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ABSTRACT

Federated Learning (FL) trains a machine learning model on dis-

tributed clients without exposing individual data. Unlike centralized

training that is usually based on carefully-organized data, FL deals

with on-device data that are often unfiltered and imbalanced. As a

result, conventional FL training protocol that treats all data equally

leads to a waste of local computational resources and slows down

the global learning process. To this end, we propose FedBalancer ,

a systematic FL framework that actively selects clients’ training

samples. Our sample selection strategy prioritizes more “informa-

tive” data while respecting privacy and computational capabilities

of clients. To better utilize the sample selection to speed up global

training, we further introduce an adaptive deadline control scheme

that predicts the optimal deadline for each round with varying

client training data. Compared with existing FL algorithms with

deadline configuration methods, our evaluation on five datasets

from three different domains shows that FedBalancer improves the

time-to-accuracy performance by 1.20∼4.48× while improving the

model accuracy by 1.1∼5.0%. We also show that FedBalancer is

readily applicable to other FL approaches by demonstrating that

FedBalancer improves the convergence speed and accuracy when

operating jointly with three different FL algorithms.

CCS CONCEPTS

•Human-centered computing→Ubiquitous andmobile com-

puting; • Computing methodologies →Machine learning.
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1 INTRODUCTION

Federated learning (FL) is a machine learning paradigm that per-

forms decentralized training of models on mobile devices (e.g.,

smartphones) with locally stored data [53]. FL trains on a large

corpus of private user data without collecting them, with only the

model weight updates communicated externally from the user’s

device [11]. With FL, researchers have proposed to improve AI

in diverse domains: human mobility prediction [24], RF localiza-

tion [16], traffic sign classification [6], tumour detection [32, 47],

and Clinical Decision Support (CDS) model for COVID-19 [18]. FL

also has product deployments as large companies such as Google

or Taobao deploy language processing and item recommendation

tasks across millions of real-world devices [56, 77].

One of the key objectives in FL is to optimize time-to-accuracy

performance, which is a wall clock time for a model to achieve the

target accuracy [38]. Achieving high time-to-accuracy performance

is important as FL consumes significant computation and network

resources on edge-user devices [21]. For model developers who

prototype a mobile AI with FL without a proxy dataset, achieving

faster convergence on thousands to millions of devices is desired

to efficiently test multiple model architectures and hyperparame-

ters [33]. Service providers who frequently update a model with

continual learning with FL require to minimize the user overhead

with better time-to-accuracy performance [39].

In realistic FL scenarios, however, heterogeneous data being dis-

tributed over isolated users becomes the main challenge in achiev-

ing high time-to-accuracy performance [44, 79]. While data en-

gineering techniques such as importance sampling [5, 34, 52, 61]

are widely adopted in centralized learning to optimize the training

process, applying them in FL is infeasible as it requires private user

data sharing. For this reason, previous FL algorithms [38, 45, 53]

mostly treat every client data equally, which could result in a waste
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of computational resources and slow convergence. We conducted a

preliminary study to examine this phenomenon and found that the

ratio of informative samples is reduced from 93.2% to 20% as the

FL progresses. This could further exacerbate with heterogeneous

hardware of FL clients, as low-end devices might fail to send model

updates while training a large portion of unimportant samples.

To address this problem, we propose FedBalancer , a systematic FL

framework with sample selection. The sample selection of FedBal-

ancer prioritizes more “informative” samples of clients to efficiently

utilize their computational effort. This allows low-end devices to

contribute to the global training within the round deadline by focus-

ing on smaller butmore important training samples. To achieve high

time-to-accuracy performance, the sample selection is designed to

operate without additional forward or backward pass for sample

utility measurement at FL rounds. Lastly, FedBalancer can coexist

and collaborate with orthogonal FL approaches to further improve

performance.

To realize FedBalancer , we addressed the following challenges:

(1) Simply reducing the training data of a client with random sam-

pling could lead to lower model accuracy as the statistical utility

of the training data would decrease. As such, FedBalancer selects

samples based on their statistical utility measurement. (2) Collect-

ing sample-level statistical utility for sample selection might break

the privacy guarantee of FL. To address this problem, we propose

client-server coordination to maintain loss threshold, which allows

clients to effectively select important samples while only exposing

differentially-private statistics of their data. (3) The sample selec-

tion itself might not directly lead to time-to-accuracy performance

improvement when the FL round deadline remains fixed. To formu-

late the benefit of selecting different deadlines, we propose a metric

deadline efficiency (DDL-E) that calculates the number of round-

completed clients per time. This allows FedBalancer to predict the

optimal deadline with varying client training data.

We implemented FedBalancer and conducted experiments on

five datasets from three domains that contain real-world user data.

Compared with existing FL aggregation algorithms with deadline

configuration methods, FedBalancer improves the time-to-accuracy

performance by 1.20∼4.48×. FedBalancer achieves this improvement

without sacrificing model accuracy; in fact, it improves the accuracy

by 1.1%∼5.0%. In addition, we implement FedBalancer on top of

three orthogonal FL algorithms to demonstrate that FedBalancer is

easily applicable to other FL approaches and improves their time-

to-accuracy performance.

We summarize our contributions as follows:

• We propose a systematic framework for FL with sample selec-

tion, which actively selects high utility samples at each round

without collecting privacy-invasive sample-level information

from clients.

• We propose a deadline control strategy for each round of FL

based on the newly defined metric deadline efficiency, which

optimizes the time-to-accuracy performance along with our

sample selection.

• We implement FedBalancer jointly with existing FL algorithms,

showing improvement in both time-to-accuracy and model

accuracy.

2 BACKGROUND AND MOTIVATION

2.1 Federated Learning

Federated Learning (FL) operates across multiple mobile devices to

globally train a model from the distributed client data. FedAvg [53],

the most commonly used FL approach [30], operates as follows: (i)

Suppose there are 𝑁 clients in an FL system. For each round of FL,

the server randomly selects 𝐾 clients (𝐾 << 𝑁 ) who participate in

model training. (ii) At the R-th round, the server transmits the cur-

rent model weights𝑤𝑅 to the selected clients. (iii) Each client then

performs model training for 𝐸 epochs with their local data and gen-

erates𝑤𝑘𝑅+1, where 𝑘 denotes the client index. (iv) Clients upload

the updated model parameters to the server, and (v) the server ag-

gregates different clients’ updates and generate the updated model

as𝑤𝑅+1 ←
∑𝐾
𝑘=1

𝑛𝑘
𝑛 𝑤𝑘𝑅+1, where 𝑛𝑘 indicates the number of data

points of client 𝑘 and 𝑛 the number of all data points.

A key objective in FL is to optimize time-to-accuracy perfor-

mance. FL tasks typically require hundreds to thousands of rounds

to converge [13, 38], and clients participating at a round undergo

substantial computational and network overhead [21]. Deploying

FL across thousands to millions of devices should be done efficiently,

quickly reaching the model convergence while not sacrificing the

model accuracy. This becomes more important when FL has to be

done multiple times, as often the case when model developers pro-

totype a new model with FL without a proxy dataset or periodically

update a deployed model to new domain via continual learning or

online learning with FL.

However, the heterogeneities of the real-world mobile clients

make it challenging to achieve good time-to-accuracy performance.

Data heterogeneity: The client-generated training data are imbal-

anced and not independent and identically distributed (non-IID)

due to each user’s different mobile device usage or physical and

mental characteristics [53, 73]. While the training data in central-

ized learning could be filtered and organized with data engineering

techniques [5, 34, 52, 61] to address data heterogeneity, applying

the same solution is infeasible in FL as it is dealing with distributed

private data on clients. Such data heterogeneity of FL clients results

in slow convergence and suboptimal performance [44, 45, 79].

Hardware heterogeneity: The client devices have distinct com-

putational capabilities and network connectivity, resulting in up

to 12× more round completion time between different clients [43].

Thus, waiting for every client to complete its task at a round might

significantly delay the training process. A common practice for

such an issue is to set a deadline for a round duration and drop

clients that fail to send the model updates before the deadline [4, 55].

However, this results in less contribution from clients with low-end

devices, which could result in delayed convergence or biased model

training [45, 75].

2.2 Motivational Study

To address the heterogeneity problems, various approaches have

been proposed. Researchers proposed FL algorithms that allow

clients to train different numbers of local epochs [45] or different

subsets of model weights [20, 28] based on clients’ hardware ca-

pabilities. Model personalization has also been proposed to tackle

data heterogeneity [23, 40, 41, 49, 50, 57, 58, 68]. In addition, client

selection strategies for FL training have been proposed to optimize
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(b) Shakespeare dataset.

