world components are trusted. In addition,
we assume that our adversaries are only interested in compromising
the confidentiality of the images that we protect. Thus, we consider
denial-of-service (where the normal world refuses to switch to the
secure world) out of scope. Lastly, we consider the following two
classes of attacks out of scope as they require specialized solutions—
(i) covert or side-channel attacks [6, 7, 28, 30, 67] and (ii) physical
attacks such as “shoulder surfing” [5] where an attacker peeks at the
screen of a user in order to compromise images displayed by the
screen.

3 RUSHMORE USAGE MODEL
Rushmore assumes a particular usage model as follows.
Deployment Model: Following the standard deployment model of
Trusted Execution Environments (TEEs), we assume that a single
party (e.g., a smartphone OEM) packages and deploys all compo-
nents of Rushmore on a mobile device as a single secure world
kernel image. The party that deploys Rushmore can develop and de-
ploy their own custom services that display confidential images using
the interface provided by Rushmore, as discussed in Section 4.3. A
Rushmore kernel image is signed and it is verified by the bootloader
during a booting process.
Key Distribution: The main functionality provided by Rushmore

is decrypting and displaying encrypted images sent by a trusted
party. Thus, we assume that images have already been encrypted
when Rushmore receives them. Rushmore does not mandate any
particular key distribution mechanism. It is up to each party that
deploys Rushmore to ensure that their key distribution mechanism
is safe and secure. For example, one cryptographic algorithm we
implement in Rushmore is AES, and we assume that a secret key is
shared through a separate mechanism such as pre-installation of a
device key by an OEM.
Image Format: Rushmore supports images in the bitmap format
with 16-bit RGB (RGB565). RGB565 is commonly used for em-
bedded devices, with 6 bits for green and 5 bits each for blue and
red. This choice is mainly due to performance—the bitmap format
avoids format decoding and RGB565 (instead of RGB888) reduces
the overhead for memory copy operations. Thus, Rushmore requires
images in other formats, e.g., JPEG, to be converted to the RGB565
bitmap format before encryption. We further discuss the implication
and limitations of this choice in Section 7.
Workflow: Figure 1 shows an example workflow of an app using
Rushmore. Suppose that a user has an app on her mobile device
that can display confidential images sent by a trusted web service.
The web service and a Rushmore service authenticate each other
with their certificates on each side. Then they exchange a symmetric
key through an authenticated channel. The web service encrypts an
image with the key and sends it to the app. The app receives the
encrypted image and requests Rushmore to securely decrypt and
display the encrypted image. Rushmore first decrypts the image and

124

MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA Chang Min Park et al.

Rushmore
Driver

Normal World Secure World

Kernel Core

Request
Monitor

IPU
Driver

Rushmore Kernel

Crypto
Module

TZASC
Driver

User

Kernel

Rushmore
Client Library

App

SMC Call

Custom
Services

Default
Service

Shared Buffer

Write

Read

User

Kernel

Rushmore
Service Interface

Figure 2: Overview of Rushmore architecture.

uses the overlay buffer on the device to display the image on top of
what the frame buffer displays in the normal world. In other words,
the normal world and the secure world use two separate display
channels—the frame buffer (used by the normal world) and the
overlay buffer (used by the secure world). Therefore, Rushmore does
not need to make a pixel-wise copy of the normal world’s content to
display it unlike a technique used by previous systems [33, 68].

4 RUSHMORE ARCHITECTURE
In this section, we present the details of Rushmore. We start by
presenting the overall architecture, followed by a description for
each component in the architecture.

4.1 Architecture Overview
Figure 2 shows an overview of the Rushmore architecture. In the
normal world, our Rushmore client library provides an interface for
applications to send encrypted images to the secure world. Internally,
the client library communicates with the Rushmore driver in the
normal world kernel to pass encrypted images and make a world
switch (using TrustZone’s SMC instruction). There are two shared
buffers between the normal world and the secure world. One shared
buffer is for sending encrypted images from the normal world to
the secure world. The other shared buffer is for passing meta data
and other arguments. A naı̈ve implementation would copy encrypted
image data from the user space to the kernel space in the normal
world, and copy again from the normal world kernel space to the
secure world kernel space. Thus, it would result in repeated memory
copy operations. We bypass both these copies by creating a shared
buffer in the contiguous memory allocation area and provide access
to this shared buffer to both the user space and the kernel space in
the normal world. This is done by modifying the memory mapping
in the kernels for both the normal world and the secure world.

In the secure world, the Rushmore kernel mainly provides de-
cryption and display capabilities as well as an interface for services
that manipulate and display confidential images. For decryption,
Rushmore has drivers that implement various cryptographic alterna-
tives. Currently, we implement and evaluate four methods—software
Advanced Encryption Standard (AES) that performs the entire AES
function in software, hardware AES that offloads this function to a
hardware accelerator, a fast stream cipher called ChaCha20 [4, 8,

Table 3: Essential subset of the Rushmore client library inter-
face for client applications.

Function Name Description
int invoke(...) Invokes a particular Rushmore

service in the Rushmore kernel
int display images(...) Requests the Rushmore kernel

to display encrypted images
int display animations(...) Requests the Rushmore kernel

to display animated images
int remove images(...) Requests the Rushmore kernel

to remove images from the screen.

31, 41] that is part of the TLS 1.2 standard [31] and used by Google
Chrome on Android [13], and an image-based cryptographic method
called visual cryptography (VC) (described in Section 4.4). For
display capabilities, Rushmore has an IPU driver that controls the
overlay buffer. Using the overlay buffer, Rushmore displays pixels
from the secure world over the pixels from the normal world.

Rushmore kernel also contains services that manipulate and dis-
play confidential images, which we call Rushmore Services. By
default, Rushmore kernel runs a service that displays encrypted
images passed from the normal world and returns immediately. How-
ever, an entity that deploys Rushmore can develop their own custom
image display services to provide extra functionality that goes be-
yond simple image displaying. Our use cases in Section 5 show
some examples of such services. In order to distinguish different
Rushmore services, Rushmore assigns a unique identifier (UID) to
each Rushmore service. Rushmore assumes that these UIDs are
published publicly so that mobile applications can send requests to
different services. When sending a request to a particular service,
a mobile application uses the service’s UID to identify the service.
Request Monitor in the Rushmore kernel then receives this request,
looks up the UID, and forwards it to the appropriate service. This
service model follows a standard practice that most Trusted Exe-
cution Environments (TEEs) use, e.g., Trusty [60], OP-TEE [57],
Knox [59], QSEE [58], etc. As mentioned in Section 3, Rushmore
does not mandate any particular key distribution mechanism. We
expect each Rushmore service to implement its own key distribution
mechanism suitable for itself.

Additionally, Rushmore kernel has a TZASC (TrustZone Address
Space Controller) driver. TZASC allows us to control the access
permissions for memory regions, and the Rushmore kernel core
uses the TZASC driver to configure the memory layout and gives
exclusive permission to the secure world for the overlay buffer, IPU
registers, and hardware AES accelerator registers.

4.2 Rushmore Client Library and Driver
Rushmore has two components that run in the normal world—the
Rushmore client library and the Rushmore driver.
Rushmore Client Library: The Rushmore client library exposes
Rushmore’s features to the normal world’s applications. These in-
clude (i) the ability to invoke Rushmore services, (ii) the ability to
display images securely, (iii) the ability to display animated images
securely, and (iv) the ability to remove displayed images. Internally,
the client library uses the Rushmore driver in the normal world ker-
nel to relay a request to the secure world via the SMC instruction of
ARM TrustZone.

125

Rushmore: Securely Displaying Static and Animated Images Using TrustZone MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA

Table 4: Essential subset of the Rushmore service interface.

Function Name Description
int decrypt images(...) Requests the kernel core

to decrypt images
int display images(...) Requests the kernel core

to display images
int decrypt and display(...) Requests the kernel core

to decrypt and display
encrypted images

int remove images(...) Requests the kernel core
to remove images from the screen.

int invoke(...) A callback function that responds to
a client application’s invoke() call

int display images(...) A callback function that responds to
a client application’s request

Table 3 shows essential functions that the library provides. in-
voke() is used to invoke a service other than the default service.
Other functions are used to invoke the default service to either dis-
play static or animated images or remove images that are currently
being displayed. Although we do not show the parameters of the
functions in Table 3, a client application needs to pass an appropriate
set of arguments for each function. For example, the default service
expects to receive encrypted images, the number of images, and their
locations.

A client application can also display one or more encrypted ani-
mated images using the default service. In order to display a single
animated image, a client application must pass a set of encrypted
images (frames) that constitute an animated image as well as the lo-
cation to display and a target FPS (using display animations()).
A client can pass multiple sets of images to our library to display
multiple animated images simultaneously.
Rushmore Driver: When displaying an encrypted animated image,
the Rushmore client library makes a request to the Rushmore kernel
for each frame, which triggers the Rushmore kernel to decrypt and
display one frame at a time. The implication of this design is that we
need to make a world switch from the secure world to the normal
world every time the Rushmore kernel finishes displaying a frame,
so that our library can make another request for the next frame. An
alternative design would be to pass all frames together at once so
that the Rushmore kernel could display them in succession without
switching back and forth between the normal world and the secure
world. However, this alternative design has an inherent limitation
that we would need to load all the frames into memory so that
the Rushmore kernel could access them. In other words, we would
always need to have enough memory to load all the frames, no matter
how large a frame is and how many frames there are. In contrast,
our design choice only has a minimal memory requirement since
we pass one frame at a time. In our implementation, we load the
next 𝑁 frames (instead of just the next frame) to the buffer in the
background while displaying in the secure world to hide memory
copy latency. Section 6 shows that this design requires minimal
memory while still providing low latency.

