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Abstract

Test-time adaptation (TTA) is an emerging paradigm that addresses distributional
shifts between training and testing phases without additional data acquisition or
labeling cost; only unlabeled test data streams are used for continual model adap-
tation. Previous TTA schemes assume that the test samples are independent and
identically distributed (i.i.d.), even though they are often temporally correlated
(non-i.i.d.) in application scenarios, e.g., autonomous driving. We discover that
most existing TTA methods fail dramatically under such scenarios. Motivated by
this, we present a new test-time adaptation scheme that is robust against non-i.i.d.
test data streams. Our novelty is mainly two-fold: (a) Instance-Aware Batch Normal-
ization (IABN) that corrects normalization for out-of-distribution samples, and (b)
Prediction-balanced Reservoir Sampling (PBRS) that simulates i.i.d. data stream
from non-i.i.d. stream in a class-balanced manner. Our evaluation with various
datasets, including real-world non-i.i.d. streams, demonstrates that the proposed ro-
bust TTA not only outperforms state-of-the-art TTA algorithms in the non-i.i.d. set-
ting, but also achieves comparable performance to those algorithms under the i.i.d.
assumption. Code is available at https://github.com/TaesikGong/NOTE.

1 Introduction

While deep neural networks (DNNs) have been successful in several applications, their performance
degrades under distributional shifts between the training data and test data [32]. This distributional
shift hinders DNNs from being widely deployed in many risk-sensitive applications, such as au-
tonomous driving, medical imaging, and mobile health care, where new types of test data unseen
during training could result in undesirable disasters. For instance, Tesla Autopilot has caused 12
“deaths” until recently [2]. To address this problem, test-time adaptation (TTA) aims to adapt DNNs
to the target/unseen domain with only unlabeled test data streams, without any additional data acqui-
sition or labeling cost. Recent studies reported that TTA is a promising, practical direction to mitigate
distributional shifts [29, 33, 41, 4, 44].

Prior TTA studies typically assume (implicitly or explicitly) that a target test sample xt at time t and
the corresponding ground-truth label yt (unknown to the learner) are independent and identically
distributed (i.i.d.) following a target domain, i.e., (xt, yt) is drawn independently from a time-invariant
distribution PT (x, y). However, the distribution of online test samples often changes across the time
axis, i.e., (xt, yt) ∼ PT (x, y | t) in many applications; for instance, AI-powered self-driving car’s
object encounter will be dominated by cars while driving on the highway, but less dominated by
them on downtown where other classes such as pedestrians and bikes are visible. In human activity
recognition, some activities last for a short term (e.g., a fall down), whereas certain activities last longer
(e.g., a sleep). Figure 1 illustrates that some data distributions in the real world, such as autonomous
driving and human activity recognition, are often temporally correlated. Considering that most
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Figure 1: Illustration of test sample distributions
along the time axis from real-world datasets: (a)
autonomous driving (KITTI [9]) and (b) human
activity recognition (HARTH [25]). They are
temporally correlated.
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Figure 2: Average classification error (%) of ex-
isting TTA methods and our method (NOTE) on
CIFAR10-C [13]. The error rates significantly
increase under the non-i.i.d. setting compared
with the i.i.d. setting. Lower is better.

existing TTA algorithms simply use an incoming batch of test samples for adaptation [29, 33, 41, 44],
the model might be biased towards these imbalanced samples under the temporally correlated test
streams. Figure 2 compares the performance of the state-of-the-art TTA algorithms under the i.i.d. and
non-i.i.d.1 conditions. While the TTA methods perform well under the i.i.d. assumption, their errors
increase under the non-i.i.d. case. Adapting to temporally correlated test data results in overfitting to
temporal distributions, which in turn harms the generalization of the model.

Motivated by this, we present a NOn-i.i.d. TEst-time adaptation scheme, NOTE, that consists of
two components: (a) Instance-Aware Batch Normalization (IABN) and (b) Prediction-Balanced
Reservoir Sampling (PBRS). First, we propose a novel normalization layer, IABN, that eliminates
the dependence on temporally correlated data for adaptation while being robust to distribution
shifts. IABN detects out-of-distribution instances sample by sample and corrects via instance-aware
normalization. The key idea of IABN is synthesizing Batch Normalization (BN) [16] with Instance
Normalization (IN) [37] in a unique way; it calculates how different the learned knowledge (BN) is
from the current observation (IN) and corrects the normalization by the deviation between IN and BN.
Second, we present PBRS that resolves the problem of overfitting to non-i.i.d. samples by mimicking
i.i.d. samples from non-i.i.d. streams. By utilizing predicted labels of the model, PBRS aims for
both time-uniform sampling and class-uniform sampling from the non-i.i.d. streams, and stores the
‘simulated’ i.i.d. samples in memory. With the i.i.d.-like batch in the memory, PBRS enables the
model to adapt to the target domain without being biased to temporal distributions.

We evaluate NOTE with state-of-the-art TTA baselines [29, 33, 22, 27, 4, 44] on multiple datasets,
including common TTA benchmarks (CIFAR10-C, CIFAR100-C, and ImageNet-C [13]) and real-
world non-i.i.d. datasets (KITTI [9], HARTH [25], and ExtraSensory [38]). Our results suggest that
NOTE not only significantly outperforms the baselines under non-i.i.d. test data, e.g., it achieves a
21.1% error rate on CIFAR10-C which is on average 15.1% lower than the state-of-the-art method [4],
but also shows comparable performance even under the i.i.d. assumption, e.g., 17.6% error on
CIFAR10-C where the best baseline [44] achieves 17.8% error. Our ablative study demonstrates the
individual effectiveness of IABN and PBRS and further highlights their synergy when jointly used.

Finally, we summarize the key characteristics of NOTE. First, NOTE is a batch-free inference
algorithm (requiring a single instance for inference), different from the state-of-the-art TTA algo-
rithms [29, 33, 41, 4, 44] where a batch of test data is necessary for inference to estimate normalization
statistics (mean and variance). Second, while some recent TTA methods leverage augmentations
to improve performance at the cost of additional forwarding passes [35, 44], NOTE requires only
a single forwarding pass. NOTE updates only the normalization statistics and affine parameters in
IABN, which is, e.g., approximately 0.02% of the total trainable parameters in ResNet18 [12]. Third,
NOTE’s additional memory overhead is negligible. It merely stores predicted labels of test data to run
PBRS. These characteristics make NOTE easy to apply to any existing AI system and particularly,
are beneficial in latency-sensitive tasks such as autonomous driving and human health monitoring.

1We use the terms temporally correlated and non-i.i.d. interchangeably in the context of test-time adaptation.
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2 Background

2.1 Problem setting: test-time adaptation with non-i.i.d. streams

Test-time adaptation. Let DS = {XS ,Y} be the data from the source domain and DT = {X T ,Y}
be the data from the target domain to adapt to. Each data instance and the corresponding ground-truth
label pair (xi, yi) ∈ XS × Y in the source domain follows a probability distribution PS(x, y).
Similarly, each target test sample and the corresponding label at test time t, (xt, yt) ∈ X T × Y ,
follows a probability distribution PT (x, y) where yt is unknown for the learner. The standard covariate
shift assumption in domain adaptation is defined as PS(x) ̸= PT (x) and PS(y|x) = PT (y|x) [32].
Unlike traditional domain adaptation that uses DS and X T collected beforehand for adaptation,
test-time adaptation (TTA) continually adapts a pre-trained model fθ(·) from DS by utilizing only xt

obtained at test time t.

TTA on non-i.i.d. streams. Note that previous TTA mechanisms typically assume that each target
sample (xt, yt) ∈ X T ×Y is independent and identically distributed (i.i.d.) following a time-invariant
distribution PT (x, y). However, the data obtained at test time is non-i.i.d. in many scenarios. By
non-i.i.d., we refer to distribution changes over time, i.e., (xt, yt) ∼ PT (x, y | t), which is a practical
setting in many real world applications [46].

2.2 Batch normalization in TTA

Batch Normalization (BN) [16] is a widely-used training technique in deep neural networks as it
reduces the internal covariant shift problem. Let f ∈ RB×C×L denote a batch of feature maps in
general, where B, C, and L denote the batch size, the number of channels, and the size of each
feature map, respectively. Given the statistics of the feature maps for normalization, say mean µ and
variance σ2, BN is channel-wise, i.e., µ,σ2 ∈ RC and computes:

BN(f:,c,:;µc,σ
2
c) := γ · f:,c,: − µc√

σ2
c + ϵ

+ β, (1)

where γ and β are the affine parameters followed by the normalization, and ϵ > 0 is a small constant
for numerical stability.