Figure 1: Ordered gradient norm (GN) of samples from FL

training rounds on two different datasets.

the convergence speed on heterogeneous clients [14, 15, 38]. Al-

though these techniques have improved the convergence speed or

accuracy, they treat all data of clients equally, which could lead

to a waste of computational resources for training non-important

samples and result in suboptimal time-to-accuracy performance.

We investigate such limitation of previous FL approaches and

discuss how FedBalancer should be designed based on our experi-

ments that simulate FL on heterogeneous clients. We used widely

used datasets to benchmark FL methods: FEMNIST [17] and Shake-

speare [63]. We simulated heterogeneous training latency and net-

work connectivity on the real-world clients as described in Sec-

tion 4.1.

Inefficiency of Full Data Training. As in FedAvg [53], most

FL approaches let clients to fully train their entire data at a training

round. Other approaches that samples a subset of client training

data for each round use equal weights on all data [23, 31, 38]. How-

ever, previous studies in centralized machine learning [5, 34, 52]

found that the importance of all samples are not equal; A large

portion of samples are learned quickly after few training rounds

and could be ignored afterwards. Thus, we conducted an experi-

ment to verify if the same phenomenon also applies in FL and how

significant it is. We suspect that the inefficiency problem would be

more serious in FL as limited computational resources of mobile

clients could be wasted on non-important samples.

In this experiment, we measured the Gradient Norm (GN) of each

sample on federated clients to evaluate sample-level contribution

on a model update. For each training round, we collected and sorted

the GN of each sample from the selected clients. We removed top 5%

of samples to avoid evaluating noisy samples and applied min-max

scaling to [0.0, 1.0] interval. The experiment ran until the model

converged. The results from each dataset are shown in Figure 1a

and 1b. Each column of graphs indicates the sorted GN of samples

from a training round, where the largest value is located at the

bottom. The x-shaped points illustrate where the gradient norm

with scaled value of 0.2 exists at each training round.

From both datasets, we observe that the GN of samples aremostly

high at the early stage of FL, but only small portion of samples

show high GN afterwards, meaning that the number of samples

that contribute knowledge to the model are reducing as the training

progresses. In FEMNIST dataset, only 6.8% of the samples from early

training rounds (round index 0∼150) have less scaled GN value than

0.2, but 80.0% of the samples are less than 0.2 for the last 150 training

rounds. Similarly in the Shakespeare dataset, 6.7% of the samples
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Figure 2: FL on two datasets with different deadline configu-

ration methods.

from early training rounds (round index 0∼25) have less scaled GN

value than 0.2, but 54.8% of the samples are less than 0.2 for the last

25 training rounds. This result also implies that the samples are not

equally important during these FL tasks and current FL approaches

could spend large portion of training time for samples that have

negligible contribution to the model update.

This experiment motivates FedBalancer to start training with all

the samples at the beginning, and then gradually remove samples

that the model has already learned. In Section 3.2, we further illus-

trate how FedBalancer selects a subset of samples of each client at

training rounds based on our findings in this experiment.

Importance of Deadline Selection.While the existence of op-

timal deadline for achieving shortest training time in FL has been

studied [75], controlling the deadline for high time-to-accuracy per-

formance has been largely overlooked. To understand the perfor-

mance of existing deadline configuration methods, we conducted

an experiment on the two datasets with SmartPC [43] and four

different fixed deadlines — 0.5𝑇 , 1.0𝑇 , 1.5𝑇 , and 2.0𝑇 — where 𝑇
indicates the mean of round completion time on every participating

client. For SmartPC, we implemented a training round to last until

80% of the clients complete their task, where 80% is suggested by

Li et al. [43].

Figure 2a and 2b illustrate the results on two datasets. Our take-

away from this experiment is twofold: (1) The deadline is a signifi-

cant factor in achieving fast convergence speed and high accuracy,

and (2) no single method achieved the best performance for both

FL tasks. In FEMNIST dataset, deadline 1.0𝑇 achieved the highest

final accuracy (.815), while being 43.6%, 47.0% and 77.9% faster than

SmartPC, deadline 1.5𝑇 , and deadline 2.0𝑇 , respectively, in achiev-

ing the test accuracy of .750. On the other hand, in Shakespeare

dataset, SmartPC achieved the highest final accuracy (.488) while

being 61.7%, 42.8%, and 45.4% faster than deadline 1.0𝑇 , 1.5𝑇 , and
2.0𝑇 , respectively, in achieving the test accuracy of .450. Deadline

0.5𝑇 could not achieve high accuracy in either task, as most clients

failed to upload their model update within the deadline.

In a training round of FL, the computation time has been shown

to be the bottleneck [48, 70, 75]. As the amount of client computa-

tion changes with the sample selection of FedBalancer , finding an

optimal deadline could be an important problem in achieving high

time-to-accuracy performance. To this end, in Section 3.3, we pro-

pose how FedBalancer finds the optimal deadline for each training

round for efficient FL on heterogeneous clients.
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Figure 3: Overview of FedBalancer architecture and its operation in an FL round in seven steps.

3 FEDBALANCER

3.1 Overview

For each round of FL, FedBalancer adaptively selects the client train-

ing data and controls the deadline to achieve high time-to-accuracy

performance. We first provide an overview of how FedBalancer

operates in an FL round and then describe how each component of

FedBalancer is designed.

Figure 3 depicts the FedBalancer architecture during an FL round.

The main functionality of FedBalancer is to actively control two

variables for each round: loss threshold (𝑙𝑡 ) and deadline (𝑑𝑑𝑙 ). The
loss threshold works as a parameter that determines each client’s

training data (Section 3.2) and the deadline determines the round

termination time. The numbers inside a circle show the seven steps

of an FL round with FedBalancer .

The server first transmits the current model weights𝑤𝑅 , the loss
threshold 𝑙𝑡𝑅 , and the deadline 𝑑𝑑𝑙𝑅 (R indicates the R-th round)

to the selected clients of the round (Step 1). The sample selection

module at each client selects the partial training data with the

received loss threshold (Step 2) and trains the received model (Step

3). The client transmits the model update and themetadata collected

from the sample selection andmodel training (Step 4), and the server

aggregates these responses from all clients (Step 5). Based on the

metadata from clients, the loss threshold selection module and the

deadline selection module each selects the loss threshold 𝑙𝑡𝑅+1 and
the deadline 𝑑𝑑𝑙𝑅+1 for the next round (Steps 6 and 7).

Challenges: We aim to address the following challenges to

realize FedBalancer :

(1) Sample selection without accuracy drop: Simply reducing the

training data with random sampling could result in degradation

of model accuracy due to the decreased statistical utility. FedBal-

ancer should thus prioritize samples based on their statistical

utility.

(2) Privacy-preserving sample selection in FL: While we aim to select

an optimal set of client training data for each round, requiring

up-to-date sample-level information from clients could harm

the privacy guarantee of FL. FedBalancer should select client

training samples without collecting privacy-invasive informa-

tion from clients.

(3) Predicting optimal deadline with varying data: As computation

could be the bottleneck of an FL round [48, 71, 75], applying

sample selection strategy of FedBalancer might greatly change

the round completion time of clients. FedBalancer should adap-

tively predict the optimal deadline based on the sample selec-

tion status of heterogeneous clients for each round of FL.

3.2 Client Sample Selection

In Section 2.2, we observed that existing FL methods consume large

portion of time to train samples that contribute only small gradient

to the model. As these samples are quickly learned after few rounds,

we design FedBalancer to start training with all samples and gradu-

ally remove already-learned samples. This enables FedBalancer to

efficiently focus on more important samples at each round while

optimizing the training process of FL. However, implementing such

design in FL is non-trivial as the following question needs to be

addressed: How should FedBalancer distinguish between important

and non-important samples at each stage of FL?

A straightforward solution is to collect every sample-level im-

portance information from all clients to a server at each round, and

derive a criteria that determines more important samples to a cur-

rent model. However, such approach is hardly applicable in FL as

sharing information of every sample could break the privacy guar-

antee of FL and reveal the clients’ data. This approach also incurs

significant network overhead in communicating all sample’s infor-

mation at each round. An alternative approach is to have clients

classify more important samples within their local data without

exposing any information. However, as client data distributions

are heterogeneous in FL [44, 45, 53, 73, 79], clients could struggle

to determine important samples without knowing the global data

distribution.

To address this issue, we propose a client-server coordination

to maintain a loss threshold variable, which enables clients to effec-

tively select important samples without exposing private sample-

level information. FedBalancer actively controls the loss threshold

based on the collected metadata from clients with loss threshold se-

lection module, where the metadata consists of differentially-private

statistics of sample-level information.