We note that the Rushmore client library’s guarantee for a target
FPS is best effort—this means that if a client application sets an
aggressive target FPS, Rushmore may not satisfy it. Also, some
cryptographic methods are inherently expensive as we show in our
evaluation (Section 6), and it may be challenging to provide the
requisite FPS on a given platform when we use them.

4.3 Rushmore Kernel
The Rushmore kernel has five sub-components that collectively
provide the main functionality. These sub-components are the default
Rushmore service, the kernel core, the cryptography module, the
IPU driver, and the request monitor.
Default Rushmore Service: The default Rushmore service is a sim-
ple service that responds to image decryption and display requests.
It receives encrypted images from client applications running in the
normal world, decrypts them, and displays them. Internally, it uses
the development interface provided by the kernel core, which we
describe next.
Kernel Core: The Rushmore kernel core has two roles. First, it
handles the booting and configuration process of Rushmore. It uses
the TZASC driver to partition the memory between the normal world
and the secure world, and assign the access permissions for memory
regions including the memory-mapped regions for the overlay buffer,
IPU registers, and hardware AES accelerator registers.

Second, the kernel core (together with the request monitor) pro-
vides an interface for developing image display services that we call
Rushmore services. The default Rushmore service uses this inter-
face to provide the basic decryption and display functionality. In
addition, organizations that deploy Rushmore on mobile devices can
use the interface to develop and deploy their own services. Table 4
shows an essential subset of this interface. The first four functions are
provided by the kernel core and mainly for decrypting and displaying
encrypted images. These functions interact with the cryptography
module and the IPU driver. Using these functions, a Rushmore

service can handle client application requests and use Rushmore’s
decryption and display functionality.
Cryptography Module: To decrypt an encrypted image, the Rush-
more kernel uses a pluggable cryptography module. Our current
implementation has four cryptographic methods—software AES,
hardware AES, ChaCha20, and visual cryptography. Since we adapt
and optimize visual cryptography in Rushmore, we discuss the de-
tails in Section 4.4. For software AES, we use an implementation
from OP-TEE [57]. For ChaCha20, we use the Network Security
Services (NSS) library [62]. For hardware AES, we use a driver
for the hardware accelerator module present in the development
board that we use (Nitrogen6Q SABRE Lite) called CAAM (Cryp-
tographic Accelerator and Assurance Module). This design can be
easily extended to other boards with cryptographic accelerators by
using a driver for that accelerator.
IPU Driver: To display decrypted images, the Rushmore kernel
uses an IPU driver. This driver controls the overlay buffer and copies
image pixels into the overlay buffer according to their locations.
The pixels in the overlay buffer essentially overwrites the pixels
in the frame buffer (controlled by the normal world kernel). Thus,
unless a pixel is transparent, it hides the pixel underneath displayed
by the frame buffer. The IPU driver has exclusive access to the
IPU, protecting the image data displayed by the IPU. Many chipsets
provide two or more cores and multiple overlay channels in their
IPU and Rushmore requires exclusive access to only one IPU core
as well as the top-most overlay channel. Rushmore leaves other IPU
cores and channels available for the normal world.
Request Monitor: The request monitor is a small component that re-
ceives a request from a client application, finds the correct Rushmore

126

MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA Chang Min Park et al.

(a) Key image (b) Encrypted image (c) Decrypted
(revealed) image

Figure 3: Examples images for visual cryptography.

service for the request, and invokes a callback function implemented
by the Rushmore service (the last two functions in Table 4). It also
makes a world switch back to the normal world once the callback
function is complete.

4.4 Visual Cryptography
A notable cryptographic method that Rushmore supports is visual
cryptography (VC) [14, 40, 49, 64, 66]. We believe Rushmore’s use
of the overlay buffer presents a compelling application of VC. Rush-
more supports VC mainly as a light-weight cryptography option,
e.g., for low-end devices without hardware cryptography support or
powerful CPU cores.
Overview: VC encrypts and decrypts images by leveraging the in-
sight that we can construct two images in such a way that they
“reveal” a new image when we overlay one on top of the other. Fig-
ure 3 shows an example where overlaying one image (Figure 3a)
on another image (Figure 3b) reveals a new image (Figure 3c). The
example uses two colors, transparent and black. The image in Fig-
ure 3a has randomly distributed transparent and black pixels. We
call this a key image since it effectively works as a shared secret key
that is difficult for an adversary to guess. We then construct the other
image (Figure 3b) by calculating pixel-wise XOR between the key
image and the image that needs to be encrypted (more details below).
We call this an encrypted image as it encodes our image data but is
not decryptable without the key image. Finally, by overlaying the
key image with the encrypted image, we construct the final image
that contains the actual image data. We also call this a decrypted
image.

A nice property that our implementation of VC provides is that a
decrypted image does not exist in any part of the software system,
even in the secure world. The decrypted image is only visible to
a user. In our example shown in Figure 3c, the decrypted image
reveals the alphabet A, the image we encode, as well as some back-
ground noise inherited from the key image. We later discuss how we
minimize the background noise.
Rushmore’s VC: To understand how we adapt and implement VC
in Rushmore, consider a scenario where a server wants to send an
encrypted image to a mobile device that runs Rushmore. Rushmore
requires that both the server and the mobile device use the same
pseudo-random number generator (PRNG) and the same seed, where
the seed is a shared secret between the two parties. When encrypting,
the server first constructs a key image by (i) generating a random
bitstream using the PRNG (and the seed), and (ii) mapping the 0s
and 1s in the bitstream to transparent and black pixels. The server
then constructs an encrypted image by calculating pixel-wise XOR
between the key image and the image that needs to be encrypted.

(a) Decrypted pixel-wise VC image (b) Decrypted pair-wise VC image

Figure 4: Decrypted 454×418 VC images with different key gen-
eration schemes. Rushmore uses a pair-wise random key gener-
ation scheme that looks less noisy.

When decrypting, the Rushmore client library running in the nor-
mal world displays an encrypted image directly on the normal world
frame buffer. At the same time, it sends a request to the Rushmore
kernel running in the secure world to display the corresponding key
image on the secure world overlay buffer at the same position as the
encrypted image. When the Rushmore kernel receives the request,
it uses the same PRNG and the seed used by the server to generate
the corresponding key image (i.e., generating a random bitstream
and mapping the 0s and 1s in the bitstream to transparent and black
pixels). It then displays the key image on the overlay buffer in the
secure world. This process overlays the key image and the encrypted
image (effectively calculating pixel-wise OR), which reveals the
original image.

Although VC supports color images in general, we only support
black and white images in Rushmore currently. This is because we
discovered that the decryption performance of VC for images that
support 8 colors is similar to that of ChaCha20, which supports
16-bit color images in our current implementation. In addition, we
currently do not support animated images with VC. This is due to
synchronization—in order to decrypt an image, VC needs to display
the key image and the encrypted image exactly at the same time. If
the timings do not align, there is a brief period where VC shows a
random image with noise. With a static image, this is tolerable and
mostly unnoticeable since it is brief. However, with an animated
image, we have observed that this occurs at every frame transition
and appears quite noisy as a whole. Due to this difficulty, we only
support static images for VC. Our future research will investigate
how to support animated images. Despite these limitations, VC
outperforms other cryptographic methods for static, black-and-white
images. Thus, it is the best choice for those images. We show the
performance of VC later in Section 6.
Security Analysis: From the cryptographic point of view, VC is
a stream cipher representing data in pixels instead of bits [40]. A
stream cipher (e.g., ChaCha20) encrypts data by XOR-ing the data
with a cryptographically secure random key bitstream. VC’s encryp-
tion works almost exactly the same way. When encrypting data, VC
calculates pixel-wise XOR between a key image and an image being
encrypted, effectively swapping the transparent and black color of
pixels whenever data encoding is necessary. When decrypting an
encrypted image, VC overlays an encrypted image with a key image,
effectively calculating pixel-wise OR. Therefore, the security of VC
relies on the security of the key bitstream, just as all other stream
ciphers do. Rushmore currently uses ChaCha20 algorithm for its

127

Rushmore: Securely Displaying Static and Animated Images Using TrustZone MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA

(a) Face recognition (b) Two-factor authentication (c) fMRI viewer (d) Randomized keypad

Figure 5: Screenshots of use case apps.

VC random key generation, which is cryptographically secure and
already part of TLS 1.2 standard [31].
Minimizing Background Noise: As shown in Figure 3c, decrypted
images in VC have background noise. This is because when we
construct a key image, we generate a random bitstream and assign
transparent and black colors for 0s and 1s from the bitstream. The
resulting image has random black pixels appearing as background
noise. Figure 4a shows an example decrypted image that appears
quite noisy.