Although a conventional way of computing BN in test-time is to set µ and σ2 as those estimated
from training (or source) data, say µ̄ and σ̄2, the state-of-the-art TTA methods based on adapting
BN layers [29, 33, 41, 44] instead use the statistics computed directly from the recent test batch to
de-bias distributional shifts at test-time, i.e.:

µ̂c :=
1

BL

∑
b,l

fb,c,l, and σ̂2
c :=

1

BL

∑
b,l

(fb,c,l − µ̂c)
2. (2)

This practice is simple yet effective under distributional shifts and is thus adopted in many recent
TTA studies [29, 33, 41, 44]. Based on the test batch statistics, they often further adapt the affine
parameters via entropy minimization of the model outputs [41] or update the entire parameters with
self-training [44].

3 Method

In the same vein as previous work [29, 33, 41], we focus on adapting BN layers in the given model to
perform TTA, and this includes essentially two approaches: (a) re-calibrating (or adapting) channel-
wise statistics for normalization (instead of using those learned from training), and (b) adapting the
affine parameters (namely, γ and β) after the normalization with respect to a certain objective based
on test samples, e.g., the entropy minimization of model outputs [41].

Under scenarios where test data are temporally correlated, however, naïvely adapting to the incoming
batch of test samples [29, 33, 41, 44] could be problematic for both approaches: the batch is now more
likely to (a) remove instance-wise variations that are actually useful to predict y, i.e., the “contents”
rather than “styles” through normalization, and (b) include a bias in p(y) rather than uniform, which
can negatively affect the test-time adaptation objective such as entropy minimization.

3



Case1: Out of distribution

Case2: In distribution

𝐈𝐈𝐈𝐈

𝐁𝐁𝐁𝐁

�𝝁𝝁c, �𝝈𝝈c �𝝁𝝁b,c, �𝝈𝝈b,c

𝐁𝐁𝐁𝐁: learned stats

𝐈𝐈𝐈𝐈: instance stats

�𝝁𝝁b,c, �𝝈𝝈b,c�𝝁𝝁c, �𝝈𝝈c

Non-i.i.d. 
(temporally 
correlated)

𝒙𝒙𝑡𝑡

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

…

(1) Normalize & Predict via 𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈 (2) Manage Memory & Adapt IABN via 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏

𝐈𝐈𝐈𝐈

𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐁𝐁𝐁𝐁

�𝝁𝝁c, �𝝈𝝈c �𝝁𝝁b,c, �𝝈𝝈b,c

𝐁𝐁𝐁𝐁 𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈

𝐈𝐈𝐈𝐈

�𝝁𝝁b,c, �𝝈𝝈b,c�𝝁𝝁c, �𝝈𝝈c

=

Correct BN stats

Use BN stats

𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈 = 𝐁𝐁𝐁𝐁 + 𝝍𝝍(𝐁𝐁𝐁𝐁 − 𝐈𝐈𝐈𝐈)

𝝍𝝍∗: soft-shrinkage

𝝁𝝁𝑡𝑡 ← 𝝁𝝁𝑡𝑡−1, �𝝁𝝁𝑡𝑡
𝝈𝝈𝑡𝑡 ← 𝝈𝝈𝑡𝑡−1, �𝝈𝝈𝑡𝑡

�𝝁𝝁𝑡𝑡, �𝝈𝝈𝑡𝑡

Time-uniform

(𝒙𝒙𝑖𝑖 , �𝑦𝑦𝑖𝑖)

Pr
ed

ic
tio

n-
un

ifo
rm Old New

Class 𝒃𝒃

Class 𝒂𝒂

Class 𝒄𝒄

(𝒙𝒙𝑡𝑡 , �𝑦𝑦𝑡𝑡)

Adapt learned stats

𝒙𝒙𝑡𝑡′ = 𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈(𝒙𝒙𝑡𝑡) (𝝁𝝁𝑡𝑡 ,𝝈𝝈𝒕𝒕)(𝝁𝝁𝑡𝑡−1,𝝈𝝈𝑡𝑡−1)

Normalized 
output 

Figure 3: An overview of the proposed methodology: Instance-Aware Batch Normalization (IABN)
and Prediction-Balanced Reservoir Sampling (PBRS). IABN aims to detect non-i.i.d. streams and in
turn corrects the normalization for inference. PBRS manages data in a time- and prediction-uniform
manner from non-i.i.d. data streams and gradually adapts IABNs with the balanced data afterwards.

We propose two approaches to tackle each of the failure modes of adapting BN under temporal
correlation. Our method consists of two components: (a) Instance-Aware Batch Normalization
(IABN) (Section §3.1) to overcome the limitation of BN under distribution shift and (b) Prediction-
Balanced Reservoir Sampling (PBRS) (Section §3.2) to combat with the temporal correlation of test
batches. Figure 3 illustrates the overall workflow of NOTE with IABN and PBRS.

3.1 Instance-Aware Batch Normalization

As described in Section §2.2, recent TTA algorithms rely solely on the test batch to re-calculate BN
statistics. We argue that this common practice does not successfully capture the feature statistics to
normalize the feature map f ∈ RB×C×L under temporal correlation in the test batch B. In principle,
standardizing a given feature map f:,c,: by the statistics µ̂c, σ̂

2
c computed across B and L is posited

on premise that averaging information across B can marginalize out uninformative instance-wise
variations for predicting y. Under temporal correlation in B, however, this assumption is no longer
valid, and averaging across B may not fully de-correlate useful information in f:,c,: from µc and σ2

c .

In an attempt to bypass such an “over-whitening” effect of using µ̂c and σ̂2
c in test-time under temporal

correlation, we propose correcting normalization statistics on a per-sample basis: specifically, instead
of completely switching from the original statistics of (µ̄, σ̄2) into (µ̂c, σ̂

2
c), our proposed Instance-

Aware Batch Normalization (IABN) considers the instance-wise statistics µ̃, σ̃2 ∈ RB,C of f similarly
to Instance Normalization (IN) [37], namely:

µ̃b,c :=
1

L

∑
l

fb,c,l and σ̃2
b,c :=

1

L

∑
l

(fb,c,l − µ̃b,c)
2. (3)

We assume that µ̃b,c and σ̃2
b,c follow the sampling distribution of a sample size L inN (µ̄, σ̄2) as the

population. Then the corresponding variances for the sample mean µ̃b,c and the sample variance σ̃2
b,c

can be calculated as:

s2µ̃,c :=
σ̄2

c

L
and s2σ̃2,c :=

2σ̄4
c

L− 1
. (4)

IABN corrects (µ̄, σ̄2) only in cases when µ̃b,c (and σ̃2
b,c) significantly differ from µ̄c (and σ̄2

c).
Specifically, we propose to use the following statistics for TTA:

µIABN
b,c := µ̄c + ψ(µ̃b,c − µ̄c;αsµ̃,c), and (σIABN

b,c )2 := σ̄2
c + ψ(σ̃2

b,c − σ̄2
c ;αsσ̃2,c),

where ψ(x;λ) =


x− λ, if x > λ

x+ λ, if x < −λ
0, otherwise

is the soft-shrinkage function. (5)

α ≥ 0 is the hyperparameter of IABN that determines the confidence level of the BN statistics. A
high value of α relies more on the learned statistics (BN), while a low value of α is in favor of the
current statistics measured from the instance. Finally, the output of IABN can be described as:
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Algorithm 1 Prediction-Balanced Reservoir Sampling

Input: target stream xt ∼ PT (x|t), memory bank M of capacity N
1: M [i]← ϕ for i = 1, · · ·N ; and n[c]← 0 for c ∈ Y
2: for t ∈ {1, · · · , T} do
3: n[ŷt]← n[ŷt] + 1 // increase the number of samples encountered for the class
4: m[c]← |{(x, y) ∈M |y = c}| for c ∈ Y // count instances per class in memory
5: if |M | < N then // if memory is not full
6: Add (xt, ŷt) to M
7: else
8: C∗ ← argmaxc∈Y m[c] // get majority class(es)
9: if ŷt /∈ C∗ then // if the new sample is not majority ▷ Prediction-Balanced

10: Randomly pick M [i] := (xi, ŷi) where ŷi ∈ C∗

11: M [i]← (xt, ŷt) // replace it with a new sample
12: else ▷ Reservoir Sampling
13: Sample p ∼ Uniform(0, 1)
14: if p < m[ŷt]/n[ŷt] then
15: Randomly pick M [i] := (xi, ŷi) where ŷi = ŷt
16: M [i]← (xt, ŷt) // replace it with a new sample

IABN(fb,c,:; µ̄c, σ̄
2
c ; µ̃b,c, σ̃

2
b,c) := γ ·

fb,c,: − µIABN
b,c√

(σIABN
b,c )2 + ϵ

+ β. (6)

Observe that IABN becomes IN and BN when α = 0 and α = ∞, respectively. If one chooses
too small α ≥ 0, IABN may remove useful features, e.g., styles, of input (as with IN), which can
degrade the overall classification (or regression) performance [30]. Hence, it is important to choose
an appropriate α. Nevertheless, we found that a good choice of α is not too sensitive across tested
scenarios, where we chose α = 4 for all experiments. This way, IABN can be robust to distributional
shifts without the risk of eliminating crucial information to predict y.