Note that FedBalancer uses the loss of a sample to measure the

statistical utility (and thus the importance) of a sample to the current

model, similar to Importance Sampling [52, 61]. While other studies

have also leveraged gradient norm or gradient norm upper bound [5,

34, 42] to achieve the same goal, we use loss as it is more widely

applicable to FL tasks with non gradient-based optimizations [59].

3.2.1 Sample selection module. Algorithm 1 describes how the

sample selection module of a client selects the samples at each round

after it receives the loss threshold from the server. Let us assume

that client 𝑖’s sample selection module is working at round 𝑅, with
a given loss threshold 𝑙𝑡𝑅 .

First, the module measures if a sample selection on a client is

required for this round — i.e., it measures if a client is fast enough to
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Algorithm 1 Client 𝑖 at 𝑅-th round: Sample selection

1: func SelectSample(𝐷𝑖 , 𝐵𝑖 , 𝑙𝑜𝑠𝑠𝑖 , 𝑙𝑡𝑅 , 𝑑𝑑𝑙𝑅 ,𝑤𝑅 , 𝑝 , 𝐸)
2: 𝑆 ← maxTrainableSize(𝑚𝑒𝑎𝑛(𝐵𝑖 ), 𝑑𝑑𝑙𝑅, 𝐸)
3: if 𝑆 ≥ 𝑙𝑒𝑛(𝐷𝑖 ) then
4: 𝐷𝑖𝑅 ← 𝐷𝑖

5: else

6: 𝐷𝑖𝑅,𝑂𝑇 𝑖 ,𝑈𝑇 𝑖 ← ∅

7: for 𝑥 ← 1 to 𝑙𝑒𝑛(𝐷𝑖 ) do
8: if 𝑙𝑜𝑠𝑠𝑖 [𝑥] ≥ 𝑙𝑡𝑅 then 𝑂𝑇 𝑖 .𝑖𝑛𝑠𝑒𝑟𝑡 (𝐷𝑖 [𝑥])
9: else𝑈𝑇 𝑖 .𝑖𝑛𝑠𝑒𝑟𝑡 (𝐷𝑖 [𝑥])

10: 𝐿 ←𝑚𝑎𝑥 (𝑆, 𝑙𝑒𝑛(𝑂𝑇 𝑖 ))
11: 𝐷 ′ ← randSample(𝑂𝑇 𝑖 , 𝐿 · 𝑝))
12: 𝐷 ′′ ← randSample(𝑈𝑇 𝑖 , 𝐿 · (1 − 𝑝))

13: 𝐷𝑖𝑅 ←concatenate(𝐷 ′, 𝐷 ′′)

14: return 𝐷𝑖𝑅

train its full dataset within the given deadline 𝑑𝑑𝑙𝑅 . While FedBal-

ancer makes clients focus on more important samples for efficient

training, it allows clients to fully utilize its statistical utility if feasi-

ble. To this end, we calculate the maximum number of samples 𝑆
which client 𝑖 can train for 𝐸 epochs before the deadline, and verify

if it is larger than the size of the client dataset 𝐷𝑖 (Line 2 - 4). As the
computational ability of a client can change according to the device

runtime conditions [76], FedBalancer collects the batch training

latency of a client as 𝐵𝑖 during FL and uses the mean latency to

estimate the max samples it can process. To calculate the mean

latency from the first round, FedBalancer asks clients to sample

the latency for 𝑘 times before FL begins. We used 10 for 𝑘 in our

evaluation.

If the client 𝑖 is incapable of training its full dataset, the sam-

ple selection module determines which samples to train at the FL

round by using the list of sample loss (𝑙𝑜𝑠𝑠𝑖 ). The loss list shows the
statistical utility of all samples on the current model. While such

loss list could be obtained by inferring all samples on up-to-date

model at each round, it requires additional forward pass latency

that could degrade the time-to-accuracy performance. Therefore,

clients of FedBalancer perform whole-dataset forward pass only

once when they are first selected at a round to generate a loss list.

Then, whenever they train the subset of data, they update the loss

values of selected samples that are obtained from the training pro-

cedure. We discuss the trade-off between latency reduction and

obtaining up-to-date information in Section 5.

FedBalancer selects client samples based on the list of sample

loss as follows: First, it divides client i’s samples into two groups:

Under-Threshold (𝑈𝑇 𝑖 ) and Over-Threshold (𝑂𝑇 𝑖 ). Samples that

have smaller loss than the loss threshold 𝑙𝑡𝑅 are put in 𝑈𝑇 𝑖 and
otherwise in𝑂𝑇 𝑖 (Line 7 - 9). We regard samples in𝑂𝑇 𝑖 to be more

important samples in training the current model and prioritize

them in sample selection. We sample 𝐿 · 𝑝 samples from 𝑂𝑇 𝑖 and
𝐿 · (1 − 𝑝) samples from 𝑈𝑇 𝑖 where 𝐿 indicates the number of

selected samples and 𝑝 is a parameter in an interval of [0.5, 1.0]

(Line 10 - 12). The intuition of sampling a portion of data from

𝑈𝑇 𝑖 is to avoid catastrophic forgetting [35, 78] of the model on

already-learned samples.

Algorithm 2 𝑙𝑡 selection for next (𝑅 + 1)-th round

1: func SelectLossThreshold(𝐿𝐿𝑜𝑤𝑅 , 𝐿𝐻𝑖𝑔ℎ𝑅 , 𝑙𝑡𝑟 )
2: 𝑙𝑙 ←𝑚𝑖𝑛(𝐿𝐿𝑜𝑤𝑅)
3: 𝑙ℎ ←𝑚𝑒𝑎𝑛(𝐿𝐻𝑖𝑔ℎ𝑅)
4: 𝑙𝑡𝑅+1 ← 𝑙𝑙 + (𝑙ℎ − 𝑙𝑙) · 𝑙𝑡𝑟
5: return 𝑙𝑡𝑅+1

The number of selected samples, 𝐿, is determined as the number

of samples in𝑂𝑇 𝑖 (𝑙𝑒𝑛(𝑂𝑇 𝑖 )). The loss threshold gradually increases
(explained in Section 3.2.2), which allows clients to efficiently focus

on samples with high statistical utility. However, if 𝑆 is larger than

𝑙𝑒𝑛(𝑂𝑇 𝑖 ), a client instead uses 𝑆 to maximize the statistical utility

within the deadline (Line 10). As FedBalancer is built on top of

Prox [45] that allows clients to train less number of epochs, clients

with 𝑆 less than 𝑙𝑒𝑛(𝑂𝑇 𝑖 ) could still contribute to the model update.

3.2.2 Loss threshold selection module. The loss threshold selection

module determines a loss threshold that effectively distinguishes

the important and non-important samples. As the loss distribution

of samples changes as FL proceeds, it is essential for the module

to be knowledgeable of the current distribution. To respect pri-

vacy, the server collects few statistical information from the loss

list of clients as a metadata at the end of each round. Specifically,

client 𝑖 at the 𝑅-th round provides 𝐿𝐿𝑜𝑤𝑖𝑅 and 𝐿𝐻𝑖𝑔ℎ𝑖𝑅 values to

the server, which indicate the low and high loss value of its current

samples, respectively. We use the min loss value as 𝐿𝐿𝑜𝑤𝑖𝑅 and

use 80% percentile loss from the list as 𝐿𝐻𝑖𝑔ℎ𝑖𝑅 instead of the max

value, as noisy samples could have abnormally high loss [66] and

make FedBalancer to misjudge the loss distribution. As such values

directly indicate a loss value of a specific sample, we apply Gauss-

ian noise to the values to protect user privacy, as in differential

privacy [38, 54, 72]. These values from clients get further aggre-

gated on the server into a list as 𝐿𝐿𝑜𝑤𝑅 and 𝐿𝐻𝑖𝑔ℎ𝑅 . We report

the performance of FedBalancer when different levels of noise is

applied in Section 4.3.