To reduce such background noise, we implement the following
mechanism. When generating a key image, instead of doing color
assignment for a single pixel, we perform color assignment for a
pair of pixels in such a way that we make the background appear less
noisy. In this mechanism, we first pick either transparent or black
color for one pixel based on a random bitstream, and then for the
pixel right below it, we assign either black (if the pixel above is
transparent) or transparent (if the pixel above is black). Note that
the size of a random bitstream is now a half of the original method’s
since one bit from a bitstream determines the colors for two pixels.
Figure 4b shows an example decrypted image generated by our
pair-wise key generation scheme. Since any part of the key has the
same number of black and transparent pixels, the pair-wise random
background looks more uniform and less noisy.
Optimization for VC in Rushmore: In our first implementation
of VC, copying one color value pixel-by-pixel did not perform
well. Thus, we replaced it with an optimized strategy that signifi-
cantly improved the performance. The optimized strategy is a batch-
assignment mechanism with a pre-calculated lookup table. This
strategy assigns color values for 16 pixels at a time instead of a
single pixel. We heuristically determined that 16 pixels works well,
but our strategy does not generally depend on this number. For this
strategy, we first pre-populate a table that maps a 16-bit number to a
16-pixel color assignment for every possible 16-bit number. When
we read a random bitstream for key image generation, we read 16
bits at a time and look up the table to determine the corresponding
color assignment for 16 pixels. In our experiment, the use of this
table has accelerated the color assignment 21× improvement with 2
MiB (= 2 𝑏𝑦𝑡𝑒𝑠-𝑝𝑒𝑟 -𝑝𝑖𝑥𝑒𝑙 · 16 𝑝𝑖𝑥𝑒𝑙𝑠 · 216 𝑟𝑜𝑤𝑠) memory overhead.
We further optimized memory copy with ARM’s single-instruction-
multiple-data (SIMD) instruction set, Neon, and achieved 119×
improvement from the original implementation.

4.5 Implementation
We have implemented Rushmore using OP-TEE [57], an open-
source TEE OS. As we detail in Section 6, we have added and
modified roughly 2.5K lines of code in total. In addition, we have

implemented Android UI widgets that use our Rushmore client li-
brary, so that Android apps can seamlessly leverage Rushmore. Our
UI widgets include buttons, image holders, and animation holders.
We use these UI widgets in our use case apps that we present next.

5 USE CASES
Using Rushmore, we have implemented four representative use
cases that require secure displaying of sensitive images. We show
their screenshots in Figure 5. These use cases demonstrate the utility
of Rushmore in deploying secure widgets in a wide range of apps
on mobile devices.

5.1 Face Recognition
Modern mobile devices such as smart glasses are envisioned to be
used by law enforcement in public areas such as airports, malls and
sports arenas to recognize people of interest and display sensitive
information about them such as names, passport number, etc. The
threat model here is that attackers are interested in obtaining the
sensitive information associated with the people of interest by com-
promising the normal world software on the mobile device. We note
that the focus of this use case is not about protecting the faces of peo-
ple of interest. Rather, it is about protecting the sensitive information
regarding the people of interest, e.g., their identities. The reason is
that the use case’s scenarios assume public areas where everybody is
openly visible and law enforcement routinely has access to security
cameras already. Protecting their identities, on the other hand, is a
concern.

To demonstrate this use case, we have implemented a normal
world app and a Rushmore service. The normal world app runs a face
recognition engine using Google’s ML Kit [39] and maintains a face
database. Each entry in the database is a mapping between a face of
a person of interest and their anonymized ID number. When the app
detects a face of a person of interest, it looks up the ID for the person
in the database and sends the ID as well as the position of the face to
the Rushmore service. When the Rushmore service receives an ID
from the normal world app, it looks up the sensitive information for
the received ID using a database it maintains, such as the name or
passport number associated with the ID. The Rushmore service then
displays the sensitive information right next to the recognized face
using the face position information sent by the normal world app.
Rushmore is particularly a good fit for this use case as the latency
of displaying sensitive information is an important concern—if a
person moves, the sensitive information displayed from the secure
world should quickly “follow” the person.

128

MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA Chang Min Park et al.

5.2 Two-Factor Authentication
In a traditional two-factor authentication service, when a user logs
in to a web service, the web service sends a push notification to the
user’s mobile device and the user needs to approve the login request
by pressing an approval button. In our use case, we augment this by
asking a user to identify one or more images that the user has pre-
selected, instead of simply pressing an approval button. This means
that when a user logs in to a web service, the web service sends
a series of images (some are pre-selected by the user while others
are not), which the user’s mobile device displays. The threat model
here is that attackers are interested in learning the user’s pre-selected
images. To protect those images, the web service needs to encrypt
the images and the user’s mobile device must display them securely.

To demonstrate this use case, we have implemented a normal
world app as well as a Rushmore service. The normal world app
receives a series of encrypted images and their display positions
from a web service, and sends them to the Rushmore service. The
Rushmore service receives the encrypted images and their positions,
and then decrypts and displays them. We use nine images to display
in a 3 × 3 grid. When a user identifies one or more images, the
normal world app receives user input and sends it to the (emulated)
web service for verification. Although the normal world is untrusted
and hence might leak the user input, we still protect the user’s pre-
selected images as the secure world decrypts and displays them.

5.3 fMRI Animation Viewer
An fMRI animation viewer could use Rushmore to display a pa-
tient’s animated fMRI that shows the changes in blood flow for brain
activities. Medical images are of a confidential and sensitive nature
where privacy and data security are of great concern. Thus, we have
implemented this use case using Rushmore to securely display fMRI
images.

Our implementation consists of a normal world app and a Rush-
more service. The normal world app works like a typical image
viewer except that the images are fMRI animations for patients.
When a user (e.g., a doctor) selects an fMRI animation for viewing,
the normal world app retrieves and passes the encrypted animation
to the Rushmore service. The Rushmore service then decrypts and
displays the animation. By using Rushmore, the normal world only
sees the encrypted data. This preserves the privacy and confidential-
ity of the animation and medical image data in the event that the
security of the mobile device’s normal world is compromised. Frame
rates matter in this use case to show brain activities accurately, and
Rushmore can provide 30 FPS or higher as we show in Section 6.

5.4 Randomized Keypad
Several apps such as banking, online shopping and others require
the user to enter sensitive numerical information (such as a pin
or a credit card number) for authentication/use. In such cases, the
app provides a virtual keypad on the screen to enter this numerical
information. We target these apps by implementing a randomized
keypad using Rushmore. This service securely displays a keypad
where the locations of the keys are randomized every time the keypad
is displayed.

We demonstrate this use case by implementing a normal world
app and a Rushmore service. The normal world app receives en-
crypted randomized positions of keys from a web service and sends

Figure 6: 400 × 400 cube image on a 1280 × 800 display.

those to the Rushmore service. The Rushmore service then decrypts
the positions and displays keys according to the positions. When a
user provides input, the normal world app receives it and sends it to
the backend for verification. This does not compromise the sensitive
information being entered as we randomize the keypad every time
we display it.

6 EVALUATION
We evaluate Rushmore’s capabilities in three categories: (1) per-
formance for static images, (2) performance for animated images,
and (3) Trusted Code Base (TCB) size. We also present our security
analysis for Rushmore.

For our experiments, we use the Boundary Devices Nitrogen6Q
SABRE Lite development board (ARM Cortex-A9 quad-core CPU
at 1GHz and 1GB memory) and a 1280 × 800 display. In the normal
world, we run Android Nougat 7.1.1 with the Linux kernel version
4.1.15 and run Rushmore kernel implemented using OP-TEE [57].
Rushmore restricts access to the IPU and the hardware AES accel-
erator (called CAAM, Cryptographic Accelerator and Assurance
Module) from the normal world, and the normal world has control
and access to all the other peripherals.

We allocate 50MB of memory for the secure world and 974MB for
the normal world. In the secure world, we implemented four different
cryptographic methods; software AES, hardware AES, ChaCha20,
and black-and-white visual cryptography (VC). For both software
AES and hardware AES, we use AES-128 CBC mode (key: 32 bytes,
iv: 16 bytes), and we use our board’s CAAM in the asynchronous
mode for hardware AES. We also use the overlay channel of our
board’s IPU to display in the secure world.

6.1 Image Display Performance
To evaluate end-to-end latency, we measure the delay of display-
ing four different cube image sizes: (1) 200×200, (2) 400×400, (3)
800×800 (larger than half of the display), and (4) 1280×800 (the
whole screen). Figure 6 shows the 400×400 cube image as an exam-
ple. For each size, we have 1,000 images encrypted and stored. We
retrieve each image from storage, decrypt them using one of the four
methods above, and display them on the framebuffer.