3.2 Adaptation via Prediction-Balanced Reservoir Sampling

Temporally correlated distributions lead to an undesirable bias in p(y), and thus adaptation with
a batch of consecutive test samples negatively impacts the adaptation objective, such as entropy
minimization [41]. To combat this imbalance, we propose Prediction-Balanced Reservoir Sampling
(PBRS) that mimics i.i.d. samples from temporally correlated streams with the assistance of a small
(e.g., a mini-batch size) memory. PBRS combines time-uniform sampling and prediction-uniform
sampling to simulate i.i.d. samples from the non-i.i.d. streams. For time-uniform sampling, we adopt
reservoir sampling (RS) [40], a proven random sampling algorithm to collect time-uniform data in a
single pass on a stream without the prior knowledge of the total length of data. For prediction-uniform
sampling, we first use the predicted labels to compute the majority class(es) in the memory. We then
replace a random instance of the majority class(es) with a new sample. We detail the algorithm of
PBRS as a pseudo-code in Algorithm 1. We found that these two heuristics can effectively balance
samples among both time and class axes, which mitigates the bias in temporally correlated data.

With the stored samples in the memory, we update the normalization statistics and affine parameters
in the IABN layers. Note that IABN assumes µ̃b,c and σ̃2

b,c follow the sampling distribution of
N (µ̄, σ̄2) and corrects the normalization if µ̃b,c and σ̃2

b,c are out of distribution. While IABN is
resilient to distributional shifts to a certain extent, the assumption might not hold under severe
distributional shifts. Therefore, we aim to find better estimates of µ̄, σ̄2 in IABN under distributional
shifts via PBRS. Specifically, we update the normalization statistics, namely the means µ and
variances σ2, via exponential moving average: (a) µt = (1 −m)µt−1 +m N

N−1 µ̂t and (b) σ2
t =

(1 −m)σ2
t−1 +m N

N−1 σ̂
2
t where m is a momentum and N is the size of the memory. We further

optimize the affine parameters, scaling factor γ and bias term β via a single backward pass with
entropy minimization, similar to a previous study [41]. These parameters account for only around
0.02% of the total trainable parameters in ResNet18 [12]. The IABN layers are adapted with the
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N samples in the memory every N test samples. We set the memory size N as 64 following the
common batch size of existing TTA methods [33, 4, 41] to ensure a fair memory constraint.

3.3 Inference

NOTE infers each sample via a single forward pass with IABN layers. Note that NOTE requires only
a single instance for inference, different from the state-of-the-art TTA methods [29, 33, 41, 4, 44] that
require batches for every inference. Moreover, NOTE requires only one forwarding pass for inference,
while multiple forward passes are required in other TTA methods that utilize augmentations [35, 44].
The batch-free single-forward inference of NOTE is beneficial in latency-sensitive tasks such as
autonomous driving and human health monitoring. After inference, NOTE determines whether to
store the sample and predicted label to the memory via PBRS.

4 Experiments

We implemented NOTE and the baselines via the PyTorch framework [31].2 We ran all experiments
with three random seeds and report the means and standard deviations. Additional experimental
details, e.g., hyperparameters of the baselines, datasets, are specified in Appendix A.

Baselines. We consider the following baselines including the state-of-the-art test-time adaptation
algorithms: Source evaluates the model trained from the source data directly on the target data without
adaptation. Test-time normalization (BN stats) [29, 33] updates the BN statistics from a batch of test
data. Online Domain Adaptation (ONDA) [27] adapts batch normalization statistics to target domains
via a batch of target data with an exponential moving average. Pseudo-Label (PL) [22] optimizes the
trainable parameters in BN layers via hard pseudo labels. We update the BN layers only in PL, as
done in previous studies [41, 44]. Test entropy minimization (TENT) [41] updates the BN parameters
via entropy minimization. Laplacian Adjusted Maximum-likelihood Estimation (LAME) [4] takes
a more conservative approach; it modifies the classifier’s output probability and not the internal
parameters of the model itself. By doing so, it prevents the model parameters from over-adapting
to the test batch. Continual test-time adaptation (CoTTA) [44] reduces the error accumulation by
using weight-averaged and augmentation-averaged predictions. It avoids catastrophic forgetting by
stochastically restoring a part of the neurons to the source pre-trained weights.

Adaptation and hyperparameters. We assume the model pre-trained with source data is available
for TTA. In NOTE, we replaced BN with IABN during training. We set the test batch size as
64 and the adaptation epoch as one for adaptation, which is the most common setting among the
baselines [33, 4, 41]. Similarly, we set the memory sizeN as 64 and adapt the model every 64 samples
in NOTE to ensure a fair memory constraint. We conduct online adaptation and evaluation, where the
model is continually updated. For the baselines, we adopt the best values for the hyperparameters
reported in their papers or the official codes. We followed the guideline to tune the hyperparameters
when such a guideline was available [44]. We use fixed values for the hyperparameters of NOTE,
soft-shrinkage width α = 4 and exponential moving average momentum m = 0.01, and update the
affine parameters via the Adam optimizer [18] with a learning rate l = 0.0001 unless specified. We
detailed hyperparameter information of the baselines in Appendix A.1.

4.1 Robustness under corruptions

Datasets. We use CIFAR10-C, CIFAR100-C, and ImageNet-C [13] datasets that are common
TTA benchmarks for evaluating the robustness to corruptions [29, 33, 41, 44, 4]. Both CI-
FAR10/CIFAR100 [19] have 50,000/10,000 training/test data. ImageNet [7] has 1,281,167/50,000
training/test data. CIFAR10/CIFAR100/ImageNet have 10/100/1,000 classes, respectively. CIFAR10-
C/CIFAR100-C/ImageNet-C apply 15 types of corruption to CIFAR10/CIFAR100/ImageNet test
data. Similar to previous studies [29, 33, 41, 44], we use the most severe corruption level of 5. We use
ResNet18 [12] as the backbone network and pre-trained it on the clean training data. Following prior
studies [23, 15, 43, 42], we adopt Dirichlet distribution to generate synthetic non-i.i.d. test streams
from the originally i.i.d. CIFAR10/100 data. The details are provided in Appendix A.2. We vary the

2https://github.com/TaesikGong/NOTE
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Table 1: Average classification error (%) and their corresponding standard deviations on CIFAR10-
C/100-C and ImageNet-C under temporally correlated (non-i.i.d.) and uniformly distributed (i.i.d.) test
data stream. Bold fonts indicate the lowest classification errors, while Red fonts show performance
degradation after adaptation. Values encompassed by parentheses refers to NOTE used directly with
test batches (without using PBRS). Averaged over 3 runs.

Temporally correlated test stream Uniformly distributed test stream
Method CIFAR10-C CIFAR100-C ImageNet-C Avg CIFAR10-C CIFAR100-C ImageNet-C Avg
Source 42.3 ± 1.1 66.6 ± 0.1 86.1 ± 0.0 65.0 42.3 ± 1.1 66.6 ± 0.1 86.1 ± 0.0 65.0
BN Stats [29] 73.4 ± 1.3 65.0 ± 0.3 96.9 ± 0.0 78.5 21.6 ± 0.4 46.6 ± 0.2 76.0 ± 0.0 48.1
ONDA [27] 63.6 ± 1.0 49.6 ± 0.3 89.0 ± 0.0 67.4 21.7 ± 0.4 46.5 ± 0.1 75.9 ± 0.0 48.0
PL [22] 75.4 ± 1.8 66.4 ± 0.4 98.9 ± 0.0 80.2 21.6 ± 0.2 43.1 ± 0.3 74.4 ± 0.2 46.4
TENT [41] 76.4 ± 2.7 66.9 ± 0.6 96.9 ± 0.0 80.1 18.8 ± 0.2 40.3 ± 0.2 76.0 ± 0.0 45.0
LAME [4] 36.2 ± 1.3 63.3 ± 0.3 82.7 ± 0.0 60.7 44.1 ± 0.5 68.8 ± 0.1 86.3 ± 0.0 66.4
CoTTA [44] 75.5 ± 0.7 64.2 ± 0.2 97.0 ± 0.0 78.9 17.8 ± 0.3 44.3 ± 0.2 71.5 ± 0.0 44.6

NOTE 21.1 ± 0.6 47.0 ± 0.1 80.6 ± 0.1 49.6 20.1 ± 0.5
(17.6 ± 0.3)

46.4 ± 0.0
(41.0 ± 0.2)

70.3 ± 0.0
(71.7 ± 0.0)

45.6
(43.4)

time
Class distribution

D
ir

ic
h

le
t 
p

a
ra

m
e

te
r 
𝛿

0.001

0.01

0.1

1.0

10.0

uniform

Figure 4: Illustration of syn-
thetic non-i.i.d. streams sampled
from Dirichlet distribution vary-
ing δ on CIFAR10-C. uniform
denotes an i.i.d. condition. The
lower the δ, the more temporally
correlated the distribution.
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(b) Effect of batch size.