With these metadata, the loss threshold selection module selects

a loss threshold as described in Lines 1 - 5 in Algorithm 2. The

module measures the loss low value (𝑙𝑙) and loss high value (𝑙ℎ)
to estimate the current range of sample loss values of the clients

(Lines 2 and 3). The module then outputs the loss threshold of the

next round (𝑅 + 1) with variable loss threshold ratio (𝑙𝑡𝑟 ), which
calculates the linear interpolation between 𝑙𝑙 and 𝑙ℎ (Line 4) as

𝑙𝑡𝑅+1 ← 𝑙𝑙 + (𝑙ℎ − 𝑙𝑙) · 𝑙𝑡𝑟 . The loss threshold ratio (𝑙𝑡𝑟 ) enables
FedBalancer to start training with all samples and gradually remove

already-learned samples. FedBalancer initialize 𝑙𝑡𝑟 as 0.0 and gradu-

ally increases the value by loss threshold step size (𝑙𝑠𝑠) as shown in

Algorithm 3. Note that the deadline ratio (𝑑𝑑𝑙𝑟 ), which controls the

deadline of each round (described in Section 3.3), is also controlled

with 𝑙𝑡𝑟 .
To control 𝑙𝑡𝑟 and 𝑑𝑑𝑙𝑟 , FedBalancer evaluates the benefit of the

current configuration (loss threshold and deadline) at each round

based on the statistical utility. For the 𝑅-th round, it is defined as

𝑈𝑅 ←
𝐿𝑆𝑢𝑚𝑅
𝐿𝑅 ·𝑑𝑑𝑙𝑅

where 𝐿𝑆𝑢𝑚𝑅 is the loss sum of the selected samples,

𝐿𝑅 is the sum of the number of selected samples, and 𝑑𝑑𝑙𝑅 is the

chosen deadline for the round. Note that 𝐿𝑆𝑢𝑚𝑅 and 𝐿𝑅 are calcu-

lated only from the clients who completed their task and succeeded
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Algorithm 3 𝑙𝑡𝑟 and 𝑑𝑑𝑙𝑟 control at 𝑅-th round

1: func Ctrl(𝑈 , 𝐿𝑆𝑢𝑚𝑅 , 𝐿𝑅 , 𝑑𝑑𝑙𝑅 , 𝑙𝑡𝑟 , 𝑑𝑑𝑙𝑟 , 𝑙𝑠𝑠 , 𝑑𝑠𝑠 ,𝑤 )

2: 𝑈𝑅 ←
𝐿𝑆𝑢𝑚𝑅
𝐿𝑅 ·𝑑𝑑𝑙𝑅

3: 𝑈 .𝑖𝑛𝑠𝑒𝑟𝑡 (𝑈𝑅)
4: if 𝑅 mod 𝑤 ≡ 0 then

5: if
∑

𝑈 (𝑅 − 2𝑤 : 𝑅 −𝑤) >
∑

𝑈 (𝑅 −𝑤 : 𝑅) then
6: 𝑙𝑡𝑟 ←min(𝑙𝑡𝑟 + 𝑙𝑠𝑠, 1.0)
7: 𝑑𝑑𝑙𝑟 ←max(𝑑𝑑𝑙𝑟 − 𝑑𝑠𝑠, 0.0)
8: else

9: 𝑙𝑡𝑟 ←max(𝑙𝑡𝑟 − 𝑙𝑠𝑠, 0.0)
10: 𝑑𝑑𝑙𝑟 ←min(𝑑𝑑𝑙𝑟 + 𝑑𝑠𝑠, 1.0)

11: return 𝑙𝑡𝑟 , 𝑑𝑑𝑙𝑟

in sending the model updates. The calculated𝑈𝑅 value is added to

the list 𝑈 . FedBalancer compares the 𝑈𝑅 values in the past rounds

to the recent rounds (Line 5). If the past rounds have higher value

than the recent rounds, FedBalancer considers the model training

to be stable and increases the 𝑙𝑡𝑟 value by 𝑙𝑠𝑠 to further optimize

the training process (Line 6). Otherwise, FedBalancer decreases the

𝑙𝑡𝑟 value by 𝑙𝑠𝑠 (Line 9). Note that 𝑑𝑑𝑙𝑟 , which is initialized as 1.0,

is controlled in opposite direction with 𝑑𝑠𝑠 (Lines 7 and 10). Such

control of 𝑙𝑡𝑟 and 𝑑𝑑𝑙𝑟 happens every𝑤 round (Line 4).

3.2.3 Client selection with sample selection. Researchers have stud-

ied on how to select a group of clients for a training round to opti-

mize convergence speed and model performance in heterogeneous

FL [14, 15, 38]. While these approaches prioritize clients with higher

statistical utility from the data, applying them along with FedBal-

ancer is non-trivial as the samples are dynamically selected with the

loss threshold. To address this issue, we propose a new formulation

to calculate the statistical utility of a client 𝑖 along with the sample

selection strategy of FedBalancer as follows:

𝑆𝑡𝑎𝑡𝑈 𝑡𝑖𝑙 (𝑖) ← |𝑙𝑒𝑛(𝑂𝑇 𝑖 ) |

√
1

|𝑙𝑒𝑛(𝑂𝑇 𝑖 ) |

∑
𝑠∈𝑂𝑇 𝑖

𝐿𝑜𝑠𝑠 (𝑠)2 .

This is based on the formulation of statistical utility of state-of-the-

art client selection method [38], which we only calculate the statis-

tical utility from the 𝑂𝑇 𝑖 group. Thus, the sum of loss squares in

𝑂𝑇 𝑖 ,
∑
𝑠∈𝑂𝑇 𝑖 𝐿𝑜𝑠𝑠 (𝑠)2 and the number of samples in𝑂𝑇 𝑖 , 𝑙𝑒𝑛(𝑂𝑇 𝑖 )

are also collected from clients as a differentially-private metadata.

3.3 Adaptive Deadline Control

We explain how FedBalancer finds an optimal deadline for each

round when the clients’ training time changes with the sample

selection.

3.3.1 Efficiency of a deadline. In order to find the best deadline for

each round, we define a metric named deadline efficiency (DDL-E)

for deadline 𝑡 as follows:

𝐷𝐷𝐿-𝐸 (𝑡) ←
# of completed clients before 𝑡

𝑡
.

Our definition of DDL-E formulates the benefit of using deadline

𝑡 by measuring the amount of completed clients per time. Find-

ing a deadline with high DDL-E value allows the system to avoid

choosing too long or too short deadlines. Setting a long deadline

with a large 𝑡 value would have more completed clients but have
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Figure 4: Deadline efficiency (DDL-E) evaluation ondifferent

deadlines on two FL tasks.

low efficiency. On the other hand, configuring an extremely short

deadline with a small 𝑡 would result in almost no completed clients

and low efficiency.

To understand how DDL-E is distributed at different deadlines at

FL task, we profiled the DDL-E based on a large-scale smartphone

dataset [75]. It contains the downlink and uplink network connec-

tivity data and the model training latency data from real-world

clients using heterogeneous hardware. We measured the DDL-E

for deadlines in range of [1𝑠𝑒𝑐, 1200𝑠𝑒𝑐] on two FL tasks: FEMNIST

and Shakespeare.

Figure 4 presents the DDL-E measurements on two FL tasks.

From both tasks, we observe that there exists a specific deadline

that shows the peak DDL-E value. From the FEMNIST dataset,

𝑡 = 172 seconds shows the max efficiency with DDL-E value of

2.57, while in the Shakespeare dataset, 𝑡 = 157 seconds shows the

max efficiency with DDL-E value of 0.13. The distribution shape of

DDL-E values showing sharp peak around the max value implies

that finding an optimal deadline for FL with FedBalancer could

enable more completed clients and improved convergence speed.

We designed FedBalancer to select a deadline based on finding

the best DDL-E values. Lines 1- 17 of Algorithm 4 shows how

FedBalancer finds the deadline with max DDL-E value. This is based

on the clients’ hardware capability information: for client 𝑖 , they
are DownLink speed (𝐷𝐿𝑖 ), UpLink speed (𝑈𝐿𝑖 ), and Batch training

latency (𝐵𝑖 ) (Line 1).When there are a total of𝑁 clients involved, we

assume clients have already profiled {𝐷𝐿𝑖 ,𝑈 𝐿𝑖 }𝑁𝑖=1 before FL and

FedBalancer collects {𝐵𝑖 , 𝐼 𝑖 }𝑁𝑖=1 during FL. FedBalancer first iterates
over N clients to measure their completion time with the mean

value of {𝐷𝐿𝑖 ,𝑈 𝐿𝑖 , 𝐵𝑖 }𝑁𝑖=1 (Lines 6- 9). FedBalancer then measures

the DDL-E from the smallest deadline 𝑡 (we use 𝑡 = 1𝑠𝑒𝑐) and
increments 𝑡 until all clients complete before 𝑡 (Lines 10- 16) and
outputs the deadline with the max DDL-E value (Line 17).

As different subset of clients are selected for each round, Fed-

Balancer finds the max DDL-E value among the selected clients

of each round. Moreover, as clients use different size of training

data with sample selection, we estimate the training time of client

𝑖 (getTrainTime from Line 8) as follows:

𝑙𝑒𝑛(𝑂𝑇 𝑖 ) − 1

𝑏𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒
·𝑚𝑒𝑎𝑛(𝐵𝑖 ) · 𝑛𝑢𝑚𝐸𝑝𝑜𝑐ℎ.