Figure 7 shows the end-to-end display latency breakdown of
each image size. For all decryption methods except VC, the latency
consists of the following four components: (1) Memcpy: latency
for copying encrypted images to the shared buffer, (2) Argument
Copying: latency for copying metadata arguments (e.g., image

129

Rushmore: Securely Displaying Static and Animated Images Using TrustZone MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA

3

6

9

10
20
30
40

25

75

125

50

125

200

1

2

1
3
5

5
10
15
20

10
20
30

L
at

en
cy

(m
s)

0.005
0.015
0.025

SW
AES

HW
AES

ChaCha
20

Vcrypto
(BW)

200x200

0.005
0.015
0.025

SW
AES

HW
AES

ChaCha
20

Vcrypto
(BW)

400x400

0.005
0.015
0.025

SW
AES

HW
AES

ChaCha
20

Vcrypto
(BW)

800x800

0.005
0.015
0.025

SW
AES

HW
AES

ChaCha
20

Vcrypto
(BW)

1280x800
(whole screen)

Decrypt + Display (SW) Display (NW) Memcpy Arg. Copy World SwitchDecrypt + Display (SW) Display (NW) Memcpy Arg. Copy World SwitchDecrypt + Display (SW) Display (NW) Memcpy Arg. Copy World SwitchDecrypt + Display (SW) Display (NW) Memcpy Arg. Copy World Switch

Figure 7: Latency breakdown for displaying a single image.

metadata) to the shared buffer, (3) World Switch: latency for the
world switch from the normal world to the secure world, and (4)
Decrypt+Display (SW): latency for decrypting and displaying
an image in the secure world.

For VC, image copying is unnecessary as the normal world di-
rectly displays an encrypted image. Instead, it has the latency of
displaying an encrypted image in the normal world, which we indi-
cate as Display (NW).

World Switch and Argument Passing are stable across four
cryptographic methods and all different image sizes, and they take
less than 0.03 ms. The reason is that the world switch latency is
consistent and an image size does not affect the latency of argument
passing that only contains meta data. Memcpy, Display (NW) and
Decrypt+Display (SW) increase when image sizes get larger as
the memory size to decrypt and the amount of write on the frame
buffer grow. Memcpy and Display (NW) are stable across all cryp-
tographic methods as long as the image size is the same as both
operations simply copy an image either to the shared Rushmore

buffer or to the frame buffer.
The main latency overhead comes from Decrypt+Display (SW).

Even for the same sized image, the latency varies across different
cryptographic methods. Decryption is a key factor in reducing the
latency. On average, ChaCha20 is 6.9 times faster than software
AES and 2.2 times faster than hardware AES. VC is 2.1 times faster
than ChaCha20 for black-and-white images. Overall, VC shows the
best performance in terms of display latency even though it only
supports black-and-white images with background noise. Thus, VC
would be a good option for low-end devices without a powerful CPU
when trading off image quality is permissible. For colored images,
ChaCha20 shows the best performance in terms of display latency.

6.2 Animation Display Performance
We now show the frame rates for simultaneously displaying 400×400
cube animations. We vary the number of animations we display from
one to five. A single cube animation consists of 100 different frames.
For each experiment, we display 1,000 times with software AES,
hardware AES, and ChaCha20. As discussed in Section 4.4, our
VC currently does not support animated images. We set the size
of the shared Rushmore buffer between the normal world and the

30

70

110

150

190

230

FP
S

32

112

210

10
25

103

717

69

512

52

410
42

1 2 3 4 5
Number of Animations

Software AES
Hardware AES
ChaCha20

Figure 8: Frame rates for multiple animations.

secure world to 20 MB that can hold at least 10 whole screen size
images. We also evaluate the impact of this buffer size. We have
posted a video 2 that demonstrates animation display performance
with ChaCha20.
FPS for Animations: Figure 8 shows the frame rates with different
cryptographic methods. ChaCha20 provides more than 30 FPS re-
gardless of how many concurrent animations we display. Software
AES and hardware AES provide 30 FPS only when we display a
single animation.

A notable result is that going from one animation to multiple
animations creates a non-linear decrease in frame rates. This is an
artifact of our IPU’s programmability—for a single image, we can
set the overlay buffer to cover the exact region where we want to
display the image. However, for multiple images, we need to set
the overlay buffer to cover a rectangular region that contains all
the images. This means that going from one animation to multiple
animations does not linearly increase the amount of write on the
overlay buffer. This non-linear scaling affects the performance of all
three methods, although the exact behavior is different from method
to method.
Impact of the Shared Buffer Size: Rushmore allocates a buffer
shared between the normal world and the secure world. To hide
memory copy latency, Rushmore copies the next few frames to the
buffer in the background while displaying in the secure world. To
quantify the impact of the size of the shared buffer, we vary the
buffer size from 512 KB to 16 MB and measure the frame rates for
2https://youtu.be/InkzkvpGHdU

130

https://youtu.be/InkzkvpGHdU

MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA Chang Min Park et al.

90

120

150

180

210

FP
S

25
45
65
85

105
125

15

30

45

60

75

10
20
30
40
50
60

10

20

30

40

50

25
30
35

8
9

10

6.0
6.4
6.8

4.6
4.9
5.2

3.8
3.9
4.0

0 512
K

B

1
M

B

2
M

B

4
M

B

8
M

B

16
M

B

1

0 512
K

B

1
M

B

2
M

B

4
M

B

8
M

B

16
M

B

2

0 512
K

B

1
M

B

2
M

B

4
M

B

8
M

B

16
M

B

3

0 512
K

B

1
M

B

2
M

B

4
M

B

8
M

B

16
M

B

4

0 512
K

B

1
M

B

2
M

B

4
M

B

8
M

B

16
M

B

5

Number of Animations

Software AES Hardware AES ChaCha20

Figure 9: Frame rates for different buffer sizes.

simultaneously displaying 400×400 cube animations, varied from
one to five animations. We run each experiment 100 times. For each
setup of our experiments, some of the buffer sizes are not sufficient
and we do not run any experiment for those cases. This is because the
size of one frame for a single 400×400 animation is 312.5 KB, which
means that if we display 𝑥 animations simultaneously, displaying
one frame for each animations requires 𝑥 × 312.5 KB. For example,
in the case of two animations, 512 KB is not sufficient to display
even one frame from two animations simultaneously, and we thus
do not run experiments for that case.

As shown in Figure 9, for software AES and ChaCha20, the
minimum buffer sizes that can hold just one frame (or one set of
frames for multiple animations) have the worst frame rates. However,
all other buffer sizes that can hold more than one frame (or more than
one set of frames for multiple animations) show stable performance
with less than 1% difference. This shows that as long as the shared
buffer can hold at least two frames (or two sets of frames for multiple
animations) for software AES and ChaCha20, it will not have much
impact on the performance.

On the other hand, hardware AES’s frame rates are stable for all
buffer sizes because (i) it runs asynchronously in the secure world
and switches back to the normal world immediately after putting a
decryption request in the job queue, (ii) this asynchronous mode of
operations enables the normal world to immediately buffer a new
image, and (iii) our hardware AES decryption latency is larger than
our image buffering latency. This means that no matter how many
images we buffer, the hardware AES can only decrypt one image at
a time.
Benchmark App Performance: To quantify how Rushmore affects
other workload running in the normal world, we use an Android
benchmark app called PassMark [55] available on Google Play.
PassMark has 26 benchmarks in five categories; CPU, memory, disk,
2D graphics, and 3D graphics. It provides an overall system score
as well as a score for each category. A higher score means better
performance.

We run PassMark in the normal world along with our 400×400
cube animation workload displayed using Rushmore. As a baseline

0

500

1000

1500

2000

2500

B
en

ch
m

ar
k

Sc
or

e

Overall CPU Memory Disk 2D 3D

Baseline
Software AES

Hardware AES
ChaCha20

Figure 10: Benchmark scores for displaying a single animation.

comparison point, we also run PassMark with essentially the same
workload (decrypting and displaying 400×400 cube animations)
that runs everything in the normal world without using Rushmore.
In this baseline workload, we use ChaCha20 for decryption as it
is the fastest among the three cryptographic methods we use for
animated images in Rushmore. We run ChaCha20 in the user space
and display decrypted pixels using Linux’s /dev/fb* interface. In
all cases, we fix the frame rate at 30 FPS. We have posted a video 3

that demonstrates how PassMark works with our cube animation
displayed from the secure world.

Since all cryptographic methods can support 30 FPS for a single
animation (as shown in Figure 8), we first show the results of running
PassMark while displaying a single animation in Figure 10. Software
AES has noticeably lower performance than cryptographic methods
in all benchmark categories, especially for the disk category. Since
we do not know the internals of PassMark, it is not possible for us to
determine the exact cause of this behavior. However, we hypothesize
that software AES’s heavy computation in the secure world prevents
the CPU from making timely I/O requests to the disk. Hardware AES
performs the best in most categories because it runs asynchronously
and uses a separate piece of hardware, hence does not affect the
benchmark app’s performance much. Except for software AES, the

3https://youtu.be/JxeHUhHJH7k

131

https://youtu.be/JxeHUhHJH7k

Rushmore: Securely Displaying Static and Animated Images Using TrustZone MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA

320

340

360

380

400

420

Sc
or

e

870

920

970

1020

1070

1120

770

820

870

920

970

1020

1500
1680
1860
2040
2220
2400
2580

720
790
860
930

1000
1070
1140

850
920
990

1060
1130
1200

0
1 2 3 4 5

Overall

0
1 2 3 4 5

CPU

0
1 2 3 4 5

Memory

0
1 2 3 4 5

Disk

0
1 2 3 4 5

2D

0
1 2 3 4 5

3D

Number of Animations

Baseline Rushmore

Figure 11: Benchmark scores for displaying multiple animations.