Figure 5: Average classification error (%) under the non-i.i.d.
setting with CIFAR10-C dataset. We vary (a) the Dirichlet con-
centration parameter δ to investigate the impact of the degree of
temporal correlation and (b) batch size to understand the behav-
iors of the TTA methods. Averaged over 3 runs. Lower is better.

Dirichlet concentration parameter δ to simulate diverse streams and visualize the resulting data in
Figure 4. We use δ = 0.1 as the default value unless specified. For ImageNet, we sort the test stream
as the number of test samples per class is not enough for generating temporally correlated streams via
Dirichlet distribution. We additionally provide an experiment with MNIST-C data [28] in the appendix,
which shows similar takeaways to our experiments with CIFAR10-C/CIFAR100-C/ImageNet-C.

Overall result. Tables 1 shows the result under the temporally correlated (non-i.i.d.) data and the
uniform (i.i.d.) data, respectively. We observe significant performance degradation in the baselines
under the temporally correlated setting. For BN Stats, PL, TENT, and CoTTA, this degradation
is particularly due to the dependence on the test batch for the re-calculation of the BN statistics.
Updating the batch statistics from test data via exponential moving average (ONDA) also suffers
from the temporally correlated data. This indicates relying on the test batch for re-calculating the
BN statistics indeed cancels out meaningful instance-wise variations under temporal correlation.
Interestingly, LAME works better in the non-i.i.d. setting than in the i.i.d. setting, which is consistent
with previous reports [4]. The primary reason is, as stated by the authors, it “discourages deviations
from the predictions of the pre-trained model,” and thus it “does not noticeably help in i.i.d and
class-balanced scenarios.”

NOTE achieves on average 11.1% improvement over the best baseline (LAME) under the non-i.i.d.
setting. With the i.i.d. assumption, NOTE still achieves comparable performance to the baselines.
When we know the target samples are i.i.d., we can simply use the test batch without using PBRS. For
this variant version of NOTE, we update IABN with incoming test batches directly using a ten times
higher learning rate of 0.001 following previous work [41, 44]. We report the result of the variant
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Table 2: Average classification error (%) and their corresponding standard deviations on three real
test data streams: KITTI, HARTH, and ExtraSensory. Bold fonts indicate the lowest classification
errors, while Red fonts show performance degradation after adaptation. Averaged over 3 runs.

Real test stream
Method KITTI HARTH ExtraSensory Avg
Source 12.3 ± 2.3 62.6 ± 8.5 50.2 ± 2.2 41.7
BN Stats [29] 35.4 ± 0.5 68.6 ± 1.1 56.0 ± 0.9 53.4
ONDA [27] 26.3 ± 0.5 69.3 ± 1.1 48.2 ± 1.5 47.9
PL [22] 39.0 ± 0.3 64.8 ± 0.6 56.0 ± 0.9 53.3
TENT [41] 39.6 ± 0.2 64.1 ± 0.7 56.0 ± 0.8 53.2
LAME [4] 11.3 ± 2.9 61.0 ± 10.0 50.7 ± 2.7 41.0
CoTTA [44] 35.4 ± 0.6 68.7 ± 1.1 56.0 ± 0.9 53.4
NOTE 10.9 ± 3.6 51.0 ± 5.6 45.4 ± 2.6 35.8

version of NOTE in the parentheses, which achieves on average 2.2% improvement further when the
i.i.d. assumption is known.

Effect of the degree of temporal correlation. We also investigate the effect of the degree of
temporal correlation for TTA algorithms. Figure 5a shows the result. The lower δ is, the severer
temporal correlation becomes. The error rates of most of the baselines deteriorate as δ decreases,
which shows that the existing TTA baselines are susceptible to temporally correlated data. NOTE
shows consistent performance among all δ values, indicating its robustness under temporal correlation.

Effect of batch size. While we experiment with a widely-used value of 64 as the batch size (or
memory size in NOTE), one might be curious about the impact of batch size under temporally
correlated streams. Figure 5b shows the result with six different batch sizes. As shown, NOTE is not
much affected by the batch size, while most of the baselines recovers performance degradation as
the batch size increases. This is because a higher batch size has a better chance of adaptation with
balanced samples under temporally correlated streams. Increasing the batch size, however, mitigates
temporal correlation at the expense of inference latency and adaptation speed.

4.2 Real-distributions with domain shift

Datasets. We evaluate NOTE under three real-world distribution datasets: object detection in
autonomous driving (KITTI [9]), human activity recognition (HARTH [25]), and user behavioral
context recognition (ExtraSensory [38]). Additional dataset-specific details are in Appendix A.2.

KITTI is a well-known autonomous driving dataset that provides consecutive frames that contains
natural temporal correlation in driving contexts. We adapt from KITTI to KITTI-Rain [11] - a dataset
that converted KITTI images to rainy images. This contains 7,481/7,800 train/test samples with nine
classes. We use ResNet50 [12] pre-trained on ImageNet [8] as the backbone network.

HARTH was collected from 22 users in free-living environments for seven days. Each user was
equipped with two three-axial Axivity AX3 accelerometers for recording human activities. We use 15
users collectively as the source domain and the remaining seven users as each target domain, which
entails natural domain shifts from source users to target users as different physical conditions make
domain shifts across users. HARTH contains 82,544/39,377 train/test samples with 12 classes. We
report the averaged error over all target domains. We use four one-dimensional convolutional layers
followed by one fully-connected layer as the backbone network for HARTH.

The Extrasensory dataset collected users’ own smartphone sensory data (motion sensors, audio,
etc.) in the wild for seven days, aiming to capture people’s authentic behaviors in their regular
activities. We use 16 users as the source domain and seven users as target domains. ExtraSensory
includes 17,777/4,862 train/test data with five classes. For ExtraSensory, we use two one-dimensional
convolutional layers followed by one fully-connected layer as the backbone network. For both
HARTH and ExtraSensory models, a single BN layer follows each convolutional layer.
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Table 3: Average classification error (%) and corresponding standard deviations of varying ablation
settings on CIFAR10-C/100-C under temporally correlated (non-i.i.d.) and uniformly distributed
(i.i.d.) test data stream. Bold type indicates those of lowest classification error. Averaged over 3 runs.

Temporally correlated test stream Uniformly distributed test stream
Method CIFAR10-C CIFAR100-C Avg CIFAR10-C CIFAR100-C Avg
Source 42.3 ± 1.1 66.6 ± 0.1 54.4 42.3 ± 1.1 66.6 ± 0.1 54.4
IABN 24.6 ± 0.6 54.5 ± 0.1 39.5 24.6 ± 0.6 54.5 ± 0.1 39.5
PBRS 27.5 ± 1.0 51.7 ± 0.2 39.6 25.8 ± 0.2 51.3 ± 0.1 38.5
IABN+RS 20.5 ± 1.5 48.2 ± 0.2 34.3 20.7 ± 0.6 48.3 ± 0.3 34.5
IABN+PBRS 21.1 ± 0.6 47.0 ± 0.1 34.0 20.1 ± 0.5 46.4 ± 0.0 33.2

Result. Table 2 shows the result for the real-world datasets. The overall trend is similar to the
temporal correlation experiments with CIFAR10-C/CIFAR100-C datasets, which indicates that
the real-world datasets are indeed temporally correlated. NOTE consistently reduces errors after
adaptation under real-world distributions. We believe this demonstrates NOTE is a promising method
to be utilized in various real-world ML applications with distributional shifts. We illustrate real-time
classification error changes for real-world datasets in the appendix.