We use the length of 𝑂𝑇 𝑖 in measuring the training time of a client

to reflect the number of samples being selected. This allows Fed-

Balancer to reliably find the deadline with the best DDL-E along

with the sample selection strategy.
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Algorithm 4 𝑑𝑑𝑙 selection for next (𝑅 + 1)-th round

1: func FindPeakDDL-E({𝐷𝐿𝑖 ,𝑈 𝐿𝑖 , 𝐵𝑖 }𝑁𝑖=1, 𝑛𝑢𝑚𝐸𝑝𝑜𝑐ℎ)
2: 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑇𝑖𝑚𝑒 ← ∅

3: 𝐷𝐷𝐿-𝐸 ← ∅ ⊲ initialize a list of DDL-E values

4: 𝑐 ← 0

5: 𝑡 ← 1

6: for 𝑖 ← 1 to 𝑁 do

7: 𝑇𝑛𝑒𝑡𝑤𝑜𝑟𝑘 ←𝑚𝑒𝑎𝑛(𝐷𝐿𝑖 ) +𝑚𝑒𝑎𝑛(𝑈𝐿𝑖 )
8: 𝑇𝑡𝑟𝑎𝑖𝑛 ← getTrainTime(𝑚𝑒𝑎𝑛(𝐵𝑖 ), 𝑛𝑢𝑚𝐸𝑝𝑜𝑐ℎ)
9: 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑇𝑖𝑚𝑒.𝑖𝑛𝑠𝑒𝑟𝑡 (𝑇𝑛𝑒𝑡𝑤𝑜𝑟𝑘 +𝑇𝑡𝑟𝑎𝑖𝑛)

10: while 𝑐 ≠ 𝑁 do

11: 𝑐 ← 0

12: for 𝑖 ← 1 to 𝑁 do

13: if 𝑡 ≥ 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑇𝑖𝑚𝑒 (𝑖) then
14: 𝑐 ← 𝑐 + 1

15: 𝐷𝐷𝐿-𝐸.𝑖𝑛𝑠𝑒𝑟𝑡 ( 𝑐𝑡 )
16: 𝑡 ← 𝑡 + 1

17: return maxIndex(𝐷𝐷𝐿-𝐸)

18: func SelectDeadline({𝐷𝐿𝑖 ,𝑈 𝐿𝑖 , 𝐵𝑖 }𝑁𝑖=0, 𝐸, 𝑑𝑑𝑙𝑟 )

19: 𝑑𝑙 ←FindPeakDDL-E({𝐷𝐿𝑖 ,𝑈 𝐿𝑖 , 𝐵𝑖 }𝑁𝑖=1, 1)

20: 𝑑ℎ ←FindPeakDDL-E({𝐷𝐿𝑖 ,𝑈 𝐿𝑖 , 𝐵𝑖 }𝑁𝑖=1, 𝐸)
21: 𝑑𝑑𝑙𝑅+1 ← 𝑑𝑙 + (𝑑ℎ − 𝑑𝑙) · 𝑑𝑑𝑙𝑟
22: return 𝑑𝑑𝑙𝑅+1

3.3.2 Deadline selection module. The deadline selection module of

FedBalancer determines the deadline that optimizes the training

process and convergence speed. The module selects the deadline

as shown in Lines 18 - 22 of Algorithm 2. The module measures

deadline low value 𝑑𝑙 and deadline high value 𝑑ℎ, which are the

deadlines with the max DDL-E value when clients are running 1

epoch and 𝐸 epochs, respectively (Lines 19 and 20).

The module then outputs the deadline of the next round (R+1)

with parameter deadline ratio (𝑑𝑑𝑙𝑟 ) that calculates the linear inter-
polation between𝑑𝑙 and𝑑ℎ (Line 21) as𝑑𝑑𝑙𝑅+1 ← 𝑑𝑙+(𝑑ℎ−𝑑𝑙) ·𝑑𝑑𝑙𝑟 .
The reason of selecting a value between𝑑𝑙 and𝑑ℎ is because FedBal-

ancer is built on top of Prox [45] that allows clients to train various

number of epochs within the deadline. With an aim to optimize the

training efficiency, FedBalancer initially configures 𝑑𝑑𝑙𝑟 as 1.0 and
gradually decreases the value by the parameter 𝑑𝑠𝑠 , as explained in

Section 3.2.2.

3.4 Collaboration with FL Methods

One advantage of FedBalancer is its applicability to orthogonal FL

approaches that do not perform sample selection on clients or con-

trol the deadline. Applying FedBalancer could be achieved by simply

adding the sample selection and deadline control strategies on top

of other methods. We demonstrate the collaboration capability of

FedBalancer with its implementation on top of three existing FL

methods and improved performances in Section 4.5.

Some recent FL approaches, such as Oort [38], use one batch

instead of the full dataset for training in each local epoch, making

them non-trivial to be directly integrated with FedBalancer . To ad-

dress this issue, we propose OortBalancer, which is built on top of

Oort, where the sample selection strategy of FedBalancer is adopted

with one adjustment: 𝐿 from Algorithm 1 is fixed to the batch size.

Intuitively, while Oort trains one randomly selected batch for each

local epoch, OortBalancer selects samples for one batch that focuses

on more important samples and thereby optimizes the training

process. We demonstrate the performance of OortBalancer in Sec-

tion 4.5 as one of the three examples of FedBalancer collaboration.

4 EVALUATION

We evaluate FedBalancer to answer the following key questions: 1)

Howmuch performance improvement (in terms of time-to-accuracy

and model accuracy) does FedBalancer achieves over existing FL

methods? 2) How sensitive is FedBalancer with different choice of

parameters? 3) How much performance improvement does each

component of FedBalancer achieves? 4) How does FedBalancer per-

form when it jointly operates with orthogonal FL approaches?

4.1 Experimental Setup

Implementation. We developed FedBalancer on FLASH [75], a

heterogeneity-aware benchmarking framework for FL based on

LEAF [13]. FLASH provides a simulation of heterogeneous compu-

tational capabilities and network connectivity from a large-scale

real-world trace dataset collected over 136k smartphones that span

one thousand types of devices. We implement FedBalancer with

the state-of-the-art FL aggregation method Prox [45]. Our imple-

mentation is based on Python 3.6 and TensorFlow 1.14 with 2,062

lines of code on top of FLASH. The source code of our FedBal-

ancer implementation are available at https://github.com/jaemin-

shin/FedBalancer.

Datasets. To simulate FL tasks in our evaluation, we use five

datasets that contain data generated by real-world users, which are

categorized in three different domains as follows:

• Computer Vision (CV): For CV, we evaluated FedBalancer on

two image recognition datasets: FEMNIST [17] and Celeba [51].

FEMNIST dataset contains images of handwritten digits and

characters from 712 users with total 157,132 samples. Celeba

dataset contains face attributes of 915 users with 19,923 samples.

We use CNN models for both datasets as in previous work [75].

• Natural Language Processing (NLP): We evaluate FedBalancer

on two NLP tasks each on different dataset: next-word predic-

tion on Reddit [13] dataset and next-character prediction on

Shakespeare [63] dataset. The Reddit dataset contains reddit

posts from 813 users with 32,680 samples, and the Shakespeare

dataset contains 845,231 samples separated into 171 users. We

use LSTM models for both datasets as in previous work [75].

• HumanActivity Recognition (HAR):We use UCI-HAR dataset [7]

that contains six types of activity data on accelerometer and

gyroscope from 30 users with 10,299 samples. As in previous

work, we use CNN models [22].

Metrics. As in the previous work [38] that evaluated on het-

erogeneous FL clients, we mainly evaluate time-to-accuracy per-

formance and final model accuracy on the experiments. Here, the

time-to-accuracy performance indicates the wall clock time that is

required for a model training task to reach an accuracy target. We

repeat each experiment for three times with different random seeds

and report the average and standard deviation of these evaluation

metrics.
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Table 1: Speedup and accuracy on five datasets with the real-world user data.

Task CV NLP HAR

Dataset FEMNIST Celeba Reddit Shakespeare UCI-HAR

Methods Speedup Acc. Speedup Acc. Speedup Acc. Speedup Acc. Speedup Acc.