Table 5: TCB size (Rushmore kernel).

Type LOC
Request Monitor 0.1K

Kernel Core 0.5K

IPU Driver 0.5K

Cryptography Module 1.3K

Default Service 0.1K

Total: 2.5K

overall score difference between the baseline and other cryptographic
methods is less than 5%.

For ChaCha20, we run PassMark for all cases as it can always
support 30 FPS. As shown in Figure 11, benchmark scores of 2D
and 3D categories have high standard deviations, which indicates
that Rushmore highly affects the performance of graphics categories.
Also, the overall score for ChaCha20 is (i) higher than the baseline
for a single animation, (ii) similar for 2 animations, and (iii) lower
for 3-5 animations. Again, without access to the internals of Pass-
Mark, we cannot analyze the exact cause of this behavior. However,
a likely cause is the differences in implementation. In our baseline
implementation, ChaCha20 is implemented in the user space and
pixels are written to the frame buffer using Linux’s /dev/fb* inter-
face. In Rushmore, ChaCha20 is implemented in the secure world’s
kernel space and pixels are written in the secure world’s kernel space.
The PassMark result demonstrates that with a single image, the per-
formance of Rushmore’s kernel-level operations (even with frequent
world switches) is better than the normal world’s user-level perfor-
mance. However, as we increase the number of images to display,
the overhead of handling multiple images for Rushmore causes a
steeper decrease in performance.

6.3 TCB Size
In the secure world, we implement Rushmore kernel using OP-TEE
as described in Section 4.5. In Table 5, we present the additional
lines of code required for our Rushmore kernel. Rushmore kernel
consists of the request monitor, the default service, the kernel core,
the IPU driver, and the cryptography module.

The majority of the TCB comes from the cryptography module
(software AES, Hardware AES, ChaCha20, and VC). If we choose
to use only one cryptographic method, we can further reduce the

total TCB size from 2.5K LoC to 1.5K with ChaCha20 (which has
0.3K LoC) and 2.1K with VC (which has 0.9K LoC). We do not
list TZASC driver in Table 5 since we mostly re-use OP-TEE’s
implementation (we modified 5 lines of code).

Although we cannot do apples-to-apples comparisons, our TCB
size is comparable to previous systems that have used OP-TEE for
their implementation. For example, VButton [34] reports additional
1.3K, TrustTokenF [69] reports additional 4.5K, and TruZ-View [68]
reports additional 3.4K.

6.4 Security Analysis
In this section, we present three different types of security analysis
to show how Rushmore’s secured display preserves confidentiality
and integrity.
Confidentiality of Displayed Images: Our threat model in Sec-
tion 2 assumes that adversaries are interested in compromising image
confidentiality. Since our threat model also assumes that adversaries
can fully compromise the normal world, they can get a hold of
encrypted images that are to be displayed by Rushmore. Then the
security guarantee for each of those encrypted images depends on
the strength of the encryption scheme each uses. In our implementa-
tion, we use standard cryptographic methods that are proven to be
secure, e.g., AES and ChaCha20, hence provide confidentiality for
encrypted images.

In addition, Rushmore protects the confidentiality of images when
operating in the secure world with TrustZone with TZASC. Since we
give exclusive access permission to the secure world for one of the
IPU cores (i.e., the registers that control the IPU core), the overlay
buffer (i.e., the memory region), as well as other memory regions
used by the secure world, the normal world cannot access anything
that is contained within these regions including confidential image
data. The normal world can only access its own memory regions and
the buffer memory regions shared between the normal world and the
secure world for passing image data and arguments.
Confidentiality of User Input: Previous UI protection schemes [2,
34, 36, 68] protect not only UI elements but also user input. However,
Rushmore only focuses on securing images and does not provide
user input security. Nevertheless, we can still protect user input
indirectly as shown in the randomized keypad use case in Section 5.4.
By randomizing a number arrangement on a virtual keypad displayed
by the secure world, Rushmore preserves the confidentiality of user

132

MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA Chang Min Park et al.

input because adversaries cannot observe the actual numbers typed
by a user.
Integrity of Displayed Images: Integrity is another crucial security
aspect of the images displayed by Rushmore. There are two integrity-
related attacks that we need to protect against—image overlaying
and denial of service. Rushmore uses a separate overlay buffer to
display images in the secure world, and pixels on the overlay buffer
are always displayed over the pixels coming from the frame buffer
in the normal world. Thus, a compromised OS can never overlay a
different image above the secured image displayed by Rushmore.
For denial of service, although our threat model considers it out of
scope as described in Section 2, we can still provide a notification
mechanism that turns on an LED light to indicate that the secure
world is displaying confidential images. Although we do not imple-
ment it in Rushmore, previous systems [33, 68] do and show that it
can be a functional solution.

7 DISCUSSIONS
Image Format: Rushmore uses RGB565 to reduce the size of an
image. RGB565 uses 16 bits instead of 24 bits, which is the case for
RGB888. Converting RGB888 to RGB565 is lossy and the result
might show a greenish tint. However, one can get a better result by
applying dithering [10].
Lack of Video Compression: Video compression is essential when
streaming or sending a video with low latency. Rushmore currently
does not use video compression for animated images and use raw
image data in the RGB565 format. Adapting a video compression on
Rushmore kernel might increase the TCB size in the secure world
and incur display latency overhead because it requires decoding
before decryption.
No Support for Animated Images using Visual Cryptography:
We do not support animated images for visual cryptography because
it is difficult to display two images (one from the normal world
and the other from the secure world) exactly at the same time. This
causes visual noise to occur at every frame transition. To reduce
the noise, we could re-use the same key image for multiple frames
instead of using a new key image for every frame. This would allow
the transition noise to occur every 𝑛 frames instead. However, it
is possible that this would jeopardize the security of the animated
images as it gives more chances to observe encrypted images with
a single key image. We leave the full investigation of this as future
work.
Long Term Impact Related to Processing Power Improvements:
Rushmore currently supports up to 30 FPS to display whole-screen
animations with ChaCha20. As processing power improves over
time, Rushmore will be able to support higher frame rates and also
32-bit RGB instead of 16-bit RGB.

8 RELATED WORK
We review related work in three categories: (1) image protection, (2)
visual cryptography, and (3) TrustZone research.
Image Protection: For general image protection, previous research
was proposed for input image protection [1, 29, 48], physical at-
tack protection [5], and UI protection using TrustZone [34, 36, 68].
Solutions for input image protection [1, 29, 48] first detect and rec-
ognize a confidential image from a camera frame, and then protect

the image by occluding it from the camera frame. These solutions
have a different focus from that of Rushmore, as Rushmore protects
output images on the screen of a user device. HideScreen [5] pro-
poses a grid-based display that limits the range of viewing angles.
This prevents “shoulder surfing” where an attacker peeks at a user’s
screen to compromise what is displayed by the screen. In contrast,
Rushmore’s goal is to protect images against software running in
the normal world of a device. UI protection solutions using Trust-
Zone [34, 36, 68] also provide output image protection by providing
a technique to securely display pixels. Using the main display chan-
nel (the frame buffer), they display the image of a UI element in
the secure world and restrict access to the frame buffer for a short
period of time until user actions are done with the UI. This means
that the normal world cannot display anything on the screen while
the protected UI is being used, which limits the applicability of using
TrustZone for display security.
Visual Cryptography: Visual cryptography is an image-based cryp-
tographic technique that splits an image into multiple images that,
when overlaid with each other, reveal the original image. Previous
research has focused on improving this technique for halftone im-
ages [64] and multi-color images [14, 66] as well as using this tech-
nique on different domains such as biometric data protection [49].
Our work uses visual cryptography as an alternative cryptography
method to improve performance.
TrustZone Research: Previous research has solved various security
problems using TrustZone, e.g., securely displaying text data [2],
providing strong access control for sensors and peripherals on a
device [33, 37], monitoring the normal world OS for a system [3],
performing secure auditing [12], and analyzing a normal OS’s ex-
ecution [38]. These systems demonstrate the wide applicability of
TrustZone for providing security in different domains.

9 CONCLUSIONS
In this paper, we have presented Rushmore that securely displays
static or animated images using TrustZone. By leveraging an IPU
and its overlay buffer, Rushmore allows the normal world to si-
multaneously display its content even when the secure world is
displaying its confidential content. To the best of our knowledge,
Rushmore is the first system that enables it. Furthermore, we adapt
an image-based cryptographic method called visual cryptography,
and show that Rushmore presents a novel application for it and it is
light-weight. Our evaluation demonstrates that with the right type
of cryptographic method, Rushmore can provide frame rates around
or higher than 30 FPS for displaying encrypted animated images.
This is also a capability previously not possible, and Rushmore’s
use of an IPU enables it. Lastly, we demonstrate the applicability of
Rushmore’s functionality by designing and implementing four use
case applications.

ACKNOWLEDGMENTS
We would like to thank our reviewers and shepherd for their valu-
able feedback. This work was supported in part by the National
Science Foundation, CNS-1618531 and CNS-1846320 (CAREER),
and the National Research Foundation of Korea (NRF) grant NRF-
2020R1A2C1004062.