4.3 Ablation study

We conduct an ablative study to further investigate the effectiveness of the individual components.
Table 3 shows the result under both i.i.d. and non-i.i.d. settings. Using IABN alone significantly
reduces error rates over Source, demonstrating the effectiveness of correcting normalization for out-
of-distribution samples. Using PBRS with BN shows comparable improvement with the IABN-only
result. Note that there is only a marginal gap (around 1%) between the non-i.i.d. and i.i.d. results
in PBRS. This indicates that PBRS could effectively simulate i.i.d. samples from non-i.i.d. streams.
The joint use of IABN and PBRS outperforms using either of them, meaning that PBRS provides
IABN with better estimates for the normalizing operation. In addition, PBRS is better than Reservoir
Sampling (RS) that has been a strong baseline in continual learning [17, 5]. This shows storing
prediction-balanced sampling in addition to time-uniform sampling leads to better adaptation in
TTA. We also investigated the joint use of IN and PBRS with the combination of IABN and PBRS
on CIFAR100-C, and the result shows that IABN+PBRS (47.0%) achieves lower error rate than
IN+PBRS (52.5%) on CIFAR100-C under temporal correlation.

5 Related work

Test-time adaptation. Test-time adaptation (TTA) attempts to overcome distributional shifts with
test data without the cost of data acquisition or labeling. TTA adapts to the target domain with only test
data on the fly. Most existing TTA algorithms rely on a batch of test samples to adapt [29, 33, 41, 44]
to re-calibrate BN layers on the test data. Simply using the statistics of test batch in BN layers
improves the robustness under distributional shifts [29, 33]. ONDA [27] updates the BN statistics
with test data via exponential moving average. TENT [41] further updates the scaling and bias
parameters in BN layers via entropy minimization.

Latest TTA studies consider distribution changes of test data [4, 44]. LAME [4] corrects the output
probabilities of a classifier rather than tweaking the model’s inner parameters. By restraining the
model from over-adapting to the test batch, LAME allows the model to be more robust under non-
i.i.d. scenarios. However, LAME does not have noticeable performance gains in class-balanced,
standard i.i.d. scenarios. The primary reason is, as stated by the authors, it “discourages deviations
from the predictions of the pre-trained model,” and thus it “does not noticeably help in i.i.d and
class-balanced scenarios.” CoTTA [44] aims to adapt to continually changing target environments via
weight-averaged teacher model, weight-averaged augmentations, and stochastic restoring. However,
CoTTA assumes i.i.d. test data within each domain and updates the entire model that increases
computational costs.

There also exist works [35, 24] utilizing domain-specific self-supervision to resolve the distribution
shift with test data, but are complementary to ours, i.e., we can also optimize the self-supervised loss
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instead of the entropy loss, and not applicable to our setups of real test data stream as designing good
self-supervision for these domains is highly non-trivial.

Replay memory. Replay memory is one of the major approaches in continual learning; it manages
a buffer to replay previous data for future learning to prevent catastrophic forgetting. Reservoir
sampling [40] is a random sampling algorithm that collects time-uniform samples from unknown
sample streams with a single pass, and it has been proven to be a strong baseline in continual
learning [17, 5]. GSS [1] stores samples to a memory in a way that maximizes the gradient direction
among those samples. A recent study modifies reservoir sampling to balance classes under imbalanced
data, when the labels are given [6]. Our memory management scheme (PBRS) is inspired by these
studies to prevent catastrophic forgetting in test-time adaptations.

6 Discussion and conclusion

This paper highlights that real-world distributions often change across the time axis, and existing test-
time adaptation algorithms mostly suffer from the non-i.i.d. test data streams. To address this problem,
we present a NOn-i.i.d. TEst-time adaptation algorithm, NOTE. Our experiments evaluated robustness
under corruptions and domain adaptation on real-world distributions. The results demonstrate that
NOTE not only outperforms the baselines under the non-i.i.d./real distribution settings, but it also
shows comparable performance under the i.i.d. assumption. We believe that the insights and findings
from this study are a meaningful step toward the practical impact of the test-time adaptation paradigm.

Limitations. NOTE and most state-of-the-art TTA algorithms [29, 22, 27, 33, 41, 44] assume
that the backbone networks are equipped with BN (or IABN) layers. While BN is a widely-used
component in deep learning, several architectures, such as LSTMs [14] and Transformers [39], do
not embed BN layers. A recent study uncovered that BN is advantageous in Vision Transformers [45],
showing potential room to apply our idea to architectures without BN layers. However, more in-depth
studies are necessary to identify the actual applicability of BN (or IABN) to those architectures.
While LAME [4] is applicable to models without BN, its limitation is the performance drop in i.i.d.
scenarios, as shown in both its paper and our evaluation. While NOTE shows its effectiveness in both
non-i.i.d and i.i.d. scenarios, a remaining challenge is to design an algorithm that generalizes to any
architecture. We believe the findings and contributions of our work could give valuable insights to
future endeavors on this end.

Potential negative societal impacts. As TTA relies on unlabeled test samples and changes the
model accordingly, the model is exposed to potential data-driven biases after adaptation, such as
fairness issues [3] and adversarial attacks [36]. In some sense, the utility of TTA comes at the
expense of exposure to threats. This vulnerability is another crucial problem that both ML researchers
and practitioners need to take into consideration. In addition, TTA entails additional computations
for adaptation with test data, which may have negative impacts on environments, e.g., increasing
electricity consumption and carbon emissions [34]. Nevertheless, we believe NOTE would not
exacerbate this issue as it is computationally efficient as mentioned in Section §1.
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A Experimental details

For the all experiments in the paper, we used three different random seeds (0, 1, 2) and report the
average errors (and standard deviations). We ran our experiments on NVIDIA GeForce RTX 3090
GPUs.

A.1 Baseline details

We referred to the official implementations of the baselines. We use the reported best hyperparam-
eters from their paper or code. We further tuned hyperparameters if there exists a hyperparameter
selection guideline. Here, we provide additional details of the baseline implementations including
hyperparameters.

PL. Following the previous studies [41, 44], we update the BN layers only in PL. We set the
learning rate as LR = 0.001 as the same as [41].

ONDA. ONDA [27] has two hyperparameters, the update frequency N and the decay of the moving
average m. The authors set N = 10 and m = 0.1 as the default values throughout the experiments,
and we follow this choice unless specified.

TENT. TENT [41] set the learning rate as LR = 0.001 for all datasets except for ImageNet, and
we follow this choice. We referred to the official code3 for implementing TENT.

LAME. LAME [4] needs an affinity matrix and has hyperparameters related to it. We follow the
authors’ choice on hyperparameter selection specified in both the paper and in their official code.
Namely, we use the kNN affinity matrix and with the value of k set as 5. We referred to the official
code4 for implementing LAME.

CoTTA. CoTTA [44] has three hyperparameters, augmentation confidence threshold pth, restoration
factor p, and exponential moving average (EMA) factor m. We follow the authors’ choice for
restoration factor (p = 0.01) and EMA factor (α = 0.999). For augmentation confidence threshold,
the authors provide a guideline to choose it, which is using 5% quantile for the softmax predictions’
confidence on the source domains. We follow this guideline, which results in pth = 0.92 for MNIST-
C and CIFAR10-C, pth = 0.72 for CIFAR100-C, and pth = 0.55 for KITTI. For 1D time-series
datasets (HARTH and ExtraSensory), augmentations are not provided from the authors, and it is
non-trivial to select appropriate augmentations for them. We thus do not use augmentations for these
datasets. We referred to the official code5 for implementing CoTTA.

A.2 Dataset details

A.2.1 Robustness to corruptions

MNIST-C. MNIST-C [28] applies 15 corruptions to the MNIST [21] dataset. Specifically, the
corruptions include Shot Noise, Impulse Noise, Glass Blur, Motion Blur, Shear, Scale, Rotate,
Brightness, Translate, Stripe, Fog, Spatter, Dotted Line, Zigzag, and Canny Edges, as illustrated
in Figure 6. Note that the result of this dataset is included only in the supplementary material. In
total, MNIST-C has 60,000 clean training data and 150,000 corrupted test data (10,000 for each
corruption type). We use ResNet18 [12] as the backbone network. We train it on the clean training
data to generate source models, using stochastic gradient descent with momentum=0.9 and cosine
annealing learning rate scheduling [26] for 100 epochs with an initial learning rate of 0.1.

CIFAR10-C/CIFAR100-C. CIFAR10-C/CIFAR100-C [13] are common TTA benchmarks for
evaluating the robustness to corruptions [29, 33, 41, 44]. Both CIFAR10/CIFAR100 [19] have
50,000/10,000 training/test data. CIFAR10/CIFAR100 have 10/100 classes respectively. CIFAR10-
C/CIFAR100-C apply 15 types of corruptions to CIFAR10/CIFAR100 test data: Gaussian Noise,

3https://github.com/DequanWang/tent
4https://github.com/fiveai/LAME
5https://github.com/qinenergy/cotta
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Original Shot Noise Impulse Noise Glass Blur Motion Blur Shear Scale Rotate

Brightness Translate Stripe Fog Spatter Dotted Line Zigzag Canny Edges

Figure 6: Illustration of the 15 corruption types in the MNIST-C dataset.