FedAvg+1𝑇 1.00±0.00 .796±.007 0.97±0.05 .851±.005 0.08±0.12 .090±.001 0.24±0.22 .399±.020 0.49±0.36 .814±.029

FedAvg+2𝑇 0.59±0.01 .763±.009 0.59±0.04 .824±.010 0.58±0.07 .104±.000 0.39±0.10 .373±.046 0.68±0.07 .819±.014

FedAvg+SPC 0.71±0.02 .777±.004 0.80±0.14 .829±.013 0.87±0.08 .112±.001 0.56±0.10 .416±.017 0.91±0.13 .840±.016

FedAvg+WFA 0.33±0.20 .594±.205 0.54±0.04 .813±.020 1.00±0.00 .113±.001 1.00±0.00 .439±.017 0.68±0.07 .819±.014

Prox+1𝑇 0.99±0.02 .795±.008 1.05±0.03 .855±.002 2.87±0.43 .121±.005 1.14±0.16 .476±.003 0.96±0.09 .849±.008

Prox+2𝑇 0.65±0.02 .767±.006 0.75±0.04 .833±.010 3.63±0.43 .127±.005 1.00±0.14 .457±.003 0.68±0.07 .819±.014

SampleSelection 1.01±0.02 .799±.006 1.03±0.06 .852±.002 1.52±0.38 .118±.001 0.85±0.24 .439±.021 0.90±0.05 .845±.008

FedBalancer 1.57±0.03 .815±.006 1.43±0.07 .862±.006 4.48±0.23 .146±.001 1.20±0.10 .489±.004 1.56±0.28 .855±.034

FedBalancer-A 1.60±0.06 .820±.003 1.52±0.07 .873±.004 4.08±0.76 .154±.000 1.31±0.28 .505±.004 1.39±0.43 .893±.008

FedBalancer-S 1.71±0.01 .819±.002 1.67±0.04 .859±.006 4.99±0.42 .148±.003 1.83±0.14 .488±.001 1.98±0.48 .863±.010

Baselines.We use the following list of approaches as a baseline

to compare with FedBalancer in our evaluation:

• Aggregation algorithms: We use FedAvg [53] and Prox [45], the

most widely used aggregation algorithms for FL. Prox offers

an optimizer with convergence guarantee on heterogeneous

clients, while allowing clients to train various number of local

epochs within the deadline. For the 𝜇 parameter of Prox, we

tested 𝜇 in {0.0, 0.001, 0.01, 0.1, 1.0} as suggested by the paper

and pick one with the best final accuracy. All the datasets

showed the best accuracy with 0.0 except Celeba with 0.1.
• Deadline configuration methods: We use four different deadline

configuration methods in the evaluation. We configure two

different fixed deadlines as a baseline, which are 1𝑇 and 2𝑇 .
Before the training begins, we sample the round completion

time of all participating clients and calculate the mean value

as 𝑇 . Thus, 2𝑇 uses double of that mean value as a fixed dead-

line. We also adopt SmartPC (SPC) [43], and implemented it

to involve the certain portion 𝑈𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 of users to complete

at a training round. As suggested in the paper, we use 80% for

𝑈𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 . Lastly, we use a method that waits every client to

finish a round, which we named as WaitForAll (WFA).

• Sample selection method: We implement the baseline sample

selection method that is a combination of the following: (1) We

determined how many samples to select based on FedSS [12],

which controls the training dataset size on clients with larger

datasets for each training round. (2) There were several ap-

proaches that propose which samples to select based on loss [52,

61], gradient [5], or gradient norm upper bound [34, 42] of sam-

ples. As in FedBalancer , we use loss to select samples for the

baseline experiment.

For baseline experiments, we use the combination of the aggrega-

tion algorithms and the deadline configuration methods of above.

We do not test SPC with Prox as it is nontrivial to accept stragglers’

model update with less number of epochs when 𝑈𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 users

complete a training round. Moreover, we do not test WFA with

Prox as it is identical with FedAvg when 𝜇 = 0, which is used by

most datasets. We test the sample selection method with the best

performing deadline configuration methods with Prox, which is

Prox+2𝑇 for Reddit dataset and Prof+1𝑇 otherwise.

Method.We first ran FedAvg+1𝑇 on five datasets until conver-

gence, with the number of rounds that are suggested by previous

works [13, 22, 67, 75]: 1000, 100, 600, 40, and 50 rounds for FEM-

NIST, Celeba, Reddit, Shakespeare, and UCI-HAR. Based on the

user trace data of FLASH, we measured the wall clock time which

FedAvg+1𝑇 ran for each dataset, and ran experiments with other

baselines and FedBalancer until the same wall clock time. Among

the four FedAvg baselines, we pick the one with best accuracy for

each dataset and configure it as the target accuracy of that task.

Then, we measured the speedup of other methods in achieving the

target accuracy and their final model accuracy achieved within the

same wall clock time.

We tested the following combination of parameters for FedBal-

ancer :𝑤 in {5, 20}, 𝑙𝑠𝑠 in {0.01, 0.05, 0.10}, 𝑑𝑠𝑠 in {0.05, 0.10, 0.25},

and 𝑝 in {0.75, 1.00}. Among the results, we report the performance

of FedBalancer with only one set of parameter: {𝑤, 𝑙𝑠𝑠, 𝑑𝑠𝑠, 𝑝} =
{20, 0.05, 0.05, 1.00}. This is a set of parameters that we recommend

FL developers to try with their task when they are not knowledge-

able of which parameter performs the best. We used this parameter

for all the experiments in Section 4. In Section 4.2, we also report the

parameter set with the best final accuracy for each dataset as Fed-

Balancer-A and the best speedup as FedBalancer-S to demonstrate

the maximum performance FedBalancer could achieve.

Other configurations. As in previous study [75], we use batch

size of 100 for Shakespeare and 10 for rest of the datasets. We select

100 clients at each round for datasets with more than 500 users, and

otherwise select 10 users for Shakespeare and 5 users for UCI-HAR.

We configured the clients to train five local epochs per round. We

use learning rate of 0.001 for FEMNIST and Celeba, 2 for Reddit,

0.8 for Shakespeare, and 0.005 for UCI-HAR.

4.2 Speedup and Accuracy on Five FL Tasks

Table 1 shows the performance of FedBalancer on five datasets

compared with the baseline methods, and Table 2 shows the pa-

rameters used for FedBalancer , FedBalancer-A, and FedBalancer-S

for each dataset. We observed that FedBalancer shows improved

time-to-accuracy performance over the baselines on every dataset:

FedBalancer reaches the target accuracy 1.43∼1.57× faster than

the FedAvg-based baselines on CV datasets, 1.36∼1.58× faster than
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Table 2: {𝑤, 𝑙𝑠𝑠, 𝑑𝑠𝑠, 𝑝} parameters from the FedBalancer experiments in Table 1. Parameters with forward slashes indicate the

different parameters from the multiple runs of experiments with three different random seeds.

FedBalancer FedBalancer-A FedBalancer-S

𝑤 𝑙𝑠𝑠 𝑑𝑠𝑠 𝑝 𝑤 𝑙𝑠𝑠 𝑑𝑠𝑠 𝑝 𝑤 𝑙𝑠𝑠 𝑑𝑠𝑠 𝑝

FEMNIST 20 0.01/0.1/0.1 0.10 1.00 20 0.05/0.05/0.01 0.25/0.1/0.05 1.00

Celeba 20/5/5 0.05/0.1/0.01 0.1/0.1/0.05 1.00/0.75/1.00 20/20/5 0.01/0.01/0.1 0.1/0.1/0.25 1.00/1.00/0.75

Reddit 20 0.05 0.05 1.00 5/20/20 0.01 0.1/0.25/0.1 1.00 5 0.1 0.25/0.1/0.05 0.75

Shakespeare 5 0.01/0.05/0.01 0.1/0.25/0.25 1/0.75/1 5/20/5 0.05/0.01/0.1 0.1/0.05/0.1 0.75

UCI-HAR 5/5/20 0.1/0.01/0.05 0.1/0.1/0.25 1/1/0.75 5 0.1/0.1/0.05 0.25 0.75/0.75/1

Table 3: Speedup and accuracy on different choice of FedBalancer parameters.

Parameter
𝑤 𝑙𝑠𝑠 𝑑𝑠𝑠 𝑝

5 20 0.01 0.05 0.10 0.05 0.10 0.25 0.75 1.00

FEMNIST
Speedup 1.39±0.16 1.52±0.15 1.37±0.15 1.49±0.18 1.50±0.14 1.54±0.07 1.47±0.16 1.35±0.18 1.41±0.15 1.50±0.17

Accuracy .813±.005 .816±.004 .813±.004 .815±.006 .816±.006 .817±.003 .814±.004 .812±.005 .814±.004 .815±.005

Reddit
Speedup 3.40±0.53 3.70±0.23 3.60±0.29 3.61±0.31 3.44±0.61 3.66±0.44 3.60±0.33 3.40±0.48 3.71±0.30 3.39±0.49

Accuracy .146±.007 .147±.003 .150±.002 .147±.002 .143±.008 .147±.004 .146±.007 .147±.005 .149±.002 .144±.007

the Prox-based baselines, and 1.39∼1.55× faster than the Sample-

Selection baseline. FedBalancer achieves 1.20∼4.48× speedup and

1.05∼1.23× speedup compared with the FedAvg and Prox-based

methods respectively, while achieving 1.41∼2.95× speedup over

the SampleSelection baseline on NLP datasets. FedBalancer achieves

speedup of 1.56×, 1.63×, and 1.73× compared with FedAvg, Prox,

and SampleSelection baselines on a HAR dataset, respectively.