133

Rushmore: Securely Displaying Static and Animated Images Using TrustZone MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA

REFERENCES
[1] Paarijaat Aditya, Rijurekha Sen, Peter Druschel, Seong Joon Oh, Rodrigo Be-

nenson, Mario Fritz, Bernt Schiele, Bobby Bhattacharjee, and Tong Tong Wu.
2016. I-Pic: A Platform for Privacy-Compliant Image Capture. In MobiSys ’16.
Association for Computing Machinery, New York, NY, USA, 235–248.

[2] Ardalan Amiri Sani. 2017. SchrodinText: Strong Protection of Sensitive Tex-
tual Content of Mobile Applications. In Proceedings of the 15th Annual Inter-
national Conference on Mobile Systems, Applications, and Services (MobiSys

’17). Association for Computing Machinery, New York, NY, USA, 197–210.
https://doi.org/10.1145/3081333.3081346

[3] Ahmed M. Azab, Peng Ning, Jitesh Shah, Quan Chen, Rohan Bhutkar, Guruprasad
Ganesh, Jia Ma, and Wenbo Shen. 2014. Hypervision Across Worlds: Real-Time
Kernel Protection from the ARM TrustZone Secure World. In Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’14). Association for Computing Machinery, New York, NY, USA, 90–102.
https://doi.org/10.1145/2660267.2660350

[4] Daniel Bernstein. 2008. ChaCha, a variant of Salsa20. The University of Illinois
at Chicago (01 2008).

[5] Chun-Yu (Daniel) Chen, Bo-Yao Lin, Junding Wang, and Kang G. Shin. 2019.
Keep Others from Peeking at Your Mobile Device Screen!. In The 25th Annual
International Conference on Mobile Computing and Networking (MobiCom ’19).
Association for Computing Machinery, New York, NY, USA, Article 22, 16 pages.
https://doi.org/10.1145/3300061.3300119

[6] Haehyun Cho, Penghui Zhang, Donguk Kim, Jinbum Park, Choong-Hoon Lee,
Ziming Zhao, Adam Doupé, and Gail-Joon Ahn. 2018. Prime+Count: Novel
Cross-World Covert Channels on ARM TrustZone. In Proceedings of the 34th
Annual Computer Security Applications Conference (ACSAC ’18). Association for
Computing Machinery, New York, NY, USA, 441–452. https://doi.org/10.1145/
3274694.3274704

[7] Bart Coppens, Ingrid Verbauwhede, Koen De Bosschere, and Bjorn De Sutter.
2009. Practical Mitigations for Timing-Based Side-Channel Attacks on Modern
X86 Processors. In Proceedings of the 2009 30th IEEE Symposium on Security
and Privacy (SP ’09). IEEE Computer Society, USA, 45–60. https://doi.org/
10.1109/SP.2009.19

[8] Fabrizio De Santis, Andreas Schauer, and Georg Sigl. 2017. ChaCha20-Poly1305
Authenticated Encryption for High-Speed Embedded IoT Applications. In Pro-
ceedings of the Conference on Design, Automation & Test in Europe (DATE ’17).
European Design and Automation Association, Leuven, BEL, 692–697.

[9] Advanced Micro Devices. 2020. AMD Secure Encrypted Virtualization (SEV).
https://developer.amd.com/sev/.

[10] Dithering Cited Dec 2020. Android Bitmap.Config including RGB565 dithering.
https://developer.android.com/reference/android/graphics/Bitmap.Config.

[11] Alexandra Dmitrienko, Zecir Hadzic, Hans Löhr, Ahmad-Reza Sadeghi, and
Marcel Winandy. 2013. Securing the Access to Electronic Health Records on
Mobile Phones. In Biomedical Engineering Systems and Technologies, Ana Fred,
Joaquim Filipe, and Hugo Gamboa (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 365–379.

[12] Nuno O. Duarte, Sileshi Demesie Yalew, Nuno Santos, and Miguel Correia. 2018.
Leveraging ARM TrustZone and Verifiable Computing to Provide Auditable
Mobile Functions. In Proceedings of the 15th EAI International Conference on
Mobile and Ubiquitous Systems: Computing, Networking and Services (MobiQui-
tous ’18). Association for Computing Machinery, New York, NY, USA, 302–311.
https://doi.org/10.1145/3286978.3287015

[13] Anti-Abuse Research Lead Elie Bursztein. Cited Dec 2020. Speeding up
and strengthening HTTPS connections for Chrome on Android. https://
security.googleblog.com/2014/04/speeding-up-and-strengthening-https.html.

[14] Young-Chang Hou. 2003. Visual cryptography for color images. Pattern Recogni-
tion 36 (07 2003), 1619–1629. https://doi.org/10.1016/S0031-3203(02)00258-3

[15] IPU Cited Dec 2020. Intel IPU3. https://www.kernel.org/doc/html/v5.4/media/v4l-
drivers/ipu3.html.

[16] IPU Cited Dec 2020. Intel® PXA27x Processor Family Developer’s Man-
ual. https://courses.cs.washington.edu/courses/cse466/08wi/labs/l5/pxa27x
developers manual.pdf.

[17] IPU Cited Dec 2020. JZ4760 Mobile Application Processor Programming
Manual. https://dokumen.tips/documents/jz4760-mobile-application-processor-
rockbox-jz4760-mobile-application-processor.html.

[18] IPU Cited Dec 2020. MCIMX51 Multimedia Applications Processor
Reference Manual. https://www.nxp.com/files-static/dsp/doc/ref manual/
MCIMX51RM.pdf.

[19] IPU Cited Dec 2020. Mediatek chipset graphics dri-
ver. https://android.googlesource.com/kernel/mediatek/+/
4f43e6b499c6d194030df8d2506485db9d5165bd/drivers/misc/mediatek/
video/common/mtkfb.c.

[20] IPU Cited Dec 2020. MediaWall V Display Processor. https:
//www.syscomtec.com/ produktbereich/source/Artikel/Artikel%207693/350-
11751-01 2018-10 mw-v ug.pdf.

[21] IPU Cited Dec 2020. MT6797 LTE-A Smartphone Application
Processor Functional Specification for Development Board. https:

//www.96boards.org/documentation/consumer/mediatekx20/additional-
docs/docs/MT6797 Functional Specification V1 0.pdf.

[22] IPU Cited Dec 2020. Nios II Processor Reference Guide. https://www.intel.com/
content/dam/www/programmable/us/en/pdfs/literature/hb/nios2/n2cpu-
nii5v1gen2.pdf.

[23] IPU Cited Dec 2020. OMAP35xx Applications Processor Introduction. https:
//plan9.io/sources/contrib/geoff/armdoc/ti/omap35x.intro.pdf.

[24] IPU Cited Dec 2020. Qualcomm’s MSM chipset graph-
ics driver. https://android.googlesource.com/kernel/msm/+/
ad29d11ee316c7d363cb9cd4b4dffa02598d1711/drivers/video/msm/msm fb.c.

[25] IPU Cited Dec 2020. Samsung’s Exynos chipset graph-
ics driver. https://android.googlesource.com/kernel/exynos/+/
801e1de0316c0a62a4b07012de6f95562be1f926/drivers/gpu/drm/exynos/
exynos drm crtc.c.

[26] IPU Cited Dec 2020. TDA2x SoC for Advanced Driver Assistance Sys-
tems (ADAS) Silicon Revision 2.0, 1.1 Technical Reference Manual. http:
//www.ti.com/lit/ug/sprui29f/sprui29f.pdf.

[27] IPU Cited Dec 2020. TI’s OMAP chipset graph-
ics driver. https://android.googlesource.com/kernel/omap/+/
ecb19f44f9b0ba74cfaf303677beb7d079d4b62f/Documentation/arm/OMAP/
DSS.

[28] Mohammad A. Islam, Shaolei Ren, and Adam Wierman. 2017. Exploiting a
Thermal Side Channel for Power Attacks in Multi-Tenant Data Centers. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’17). Association for Computing Machinery, New York, NY, USA,
1079–1094. https://doi.org/10.1145/3133956.3133994

[29] Suman Jana, David Molnar, Alexander Moshchuk, Alan Dunn, Benjamin Livshits,
Helen J. Wang, and Eyal Ofek. 2013. Enabling Fine-Grained Permissions for
Augmented Reality Applications with Recognizers. In 22nd USENIX Security
Symposium (USENIX Security 13). USENIX Association, Washington, D.C., 415–
430. https://www.usenix.org/conference/usenixsecurity13/technical-sessions/
presentation/jana

[30] Mehmet Kayaalp, Nael Abu-Ghazaleh, Dmitry Ponomarev, and Aamer Jaleel.
2016. A High-Resolution Side-Channel Attack on Last-Level Cache. In Pro-
ceedings of the 53rd Annual Design Automation Conference (DAC ’16). Asso-
ciation for Computing Machinery, New York, NY, USA, Article 72, 6 pages.
https://doi.org/10.1145/2897937.2897962

[31] A. Langley. 2016. ChaCha20-Poly1305 Cipher Suites for Transport Layer Security
(TLS). https://tools.ietf.org/html/rfc7905.