Original Gaussian Noise Shot Noise Impulse Noise Defocus Blur Glass Blur Motion Blur Zoom Blur

Snow Frost Fog Brightness Contrast Elastic Pixelate JPEG

Figure 7: Illustration of the 15 corruption types in the CIFAR10-C/CIFAR100-C/ImageNet-C
dataset.

Shot Noise, Impulse Noise, Defocus Blur, Frosted Glass Blur, Motion Blur, Zoom Blur, Snow, Frost,
Fog, Brightness, Contrast, Elastic Transformation, Pixelate, and JPEG Compression, as illustrated in
Figure 7. We use the most severe corruption level of 5, similar to previous studies [29, 33, 41, 44]. This
results in total 150,000 test data for CIFAR10-C/CIFAR100-C, respectively. We use ResNet18 [12]
as the backbone network. We train it on the clean training data to generate source models, using
stochastic gradient descent with momentum=0.9 and cosine annealing learning rate scheduling [26]
for 200 epochs with an initial learning rate of 0.1 and a batch size of 128.

ImageNet-C. ImageNet-C is another common TTA benchmark for evaluating the robustness to
corruptions [29, 33, 41, 44, 4]. ImageNet [7] has 1,281,167/50,000 training/test data. ImageNet-C
applies the same 15 types of corruptions used in CIFAR10-C and CIFAR100-C. We use a pre-
trained ResNet18 [12] on ImageNet training data and fine-tune it by replacing BN layers with IABN
layers on the clean ImageNet training data. For fine-tuning, we use stochastic gradient descent with
momentum=0.9 for 30 epochs with a fixed learning rate of 0.001 and a batch size of 256.

Temporally correlated streams via Dirichlet distribution. Note that most public vision datasets
are not time-series data and existing TTA studies usually shuffled the order of these datasets resulting
in i.i.d. streams, which might be unrealistic in real-world scenarios. To simulate non-i.i.d. streams
from these “static” datasets, we utilize Dirichlet distribution that is widely used to simulate non-i.i.d.
settings. [23, 15, 43, 42] Specifically, we simulate a non-i.i.d partition for T tokens on C classes. For
each class c, we draw a T -dimensional vector qc ∼ Dir(δp), where Dir(·) denotes the Dirichlet
distribution, p is a prior class distribution over T classes, and δ > 0 is a concentration parameter. We
assign data from each class to each token t, following proportion qc[n]. To simulate the nature of
real-world online data where sequences are temporally correlated and data from same classes appear
multiple times (e.g., walking, jogging, and then walking, see Figure 9 and 10 for illustrations), we
concatenate the generated T tokens to create a synthetic non-i.i.d. sequential data. We use δ = 0.1 as
the default value if not specified.
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Samples in time order

Car Van Truck Pedestrian Person (sitting) Cyclist Tram Misc

(a) Visualization of the class distribution in the entire KITTI dataset.

(b) Original data with an interval of three frames.

(c) Rain data with an interval of three frames.

Figure 8: Illustration of the test stream of the KITTI dataset. We apply a 200mm/hr intensity of rain
to the original data.

A.2.2 Real-distributions with domain shift

The following illustrates the summary and preprocessing steps of datasets collected in the real-world,
or has resemblance to class distributions in the real-world.

KITTI, KITTI-Rain. KITTI [9] is a well-known dataset used in numerous tasks such as object
detection, object tracking, depth estimation, etc. It must be emphasized that the dataset was collected
by driving around the city, in rural areas and on highways, which captures the real-world distribution.
From the available tasks, we select object tracking task; to utilize its temporal correlation. In order to
reduce the task to a single image classification task, we crop each frame with respect to the largest
bounding box. Domain gap is introduced, through synthetic generation of corresponding “rainy”
frames, hereby denoted as KITTI-Rain [11]. KITTI-Rain is generated via a two-step procedure: (1)
generation of a depth-map estimation of each frame, and (2) generation of rainy images from vanilla
frame and its corresponding depth map, as described in [11]. For the depth map generation, we
used Monodepth [10], and for rainy image generation we use the source code available in [11]. The
rain intensity is set to 200mm/hr for training and testing. The final source domain consists of 7,481
samples, and each of the target domain consists of 7,800 samples. We use ResNet50 [12] pre-trained
on ImageNet [8] as the backbone network. We fine-tune it on the KITTI training data to generate
source models, using the Adam optimizer [18] and cosine annealing learning rate scheduling [26] for
50 epochs with an initial learning rate of 0.1 and a batch size of 64.

HARTH. Human Activity Recognition Trondheim dataset [25] was collected from 22 users, with
two three-axial Axivity AX3 accelerometers, each attached to the subject’s thigh and lower back.
HARTH was also collected in a free-living environment, labelled through recorded video. We set
the source domain as the accelerometer data collected from the back (15 users), and set the target
domain as one collected from the thigh (from the remaining seven users). We deem such setting to
be natural, for one of the most dominant forms of domain shift in wearable sensory data is by the
positioning of sensors on the human body [20]. We use a window size of 50, and min-max scaled
(0-1) the data, following the original paper [25]. The final source domain consists of 82,544 samples,
and each of the seven target domain consists of {S008: 8,140, S018: 6,241, S019: 5,846, S021: 5,910,
S022: 6,448, S028: 3,271, S029: 3,521} samples. We use four one-dimensional convolutional layers
followed by one fully-connected layers as the backbone network. We train it on the source data to
generate source models, using stochastic gradient descent with momentum=0.9 for 100 epochs and
cosine annealing learning rate scheduling [26] with an initial learning rate of 0.1 and a batch size of
64.

ExtraSensory. Extrasensory dataset [38] was collected from 60 users with the user’s own smart-
phones, over a seven day period, in-the-wild, i.e. data was collected from users whom engaged in their
regular natural behavior. As there were no constraints on the subject’s activity, the distribution varied
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Figure 9: Illustration of the target streams of the HARTH dataset. We specify x-axis accelerometer
values only.

from user to user. We select five most frequently occurred, mutually exclusive activities (lying down,
sitting, walking, standing, running), and omit other labels. We further process the data to only those
consisting the following sensor modalities - accelerometer, gyroscope, magnetometer and audio. We
used a window size of five, with no overlap, and standardly scale the datasets. After the pre-processing
step, 23 users were left, and 16 of them were used as source domains and seven of them are used as
target domains. The final source domain consists of 17,777 samples, and each of the seven target do-
main consists of {4FC32141-E888-4BFF-8804-12559A491D8C: 844, 59818CD2-24D7-4D32-B133-
24C2FE3801E5: 401, 61976C24-1C50-4355-9C49-AAE44A7D09F6: 776, 797D145F-3858-4A7F-
A7C2-A4EB721E133C: 463, A5CDF89D-02A2-4EC1-89F8-F534FDABDD96 : 734, C48CE857-
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Figure 10: Illustration of the target streams of the Extrasensory dataset. We specify x-axis accelerom-
eter values only. Due to the length of the name of each domain, denoted here with the first three
characters.

A0DD-4DDB-BEA5-3A25449B2153 : 850, D7D20E2E-FC78-405D-B346-DBD3FD8FC92B: 794}
samples. We use two one-dimensional convolutional layers followed by one fully-connected layers as
the backbone network. We train it on the source data to generate source models, using stochastic gra-
dient descent with momentum=0.9 for 100 epochs and cosine annealing learning rate scheduling [26]
with an initial learning rate of 0.1 and a batch size of 64.

Error on the source domain. We also measure the domain gap between the source and the targets
in the three real-distribution datasets: Table 4 for KITTI, Table 5 for HARTH, and Table 6 for
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Figure 11: Illustration of the real-time cumulative classification error change of different methods on
the KITTI dataset. The x-axis denotes the samples in order, whereas the y-axis denotes the error rate
in percentage. Note that some lines are not clearly visible due to overlap.

Extrasensory. As shown, there is a clear performance degradation from the source domain to the
target domain. For HARTH and ExtraSensory, the performance degradation was severe (30∼40%p
increased error rates compared with Source), indicating the importance overcoming the domain shift
problem in sensory applications.

Table 4: Average classification error (%) and their corresponding standard deviations on the KITTI
dataset of the source model. Bold type indicates those of lowest classification error. Averaged over 3
runs.