We noticed that FedBalancer consistently shows high time-to-

accuracy performance on all datasets, while the performance of

baselines was inconsistent across datasets. For example, among

FedAvg-based baselines, FedAvg+1𝑇 shows the best time-to-accuracy

performance on CV tasks but shows extremely low performance

on NLP tasks. In contrast, FedAvg+WFA shows the best time-to-

accuracy performance on NLP tasks among FedAvg-based baselines

but shows low performance on CV tasks. In UCI-HAR, FedAvg+1𝑇
and FedAvg+SPC resulted in the best performance at different ex-

periments with different random seeds. Prox+1𝑇 shows the best per-

formance among baselines on Celeba, Shakespeare, and UCI-HAR,

but shows worse performance than SampleSelection and Prox+2𝑇
on FEMNIST and Reddit respectively.

We observed that FedBalancer achieves this improvement of

time-to-accuracy performance without sacrificing model accuracy;

in terms of the final model accuracy, FedBalancer showed improve-

ment over the baselines on all datasets. Compared to the FedAvg-

based methods, FedBalancer achieved 1.1∼5.0% accuracy improve-

ment on different datasets. FedBalancer achieved 0.6∼3.2% and

1.0∼5.0% accuracy improvement over Prox-based methods and the

Sampleselection baseline. FedBalancer-A, which marks the best accu-

racy of FedBalancer , also shows time-to-accuracy performance im-

provement over baselines at all datasets — showing further improve-

ment in speedup on FEMNIST, Celeba, and Shakespeare. On the

other hand, FedBalancer-S, which reports the best time-to-accuracy

performance of FedBalancer , shows accuracy improvement over

baselines at all datasets, with further improvement in accuracy

on FEMNIST, Reddit, and UCI-HAR. This suggests that the perfor-

mance of FedBalancer could be further improved with a carefully

selected parameter for an FL task, while the fixed parameter set we

recommend still shows improved performance.

4.3 Parameter Sensitivity Analysis

Table 3 shows the time-to-accuracy performance and final accuracy

of FedBalancer on different choice of parameters {𝑤, 𝑙𝑠𝑠, 𝑑𝑠𝑠, 𝑝}. For
each type of parameter, we fixed it to a certain value and averaged

the performance from experiments with different combination of

other parameters. We used speedup compared to the best FedAvg-

based baseline to measure the time-to-accuracy performance. We

chose FEMNIST and Reddit to explore the effect of different param-

eters at different domains of FL tasks (CV and NLP).

For𝑤 , FedBalancer shows similar final accuracy (81.3% and 81.6%)

performance on both of the candidate values on FEMNIST, but

reports better time-to-accuracy performance (1.52× over 1.39×)

with𝑤 = 20. On Reddit,𝑤 = 20 showed better speedup (3.71× over

3.42×) and accuracy (14.8% over 13.3%). In terms of 𝑙𝑠𝑠 , FedBalancer
achieves faster training and higher accuracy when 𝑙𝑠𝑠 ≥ 0.05 on
FEMNIST, but achieves better performance when 𝑙𝑠𝑠 ≤ 0.05 on

Reddit. With 𝑑𝑠𝑠 , FedBalancer performs the better when 𝑑𝑠𝑠 ≤ 0.1
on both datasets, where both showed the best time-to-accuracy

and accuracy with smaller 𝑑𝑠𝑠 = 0.05. Lastly, FedBalancer performs

better with 𝑝 = 1.00 on FEMNIST but reports better performance

with 𝑝 = 0.75 on Reddit. For the different trend of performance

with 𝑙𝑠𝑠 and 𝑝 parameters on two datasets, we suspect that Reddit

requires more rounds with data sampled from full dataset in the

early stage of training to achieve better performance, and big 𝑙𝑠𝑠
and 𝑝 = 1.00 performs worse as it might quickly remove the low-

loss samples from training. On the other hand, FEMNIST training

performs better with high-loss samples from the early stage of

training. This suggests that the best set of parameters could be

selected based on how the training at an FL task proceeds.

Other than the algorithm parameter of FedBalancer , we study

the effect of different level of noise on differential privacy that we

applied to mask the metadata shared by the clients. Our implemen-

tation of differential privacy is based on the previous work [38],
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Figure 5: Performance evaluation of FedBalancer with dif-

ferent options on FEMNIST.
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Figure 6: Performance breakdown of FedBalancer into Sam-

ple Selection (SS) and Deadline Control (DC).

adding the noise drawn from Gaussian distribution on the metadata,

with the mean as zero and the standard deviation as Noise Factor

(NF). Figure 5a shows the effect of different NFs on the performance

of FedBalancer . We observe that the performance of FedBalancer

degrades as the NF increases, as NF 0.0 achieves 81.9% accuracy but

NF 0.5 and 5.0 each achieves 81.4% and 81.1% accuracy. However, NF

0.5 and 5.0 still achieves better time-to-accuracy performance and

accuacy compared to Prox, while NF of 5.0 is considered to be very

large noise [3]. This result implies that FedBalancer could achieve

performance improvement over the baselines while applying the

differential privacy.

4.4 Effect of FedBalancer Components

We conducted an experiment to understand the performance brought

by each component of FedBalancer : Sample Selection (SS) and Dead-

line Control (DC). As FedBalancer is built on top of Prox [45], we

add the components one by one to observe how the performance

changes when each component is introduced.

Figure 6 reports the result of the experiment on FEMNIST and

Reddit dataset. On FEMNIST dataset, we observe that the perfor-

mance drops when SS is introduced, but gets further improvedwhen

DC is added. On Reddit dataset, however, the accuracy escalates as

each component is added. The reason of performance degradation

on FEMNIST with SS is due to the reduced statistical utility trained

at each round with the same deadline. In contrast on Reddit dataset,

the performance improved with SS as it allowed more clients to

successfully send their model updates within the deadline with

Table 4: Android devices for the testbed experiments.

Builder Year Device Processor Quantity

Google

2016 Pixel Snapdragon 821 2

2017 Pixel 2 Snapdragon 835 1

2017 Pixel 2 XL Snapdragon 835 2

2018 Pixel 3 Snapdragon 845 1

2020 Pixel 5 Snapdragon 765G 1

Samsung

2016 Galaxy S7 Exynos 8890 1

2017 Galaxy J7 Exynos 7870 1

2019 Galaxy Fold Snapdragon 855 1

Huawei
2015 Nexus 6P Snapdragon 810 3

2018 P20 Lite Kirin 659 1

Motorola 2014 Nexus 6 Snapdragon 805 2

LG 2015 Nexus 5X Snapdragon 808 4

Essential 2017 Essential Phone Snapdragon 835 1

Table 5: Results from the testbed experiments.

Method Speedup Accuracy

FedAvg+1T 0.99±0.03 .852±.020

FedAvg+2T 0.75±0.30 .800±.034

FedAvg+SPC 0.61±0.35 .849±.013

FedAvg+WFA 0.92±0.07 .846±.007

FedProx+1T 1.03±0.23 .860±.007

FedProx+2T 0.90±0.20 .860±.013

SampleSelection 0.99±0.13 .846±.014

FedBalancer 1.33±0.08 .885±.017

selected client data. Moreover, we suspect that SS has brought more

performance improvement on Reddit than FEMNIST by effectively

selecting more important samples and the clients that have such

data. The result with DC on both dataset shows its effectiveness

with SS in time-to-accuracy performance improvement.

4.5 Collaboration with FL Algorithms

To demonstrate the applicability of FedBalancer on orthogonal FL al-

gorithms, we implement FedBalancer on top of three widely used FL

approaches from different categories: Oort [38] as a client selection

algorithm, q-FFL [46] as an aggregation algorithm, and Structured

Updates [37] as a gradient compression algorithm. Figure 7 reports

the experiment result, which we observe improvement in time-to-

accuracy performance and model accuracy from all three cases.

Collaboration with FedBalancer achieved 1.84×, 1.19×, and 1.31×

speedup, while achieving 2.6%, 2.5%, 1.7% accuracy improvement

on three algorithms respectively. These results suggest that Fed-

Balancer could be implemented on top of various advanced FL

algorithms to achieve further performance improvement.

4.6 Testbed Experiments with Android Clients

We further conducted experiments on Android clients to under-

stand the effectiveness of FedBalancer on real hardware devices. We

implemented the server using Flower [10], which is an open-source

FL framework that communicates with clients via gRPC (Google

Remote Procedure Call) and Protocol Buffers [1]. We used Ubuntu

18.04 server with Intel Xeon Gold 6254 Processor @ 3.10GHz and
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Figure 7: Collaboration of FedBalancer with three FL algorithms on FEMNIST dataset.
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Figure 8: On-device training latency (train) and communica-

tion latency (network) on different devices.