[32] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanovic, and Dawn
Song. 2020. Keystone: An Open Framework for Architecting Trusted Execution
Environments. In Proceedings of the Fifteenth European Conference on Computer
Systems (EuroSys ’20). Association for Computing Machinery, New York, NY,
USA, 16.

[33] Matthew Lentz, Rijurekha Sen, Peter Druschel, and Bobby Bhattacharjee. 2018.
SeCloak: ARM Trustzone-Based Mobile Peripheral Control. In Proceedings of
the 16th Annual International Conference on Mobile Systems, Applications, and
Services (MobiSys ’18). Association for Computing Machinery, New York, NY,
USA, 1–13. https://doi.org/10.1145/3210240.3210334

[34] Wenhao Li, Shiyu Luo, Zhichuang Sun, Yubin Xia, Long Lu, Haibo Chen,
Binyu Zang, and Haibing Guan. 2018. VButton: Practical Attestation of User-
Driven Operations in Mobile Apps. In Proceedings of the 16th Annual In-
ternational Conference on Mobile Systems, Applications, and Services (Mo-
biSys ’18). Association for Computing Machinery, New York, NY, USA, 28–40.
https://doi.org/10.1145/3210240.3210330

[35] Wenhao Li, Mingyang Ma, Jinchen Han, Yubin Xia, Binyu Zang, Cheng-Kang
Chu, and Tieyan Li. 2014. Building Trusted Path on Untrusted Device Drivers
for Mobile Devices. In Proceedings of 5th Asia-Pacific Workshop on Systems
(APSys ’14). Association for Computing Machinery, New York, NY, USA, Article
8, 7 pages. https://doi.org/10.1145/2637166.2637225

[36] Dongtao Liu and Landon P. Cox. 2014. VeriUI: Attested Login for Mobile
Devices. In Proceedings of the 15th Workshop on Mobile Computing Systems and
Applications (HotMobile ’14). Association for Computing Machinery, New York,
NY, USA, Article 7, 6 pages. https://doi.org/10.1145/2565585.2565591

[37] Renju Liu and Mani Srivastava. 2018. VirtSense: Virtualize Sensing through ARM
TrustZone on Internet-of-Things. Association for Computing Machinery, New
York, NY, USA, 2–7. https://doi.org/10.1145/3268935.3268937

[38] Aravind Machiry, Eric Gustafson, Chad Spensky, Christopher Salls, Nick Stephens,
Ruoyu Wang, Antonio Bianchi, Yung Ryn Choe, Christopher Krügel, and Giovanni
Vigna. 2017. BOOMERANG: Exploiting the Semantic Gap in Trusted Execution
Environments. In NDSS. The Internet Society, San Diego, CA, USA.

[39] ML-Kit Cited Dec 2020. Face detection API in Google ML Kit. https:
//developers.google.com/ml-kit/vision/face-detection.

[40] Moni Naor and Adi Shamir. 1994. Visual cryptography. In Workshop on the Theory
and Application of of Cryptographic Techniques. Springer, Springer-Verlag, Berlin,
Heidelberg, 1–12.

[41] Yoav Nir and A. Langley. 2018. ChaCha20 and Poly1305 for IETF Protocols.
RFC 8439 (2018), 1–46.

134

https://doi.org/10.1145/3081333.3081346
https://doi.org/10.1145/2660267.2660350
https://doi.org/10.1145/3300061.3300119
https://doi.org/10.1145/3274694.3274704
https://doi.org/10.1145/3274694.3274704
https://doi.org/10.1109/SP.2009.19
https://doi.org/10.1109/SP.2009.19
https://developer.amd.com/sev/
https://developer.android.com/reference/android/graphics/Bitmap.Config
https://doi.org/10.1145/3286978.3287015
https://security.googleblog.com/2014/04/speeding-up-and-strengthening-https.html
https://security.googleblog.com/2014/04/speeding-up-and-strengthening-https.html
https://doi.org/10.1016/S0031-3203(02)00258-3
https://www.kernel.org/doc/html/v5.4/media/v4l-drivers/ipu3.html
https://www.kernel.org/doc/html/v5.4/media/v4l-drivers/ipu3.html
https://courses.cs.washington.edu/courses/cse466/08wi/labs/l5/pxa27x_developers_manual.pdf
https://courses.cs.washington.edu/courses/cse466/08wi/labs/l5/pxa27x_developers_manual.pdf
https://dokumen.tips/documents/jz4760-mobile-application-processor-rockbox-jz4760-mobile-application-processor.html
https://dokumen.tips/documents/jz4760-mobile-application-processor-rockbox-jz4760-mobile-application-processor.html
https://www.nxp.com/files-static/dsp/doc/ref_manual/MCIMX51RM.pdf
https://www.nxp.com/files-static/dsp/doc/ref_manual/MCIMX51RM.pdf
https://android.googlesource.com/kernel/mediatek/+/4f43e6b499c6d194030df8d2506485db9d5165bd/drivers/misc/mediatek/video/common/mtkfb.c
https://android.googlesource.com/kernel/mediatek/+/4f43e6b499c6d194030df8d2506485db9d5165bd/drivers/misc/mediatek/video/common/mtkfb.c
https://android.googlesource.com/kernel/mediatek/+/4f43e6b499c6d194030df8d2506485db9d5165bd/drivers/misc/mediatek/video/common/mtkfb.c
https://www.syscomtec.com/_produktbereich/source/Artikel/Artikel%207693/350-11751-01_2018-10_mw-v_ug.pdf
https://www.syscomtec.com/_produktbereich/source/Artikel/Artikel%207693/350-11751-01_2018-10_mw-v_ug.pdf
https://www.syscomtec.com/_produktbereich/source/Artikel/Artikel%207693/350-11751-01_2018-10_mw-v_ug.pdf
https://www.96boards.org/documentation/consumer/mediatekx20/additional-docs/docs/MT6797_Functional_Specification_V1_0.pdf
https://www.96boards.org/documentation/consumer/mediatekx20/additional-docs/docs/MT6797_Functional_Specification_V1_0.pdf
https://www.96boards.org/documentation/consumer/mediatekx20/additional-docs/docs/MT6797_Functional_Specification_V1_0.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/nios2/n2cpu-nii5v1gen2.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/nios2/n2cpu-nii5v1gen2.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/nios2/n2cpu-nii5v1gen2.pdf
https://plan9.io/sources/contrib/geoff/armdoc/ti/omap35x.intro.pdf
https://plan9.io/sources/contrib/geoff/armdoc/ti/omap35x.intro.pdf
https://android.googlesource.com/kernel/msm/+/ad29d11ee316c7d363cb9cd4b4dffa02598d1711/drivers/video/msm/msm_fb.c
https://android.googlesource.com/kernel/msm/+/ad29d11ee316c7d363cb9cd4b4dffa02598d1711/drivers/video/msm/msm_fb.c
https://android.googlesource.com/kernel/exynos/+/801e1de0316c0a62a4b07012de6f95562be1f926/drivers/gpu/drm/exynos/exynos_drm_crtc.c
https://android.googlesource.com/kernel/exynos/+/801e1de0316c0a62a4b07012de6f95562be1f926/drivers/gpu/drm/exynos/exynos_drm_crtc.c
https://android.googlesource.com/kernel/exynos/+/801e1de0316c0a62a4b07012de6f95562be1f926/drivers/gpu/drm/exynos/exynos_drm_crtc.c
http://www.ti.com/lit/ug/sprui29f/sprui29f.pdf
http://www.ti.com/lit/ug/sprui29f/sprui29f.pdf
https://android.googlesource.com/kernel/omap/+/ecb19f44f9b0ba74cfaf303677beb7d079d4b62f/Documentation/arm/OMAP/DSS
https://android.googlesource.com/kernel/omap/+/ecb19f44f9b0ba74cfaf303677beb7d079d4b62f/Documentation/arm/OMAP/DSS
https://android.googlesource.com/kernel/omap/+/ecb19f44f9b0ba74cfaf303677beb7d079d4b62f/Documentation/arm/OMAP/DSS
https://doi.org/10.1145/3133956.3133994
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/jana
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/jana
https://doi.org/10.1145/2897937.2897962
https://tools.ietf.org/html/rfc7905
https://doi.org/10.1145/3210240.3210334
https://doi.org/10.1145/3210240.3210330
https://doi.org/10.1145/2637166.2637225
https://doi.org/10.1145/2565585.2565591
https://doi.org/10.1145/3268935.3268937
https://developers.google.com/ml-kit/vision/face-detection
https://developers.google.com/ml-kit/vision/face-detection

MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA Chang Min Park et al.

[42] NXP. Cited Dec 2020. i.MX 6ULL Applications Processors for Industrial Products.
https://www.nxp.com/docs/en/data-sheet/IMX6ULLIEC.pdf.

[43] NXP. Cited Dec 2020. i.MX21 Applications Processor Reference Manual. https:
//www.nxp.com/docs/en/reference-manual/MC9328MX21RM.pdf.

[44] NXP. Cited Dec 2020. i.MX25 Multimedia Applications Processor Reference
Manual. https://www.nxp.com/docs/en/reference-manual/IMX25RM.pdf.