Method Src domain Rain Avg
Source 7.4 ± 1.0 12.3 ± 2.3 9.9

Table 5: Average classification error (%) and their corresponding standard deviations on the HARTH
dataset of the source model. Bold type indicates those of lowest classification error. Averaged over 3
runs.

Method Src domain S008 S018 S019 S021 S022 S028 S029 Avg
Source 11.7 ± 0.7 86.2 ± 1.3 44.7 ± 2.1 50.4 ± 9.5 74.8 ± 3.8 72.0 ± 2.6 53.0 ± 24.0 57.0 ± 16.7 56.2

Table 6: Average classification error (%) and their corresponding standard deviations on the ExtraSen-
sory dataset of the source model. Bold type indicates those of lowest classification error. Averaged
over 3 runs.

Method Src domain 4FC 598 619 797 A5C C48 D7D Avg
Source 8.3 ± 0.7 34.6 ± 2.5 40.1 ± 0.7 63.8 ± 5.7 45.3 ± 2.4 64.6 ± 3.7 39.6 ± 6.8 63.0 ± 3.9 44.9
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B Domain-wise results

B.1 Robustness to corruptions

Table 7: Average classification error (%) and their corresponding standard deviations on CIFAR10-C
with temporally correlated test streams, shown per corruption. Bold type indicates those of lowest
classification error, while those with Red font are performance degradation after adaptation. Averaged
over 3 runs.
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Source 74.0
± 3.3

66.8
± 3.5

75.3
± 4.2

43.3
± 2.7

48.0
± 2.7

32.6
± 1.2

35.2
± 2.6

22.0
± 0.4

33.0
± 2.5

25.9
± 0.9

8.5
± 0.3

66.1
± 1.8

23.4
± 0.7

53.6
± 0.7

26.8
± 0.7 42.3

BN Stats [29] 77.2
± 0.7

76.7
± 1.0

78.9
± 0.8

70.0
± 1.7

78.6
± 0.6

70.5
± 1.5

71.1
± 1.4

72.5
± 1.4

71.9
± 1.1

70.6
± 1.6

68.7
± 1.9

69.1
± 1.9

75.1
± 1.5

73.6
± 1.4

76.8
± 1.4 73.4

ONDA [27] 69.3
± 1.0

68.5
± 1.0

71.8
± 0.6

58.5
± 1.4

71.0
± 0.2

59.9
± 1.0

59.5
± 1.0

62.4
± 1.4

62.1
± 1.0

59.6
± 1.3

55.6
± 1.4

58.4
± 1.4

65.6
± 1.0

63.9
± 1.4

67.6
± 1.1 63.6

PL [22] 78.3
± 1.0

78.0
± 1.5

80.4
± 1.0

72.2
± 1.6

80.1
± 1.2

72.4
± 2.2

73.1
± 1.4

74.5
± 2.5

73.9
± 1.8

73.4
± 1.7

71.5
± 2.7

71.7
± 2.5

77.3
± 2.1

75.7
± 1.5

78.6
± 2.7 75.4

TENT [41] 79.0
± 2.9

78.8
± 2.8

80.6
± 2.2

73.3
± 1.7

80.5
± 2.9

74.4
± 2.4

74.5
± 3.3

74.8
± 2.2

75.0
± 2.3

74.0
± 2.2

72.3
± 3.4

74.9
± 3.2

78.2
± 2.8

76.5
± 2.9

79.0
± 2.9 76.4

LAME [4] 73.6
± 5.2

64.8
± 4.6

74.8
± 6.4

36.2
± 4.4

37.7
± 5.3

24.9
± 1.6

27.9
± 3.4

12.4
± 1.0

22.4
± 3.9

19.4
± 0.9

3.6
± 0.3

65.1
± 1.5

12.6
± 0.8

50.3
± 0.9

16.4
± 1.2 36.2

CoTTA [44] 77.0
± 0.7

76.8
± 0.6

79.0
± 0.7

74.1
± 0.9

79.6
± 0.6

74.3
± 0.5

74.0
± 0.8

74.8
± 1.1

73.3
± 0.9

72.9
± 0.5

72.2
± 0.9

76.5
± 0.8

76.5
± 0.9

75.1
± 0.8

76.6
± 0.6 75.5

NOTE 34.9
± 1.6

32.3
± 3.1

39.6
± 2.5

13.6
± 0.5

35.8
± 1.9

11.8
± 0.8

14.5
± 0.5

14.1
± 0.6

15.2
± 1.3

14.2
± 0.6

7.7
± 0.3

7.6
± 0.6

20.8
± 0.7

27.7
± 2.6

26.4
± 0.5 21.1

Table 8: Average classification error (%) and their corresponding standard deviations on CIFAR100-C
with temporally correlated test streams, shown per corruption. Bold type indicates those of lowest
classification error, while those with Red font are performance degradation after adaptation. Averaged
over 3 runs.
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64.9
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± 0.9

55.5
± 0.3

57.7
± 0.2

53.8
± 0.4

66.3
± 0.8

59.3
± 0.4

33.0
± 0.3

81.4
± 0.4

49.2
± 0.4

73.6
± 1.1

55.5
± 0.3 66.6

BN Stats [29] 73.9
± 0.5

73.5
± 0.4

77.2
± 0.7

56.9
± 0.2

72.3
± 0.5

58.8
± 0.3

57.9
± 0.4

65.3
± 0.4

65.0
± 0.4

62.4
± 0.6

55.6
± 0.2

57.6
± 0.4

64.6
± 0.5

63.6
± 0.3

71.0
± 0.4 65.0

ONDA [27] 63.0
± 0.7

62.5
± 0.4

68.0
± 0.5

37.3
± 0.2

60.0
± 0.2

40.0
± 0.3

38.3
± 0.1

49.6
± 0.3

50.0
± 0.6

45.2
± 0.6

35.7
± 0.2

40.9
± 0.5

48.6
± 0.5

46.9
± 0.3

57.5
± 0.2 49.6

PL [22] 71.9
± 1.4

72.0
± 0.5

76.3
± 0.7

59.3
± 0.8

73.8
± 0.9

61.5
± 0.9

59.9
± 0.5

67.1
± 0.9

66.7
± 1.4

63.0
± 1.0

57.9
± 0.5

62.2
± 1.5

67.6
± 1.0

65.2
± 0.3

71.1
± 0.5 66.4

TENT [41] 71.8
± 0.9

71.0
± 0.4

76.4
± 1.2

60.2
± 0.6

75.0
± 1.0

61.9
± 0.9

60.2
± 0.7

67.8
± 0.5

67.8
± 0.7

63.3
± 1.1

58.4
± 0.7

65.0
± 1.8

68.4
± 0.9

65.0
± 0.2

71.8
± 0.1 66.9

LAME [4] 89.0
± 1.1

87.1
± 0.8

94.5
± 0.7

62.3
± 1.2

79.7
± 1.2

49.4
± 1.0

52.8
± 0.3

46.6
± 0.4

63.9
± 1.9

55.6
± 1.2

25.2
± 0.6

82.4
± 0.2

40.8
± 0.5

71.9
± 1.4

47.8
± 0.7 63.3

CoTTA [44] 68.6
± 0.3

67.9
± 0.4

71.4
± 0.4

60.7
± 0.4

69.9
± 0.4

60.8
± 0.5

60.2
± 0.2

64.0
± 0.3

62.9
± 0.5

63.2
± 0.6

56.7
± 0.2

65.6
± 0.3

64.5
± 0.3

60.9
± 0.0

65.3
± 0.1 64.2

NOTE 66.2
± 0.8

64.2
± 1.6

72.6
± 0.4

37.2
± 0.8

61.1
± 0.7

35.4
± 0.3

37.4
± 0.4

40.0
± 0.4

42.5
± 0.3

43.4
± 0.5

29.4
± 0.1

32.1
± 0.5

44.3
± 0.4

47.5
± 0.6

51.3
± 0.3 47.0
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Table 9: Average classification error (%) and their corresponding standard deviations on ImageNet-C
with temporally correlated test streams, shown per corruption. Bold type indicates those of lowest
classification error, while those with Red font are performance degradation after adaptation. Averaged
over 3 runs.
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± 0.0