512GB RAM. On-device training on Android devices were im-

plemented with the model personalization feature of Tensorflow

Lite [2]. We used UCI-HAR dataset and used the same experimental

configuration as illustrated in Section 4.1.

For 21 client devices in UCI-HAR experiments, we used 13 differ-

ent Android models to simulate the hardware heterogeneity in the

real-world as illustrated in Table 4.We placed the devices in an office

room of a laboratory building, where the devices were connected

to a campus Wi-Fi. To configure fixed deadlines for the deadline

configuration methods 1𝑇 and 2𝑇 , we sampled the training round

completion time of each device 10 times before the experiments.

Table 5 shows the performance of FedBalancer comparedwith the

baseline methods in our testbed experiments. FedBalancer shows

higher time-to-accuracy performance and final model accuracy

over the baselines. FedBalancer showed 1.34× speedup and 3.3%

accuracy improvement over the FedAvg-based baselines. FedBal-

ancer also achieved the target accuracy 1.29× and 1.34× faster than

Prox and SampleSelection baselines, with 2.5% and 3.9% accuracy

improvements.

One of the unique challenges we discovered in the testbed ex-

periments was dynamically changing round completion times of

the client devices. To further understand the cause of such a phe-

nomenon, we separately sampled the on-device training latency

and the communication latency on the client devices at a training

round, as shown in Figure 8. Compared with the on-device training

latency that remained constant at different rounds, the commu-

nication latency showed high variability at each round, showing

up to 3.91× increase over the mean communication latency. Our

testbed experiment had higher variability than our previous sim-

ulated experiments, as the mean CV (Coefficient of Variance) of

communication latency was 1.5× larger (0.59 over 0.40).

Such variable communication latency affected each FL method

differently. For baselines that use fixed deadlines (e.g., 1𝑇 ), clients
often failed to send their model updates due to long communication

latency. For SmartPC (SPC) and Wait-for-All (WFA) baselines, the

server had to wait for a prolonged duration when the clients were

experiencing poor network connectivity. As the network condi-

tions were not identical at different experiments, some baselines

(FedAvg+2𝑇 , FedAvg+SPC, Prox+1𝑇 , and Prox+2𝑇 ) yielded perfor-

mance with huge variance (≥ 0.20 in speedup). While client failures

also negatively affected FedBalancer , it achieved superior time-to-

accuracy and accuracy performance over the baselines due to its

adaptive deadline configuration with DDL-E measurement on the

sampled clients at a training round.

We suspect the variability of the communication latency would

be higher in real deployments as users with mobility and unstable

network conditions would be involved. Moreover, the impact of

variable communication latency would be more significant when

we train larger models with >100M parameters (e.g., BERT [19])

in FL. As FedBalancer is not designed to actively respond to the

network connectivity changes of clients in real-time, we expect

FedBalancer could be improved further if the client-side network

condition analysis system is integrated to accurately predict the

round completion time of selected clients at each round. We leave

this as future work.

5 DISCUSSION

Local Epoch Training Policies. While FedBalancer was origi-

nally designed for FL based on FedAvg [53] that performs full data

training per local epoch of client, recent studies such as Oort [38]

propose to perform single batch training per local epoch. There are

pros and cons in both approaches; single batch training offers more

frequent global model update with shorter training time on clients,

but this could lead to excessive communication overhead when

training large models. Full data training exploits full statistical util-

ity of client data per round, but offers less frequent global model

update with longer round. While it is the model developer’s role

to determine the option, FedBalancer is readily applicable and im-

proves time-to-accuracy performance on both as we demonstrated

in the evaluation.
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Effect of Forward Pass at a Client.When FedBalancer selects

a clients’ samples, it uses a list of sample loss that is maintained

on a client from the beginning of FL, instead of performing a for-

ward pass on the client data at each round. A sample loss at the

maintained list is only updated whenever the sample is selected

and trained by a client, which may result in containing outdated

information. We conducted an experiment to understand the effect

of forward pass on performance of FedBalancer , which is shown in

Figure 5b. On FEMNIST dataset, integrating the forward pass with

FedBalancer resulted in slower training, which supports our design

without the forward pass. This is because that the outdated loss

values are generally larger than the newly-updated ones, which

encourages FedBalancer to select more diverse samples while prior-

itizing informative samples.

Robustness of Sample Selection. One of the possible limita-

tion of FedBalancer is that it might perform worse on FL tasks with

noisy data, as noisy samples are highly likely to be selected by the

sample selection module that prioritizes high loss. As we observed

the performance improvement with FedBalancer on five real-world

user datasets which may already have certain noise level, we ex-

pect FedBalancer would be helpful on most FL tasks. To improve

further, we could systematically involve robust training approaches

at centralized learning [60, 64, 65] to actively deal with noisy data.

This is part of our future work.

Potential Bias of Sample Selection. While FedBalancer pri-

oritizes more “informative” samples for training, it might integrate

more samples from certain classes or sensitive groups than oth-

ers, potentially leading to performance degradation on less sam-

pled entities. To address this issue, we could integrate our sam-

ple selection strategy with other sample selection or reweighting

approaches [60, 74] that are designed to achieve unbiased model

training. We leave this as future work.

6 RELATEDWORK

We survey closely related work with FedBalancer other than the FL

approaches on heterogeneous clients which we discussed earlier in

Section 2.2.

Sample Selection in Machine Learning. There are several

sample selection approaches in the field of machine learning re-

search that could be arranged in threefold: (1) Curriculum Learning

(CL) [9, 26, 27, 29, 73]: CL is a sample ordering technique which

trains a network with easier samples in early training stage and

gradually increase the difficulty to improve convergence speed

and model generalization. However, applying it in FL is challeng-

ing as CL require a reference model to determine the difficulty of

samples, which hardly exists in FL scenarios. (2) Active Learning

(AL) [8, 25, 36, 62]: AL is a sample selection technique on unlabeled

data, which interactively queries the user to label new data points

that is likely to be more informative to the given task. Applying

AL in FL could be non-trivial, as the training data is isolated and

the labels are known but not shared externally from the clients. (3)

Importance Sampling [5, 34, 52, 61]: Being motivated by the fact that

the importance of each training samples is different, researchers

have proposed importance sampling techniques to accelerate the

model training. While their idea could be brought to FL to prioritize

samples during training, determining how many and which samples

to use for each training round and when to calculate the sample

importance is yet unknown.

Sample Selection in FL. Tuor et al. [69] proposed a scheme

that selects relevant clients’ data to the given FL task, but it only

selects the dataset before the FL starts. Moreover, it requires an

example dataset, which is hardly applicable at FL scenarios where

the client data distributions are usually unknown. Li et al. [42]

proposes how we can prioritize client training samples with higher

importance in FL using gradient norm upper bound [34]. However,

their approach does not provide how many samples should be

selected per each round. While other methods such as FedSS [12]

determines the amount of client training samples during FL, it

does not specify which samples to select, simply adopting random

sampling of the data. Moreover, combining FedSS with Li et al. is

nontrivial, as FedSS assumes random sampling of the data. Unlike

previous approaches, FedBalancer is the first systematic framework

that actively determines (1) how many and (2) which samples to

select during FL to improve time-to-accuracy performance. We

believe such design of FedBalancer enables the use of client sample

selection to improve time-to-accuracy performance.

Deadline Control in FL. Determining an optimal deadline has

been largely overlooked by previous approaches; only SmartPC

determines a deadline to enable a specified proportion of the devices

to complete a training round. It assumes that every client uses the

same set of data for each round of FL. FedBalancer on the other

hand utilizes a new deadline control strategy for FL that enables

high convergence speed where client training samples dynamically

change during FL due to sample selection.

7 CONCLUSION

We presented FedBalancer , a systematic FL framework with sample

selection for optimized training process. FedBalancer actively se-

lects the samples with high statistical utility through client-server

coordination at each FL round without exposing private informa-

tion of users. To further accelerate FL with our sample selection, we

design adaptive deadline control strategy for FedBalancer to predict

the optimal deadline for each round with client sample selection.

Our evaluation of on five real-world datasets from three differ-

ent domains reveal that FedBalancer achieves 1.20∼4.48× speedup

over existing FL algorithms with different deadline configuration

methods, while improving the model accuracy by 1.1∼5.0%. Our

design of FedBalancer is easily applicable on top of orthogonal FL

methods, that we demonstrate the joint implementation of FedBal-

ancer with three existing FL algorithms and report the improved

time-to-accuracy performance and model accuracy.
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