[45] NXP. Cited Dec 2020. I.MX355 IPU Manual. https://www.nxp.com/
products/processors-and-microcontrollers/arm-processors/i-mx-applications-
processors/i-mx-mature-processors/multimedia-applications-processors-based-
on-arm11-core-image-processing-unit:i.MX355.

[46] NXP. Cited Dec 2020. i.MX53 Multimedia Applications Processor Reference
Manual. https://www.nxp.com/docs/en/reference-manual/iMX53RM.pdf.

[47] PVC Cited Dec 2020. Pixel Visual Core: Google’s Fully Programmable Image,
Vision, and AI Processor For Mobile Devices. https://old.hotchips.org/hc30/1conf/
1.02 Google HC30.Google.JasonRedgrave.V01.pdf.

[48] Nisarg Raval, Animesh Srivastava, Ali Razeen, Kiron Lebeck, Ashwin Machanava-
jjhala, and Lanodn P. Cox. 2016. What You Mark is What Apps See. In Proceed-
ings of the 14th Annual International Conference on Mobile Systems, Applications,
and Services (MobiSys ’16). Association for Computing Machinery, New York,
NY, USA, 249–261. https://doi.org/10.1145/2906388.2906405

[49] A. Ross and A. Othman. 2011. Visual Cryptography for Biometric Privacy. IEEE
Transactions on Information Forensics and Security 6, 1 (2011), 70–81.

[50] Samsung Cited Dec 2020. What is the NPU in Galaxy and what does it do?
https://www.samsung.com/global/galaxy/what-is/npu/.

[51] Freescale Semiconductor. Cited Dec 2020. i.MX28 Applications Processor Refer-
ence Manual. https://bootlin.com/∼maxime/pub/datasheet/MCIMX28RM.pdf.

[52] Freescale Semiconductor. Cited Dec 2020. I.MX6 IPU Manual. https://
people.freebsd.org/∼gonzo/arm/iMX6-IPU.pdf.

[53] SGX Cited Dec 2020. Intel Software Guard Extensions (SGX). https:
//www.intel.com/content/www/us/en/architecture-and-technology/software-
guard-extensions.html.

[54] Tom Simonite. Cited Dec 2020. Apple’s ‘Neural Engine’ Infuses the iPhone
With AI Smarts. https://www.wired.com/story/apples-neural-engine-infuses-the-
iphone-with-ai-smarts/.

[55] PassMark Software. Cited Dec 2020. PassMark. https://www.passmark.com/.
[56] He Sun, Kun Sun, Yuewu Wang, and Jiwu Jing. 2015. TrustOTP: Transforming

Smartphones into Secure One-Time Password Tokens. In Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security
(CCS ’15). Association for Computing Machinery, New York, NY, USA, 976–988.
https://doi.org/10.1145/2810103.2813692

[57] TEE Cited Dec 2020. OP-TEE. https://www.op-tee.org/.
[58] TEE Cited Dec 2020. Qualcomm Secure Execution Environment

(QSEE). https://www.qualcomm.com/media/documents/files/guard-your-data-
with-the-qualcomm-snapdragon-mobile-platform.pdf.

[59] TEE Cited Dec 2020. Samsung Knox. https://www.samsungknox.com/en/secured-
by-knox.

[60] TEE Cited Dec 2020. Trusty. https://source.android.com/security/trusty.
[61] C. Tian, Y. Wang, P. Liu, Q. Zhou, C. Zhang, and Z. Xu. 2017. IM-Visor: A Pre-

IME Guard to Prevent IME Apps from Stealing Sensitive Keystrokes Using Trust-
Zone. In 2017 47th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN). 145–156. https://doi.org/10.1109/DSN.2017.12

[62] TrustZone Cited Dec 2020. ANetwork Security Services (NSS) library devel-
oped by Mozilla.org projects. https://developer.mozilla.org/en-US/docs/Mozilla/
Projects/NSS/An overview of NSS Internals.

[63] TrustZone Cited Dec 2020. ARM TrustZone. https://developer.arm.com/ip-
products/security-ip/trustzone.

[64] Z. Wang, G. R. Arce, and G. Di Crescenzo. 2009. Halftone Visual Cryptography
Via Error Diffusion. IEEE Transactions on Information Forensics and Security 4,
3 (2009), 383–396.

[65] Xianyi Zheng, Lulu Yang, Jiangang Ma, Gang Shi, and Dan Meng. 2016. TrustPAY:
Trusted mobile payment on security enhanced ARM TrustZone platforms. In
2016 IEEE Symposium on Computers and Communication (ISCC). 456–462.
https://doi.org/10.1109/ISCC.2016.7543781

[66] Hirotsugu Yamamoto, Yoshio Hayasaki, and Nobuo Nishida. 2004. Secure in-
formation display with limited viewing zone by use of multi-color visual cryp-
tography. Opt. Express 12, 7 (Apr 2004), 1258–1270. https://doi.org/10.1364/
OPEX.12.001258

[67] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A High Resolu-
tion, Low Noise, L3 Cache Side-Channel Attack. In Proceedings of the 23rd
USENIX Conference on Security Symposium (SEC’14). USENIX Association,
USA, 719–732.

[68] Kailiang Ying, Priyank Thavai, and Wenliang Du. 2019. TruZ-View: Developing
TrustZone User Interface for Mobile OS Using Delegation Integration Model. In
Proceedings of the Ninth ACM Conference on Data and Application Security and
Privacy (CODASPY ’19). Association for Computing Machinery, New York, NY,
USA, 1–12. https://doi.org/10.1145/3292006.3300035

[69] Yingjun Zhang, Shijun Zhao, Yu Qin, Bo Yang, and Dengguo Feng. 2015. Trust-
TokenF: A Generic Security Framework for Mobile Two-Factor Authentication
Using TrustZone. In Proceedings of the 2015 IEEE Trustcom/BigDataSE/ISPA -
Volume 01 (TRUSTCOM ’15). IEEE Computer Society, USA, 41–48.

135

https://www.nxp.com/docs/en/data-sheet/IMX6ULLIEC.pdf
https://www.nxp.com/docs/en/reference-manual/MC9328MX21RM.pdf
https://www.nxp.com/docs/en/reference-manual/MC9328MX21RM.pdf
https://www.nxp.com/docs/en/reference-manual/IMX25RM.pdf
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-mature-processors/multimedia-applications-processors-based-on-arm11-core-image-processing-unit:i.MX355
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-mature-processors/multimedia-applications-processors-based-on-arm11-core-image-processing-unit:i.MX355
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-mature-processors/multimedia-applications-processors-based-on-arm11-core-image-processing-unit:i.MX355
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-mature-processors/multimedia-applications-processors-based-on-arm11-core-image-processing-unit:i.MX355
https://www.nxp.com/docs/en/reference-manual/iMX53RM.pdf
https://old.hotchips.org/hc30/1conf/1.02_Google_HC30.Google.JasonRedgrave.V01.pdf
https://old.hotchips.org/hc30/1conf/1.02_Google_HC30.Google.JasonRedgrave.V01.pdf
https://doi.org/10.1145/2906388.2906405
https://www.samsung.com/global/galaxy/what-is/npu/
https://bootlin.com/~maxime/pub/datasheet/MCIMX28RM.pdf
https://people.freebsd.org/~gonzo/arm/iMX6-IPU.pdf
https://people.freebsd.org/~gonzo/arm/iMX6-IPU.pdf
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://www.wired.com/story/apples-neural-engine-infuses-the-iphone-with-ai-smarts/
https://www.wired.com/story/apples-neural-engine-infuses-the-iphone-with-ai-smarts/
https://www.passmark.com/
https://doi.org/10.1145/2810103.2813692
https://www.op-tee.org/
https://www.qualcomm.com/media/documents/files/guard-your-data-with-the-qualcomm-snapdragon-mobile-platform.pdf
https://www.qualcomm.com/media/documents/files/guard-your-data-with-the-qualcomm-snapdragon-mobile-platform.pdf
https://www.samsungknox.com/en/secured-by-knox
https://www.samsungknox.com/en/secured-by-knox
https://source.android.com/security/trusty
https://doi.org/10.1109/DSN.2017.12
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/An_overview_of_NSS_Internals
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/An_overview_of_NSS_Internals
https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone
https://doi.org/10.1109/ISCC.2016.7543781
https://doi.org/10.1364/OPEX.12.001258
https://doi.org/10.1364/OPEX.12.001258
https://doi.org/10.1145/3292006.3300035

	Abstract
	1 Introduction
	2 Background
	2.1 ARM TrustZone
	2.2 Image Processing Unit
	2.3 Threat Model

	3 Rushmore Usage Model
	4 Rushmore Architecture
	4.1 Architecture Overview
	4.2 Rushmore Client Library and Driver
	4.3 Rushmore Kernel
	4.4 Visual Cryptography
	4.5 Implementation

	5 Use Cases
	5.1 Face Recognition
	5.2 Two-Factor Authentication
	5.3 fMRI Animation Viewer
	5.4 Randomized Keypad

	6 Evaluation
	6.1 Image Display Performance
	6.2 Animation Display Performance
	6.3 TCB Size
	6.4 Security Analysis

	7 Discussions
	8 Related Work
	9 Conclusions
	Acknowledgments
	References