97.7
± 0.0

98.4
± 0.0

90.6
± 0.0

92.5
± 0.0

89.8
± 0.0

81.8
± 0.0

89.5
± 0.0

85.0
± 0.0

86.4
± 0.0

51.1
± 0.0

97.2
± 0.0

85.3
± 0.0

76.9
± 0.0

71.7
± 0.0 86.1

BN Stats 98.3
± 0.0

98.1
± 0.0

98.4
± 0.0

98.7
± 0.0

98.8
± 0.0

97.8
± 0.0

96.6
± 0.0

96.2
± 0.0

96.0
± 0.0

95.1
± 0.0

93.1
± 0.0

98.6
± 0.0

96.3
± 0.0

95.6
± 0.0

96.1
± 0.0 96.9

ONDA 95.1
± 0.0

94.7
± 0.0

95.0
± 0.0

96.2
± 0.0

96.1
± 0.0

92.5
± 0.0

87.2
± 0.0

87.4
± 0.0

87.8
± 0.0

82.7
± 0.0

71.0
± 0.0

96.4
± 0.0

84.9
± 0.0

81.7
± 0.0

86.1
± 0.0 89.0

PL 99.3
± 0.0

99.3
± 0.0

99.4
± 0.0

99.5
± 0.0

99.4
± 0.0

99.5
± 0.0

98.8
± 0.0

99.1
± 0.0

99.2
± 0.0

98.1
± 0.0

97.3
± 0.1

99.8
± 0.0

98.4
± 0.0

98.5
± 0.0

98.5
± 0.0 98.9

TENT 98.3
± 0.0

98.1
± 0.0

98.4
± 0.0

98.7
± 0.0

98.8
± 0.0

97.8
± 0.0

96.6
± 0.0

96.2
± 0.0

96.0
± 0.0

95.1
± 0.0

93.1
± 0.0

98.6
± 0.0

96.3
± 0.0

95.6
± 0.0

96.1
± 0.0 96.9

LAME 98.1
± 0.0

97.1
± 0.0

98.0
± 0.0

87.9
± 0.0

90.9
± 0.0

87.1
± 0.0

78.3
± 0.0

87.1
± 0.0

80.2
± 0.0

81.5
± 0.0

39.8
± 0.0

96.4
± 0.0

82.5
± 0.0

70.7
± 0.0

64.9
± 0.0 82.7

CoTTA 98.2
± 0.0

98.1
± 0.0

98.3
± 0.0

98.8
± 0.0

98.8
± 0.0

97.7
± 0.0

96.8
± 0.0

96.6
± 0.1

96.3
± 0.0

95.3
± 0.0

93.5
± 0.0

98.8
± 0.0

96.5
± 0.0

95.6
± 0.0

96.2
± 0.0 97.0

NOTE 94.7
± 0.1

93.7
± 0.3

94.5
± 0.1

91.2
± 0.1

91.0
± 0.2

83.3
± 0.1

79.0
± 0.2

79.0
± 0.4

78.7
± 0.3

66.3
± 0.6

48.0
± 0.4

94.1
± 0.1

76.9
± 0.6

62.6
± 0.7

76.6
± 0.6 80.6

Table 10: Average classification error (%) and their corresponding standard deviations on MNIST-C
with temporally correlated test streams, shown per corruption. Bold type indicates those of lowest
classification error, while those with Red font are performance degradation after adaptation. Averaged
over 3 runs.
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s

Avg

Source 3.7
± 0.7

27.3
± 5.5

20.4
± 6.4

4.6
± 0.5

2.2
± 0.5

5.1
± 1.0

6.5
± 1.0

21.1
± 22.9

13.8
± 1.4

17.4
± 17.0

66.6
± 14.7

3.8
± 0.4

3.7
± 0.4

18.2
± 3.0

26.4
± 11.4 16.1

BN Stats [29] 72.0
± 0.6

75.2
± 0.8

73.7
± 1.0

72.1
± 0.8

71.2
± 1.1

71.4
± 0.6

71.2
± 0.3

71.6
± 0.6

78.5
± 0.2

72.3
± 1.2

70.8
± 1.2

71.6
± 0.9

73.8
± 0.7

74.6
± 0.6

72.3
± 0.3 72.8

ONDA [27] 53.3
± 3.0

59.9
± 3.0

59.2
± 3.3

54.1
± 3.5

51.6
± 2.2

53.9
± 2.5

54.6
± 2.0

50.5
± 2.3

65.2
± 2.1

57.5
± 0.7

54.8
± 2.9

54.2
± 3.0

55.4
± 2.8

61.0
± 2.2

56.7
± 2.1 56.1

PL [22] 73.7
± 1.0

76.4
± 0.4

75.3
± 0.5

74.7
± 1.1

72.7
± 0.9

73.3
± 1.6

73.7
± 0.9

73.7
± 1.0

78.7
± 0.3

74.1
± 1.4

75.8
± 2.6

72.5
± 0.8

75.8
± 0.6

76.9
± 1.4

74.5
± 0.1 74.8

TENT [41] 74.7
± 1.1

78.1
± 0.9

76.6
± 0.6

76.1
± 0.7

75.8
± 1.1

73.7
± 1.3

75.2
± 1.1

75.4
± 0.3

78.9
± 0.2

76.7
± 1.8

81.4
± 1.7

73.9
± 0.5

77.3
± 0.7

79.2
± 2.0

75.8
± 1.0 76.6

LAME [4] 1.1
± 0.3

17.0
± 8.7

12.5
± 6.5

1.1
± 0.3

0.4
± 0.2

1.5
± 0.6

2.3
± 0.6

17.2
± 26.0

6.0
± 2.3

12.3
± 17.2

68.3
± 15.8

0.7
± 0.3

0.7
± 0.4

13.2
± 3.4

22.1
± 12.3 11.8

CoTTA [44] 76.9
± 0.5

79.4
± 0.4

79.1
± 0.5

77.6
± 0.6

75.4
± 0.4

76.2
± 1.3

77.6
± 0.2

76.0
± 0.5

81.6
± 0.9

76.8
± 0.6

78.0
± 0.4

77.6
± 0.6

79.3
± 0.4

80.6
± 1.0

77.6
± 0.5 78.0

NOTE 3.9
± 1.3

13.8
± 2.4

14.3
± 1.5

3.3
± 2.4

1.7
± 0.2

3.8
± 0.7

6.5
± 0.3

0.9
± 0.0

8.0
± 1.2

14.4
± 8.1

1.6
± 0.3

3.9
± 0.4

4.5
± 1.2

12.6
± 2.5

13.4
± 3.9 7.1
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Table 11: Average classification error (%) and their corresponding standard deviations on CIFAR10-C
with uniformly distributed test streams, shown per domain. Bold type indicates those of lowest
classification error, while those with Red font are performance degradation after adaptation. Averaged
over 3 runs. NOTE* indicates NOTE used directly with test batches (without using PBRS)
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Avg

Source 74.0
± 3.3

66.8
± 3.5

75.3
± 4.2

43.3
± 2.7

48.0
± 2.7

32.6
± 1.2

35.2
± 2.6

22.0
± 0.4

33.0
± 2.5

25.9
± 0.9

8.5
± 0.3

66.1
± 1.8

23.4
± 0.7

53.6
± 0.7

26.8
± 0.7 42.3

BN Stats [29] 33.1
± 0.9

31.1
± 1.0

39.8
± 0.9

12.3
± 0.4

34.8
± 0.3

13.7
± 0.3

12.6
± 0.4

18.3
± 0.7

19.9
± 0.6

14.5
± 0.6

9.3
± 0.3

13.0
± 0.3

23.3
± 0.3

20.8
± 0.2

28.0
± 0.6 21.6

ONDA [27] 33.4
± 0.6

31.3
± 0.9

40.0
± 1.1

12.3
± 0.4

34.6
± 0.7

13.7
± 0.3

12.4
± 0.5

18.3
± 0.6

19.8
± 0.8

14.3
± 0.4

9.1
± 0.0

14.0
± 0.2

23.3
± 0.4

20.9
± 0.2

28.0
± 0.7 21.7

PL [22] 29.4
± 1.1

26.3
± 1.0

36.8
± 1.6

13.7
± 0.4

36.5
± 1.1

14.0
± 1.0

13.5
± 0.2

19.7
± 0.8

21.2
± 0.6

15.6
± 1.5

10.0
± 0.6

14.8
± 0.2

24.5
± 2.0

20.1
± 0.9

27.4
± 1.3 21.6

TENT [41] 25.3
± 0.8

23.1
± 1.1

32.1
± 1.2

11.7
± 0.6

33.1
± 3.0

13.2
± 1.1

11.2
± 0.1

15.9
± 0.3

18.8
± 0.7

12.9
± 0.8

8.6
± 0.3

14.4
± 0.6

21.7
± 0.9

16.5
± 0.8

23.6
± 0.7 18.8

LAME [4] 78.2
± 3.6

70.6
± 4.0

80.5
± 4.5

46.6
± 1.9

48.0
± 3.8

34.2
± 0.4

37.4
± 1.5

20.8
± 0.8

30.5
± 4.1

26.9
± 1.8

9.8
± 0.2

71.9
± 1.0

24.2
± 0.9

56.4
± 0.8

25.8
± 0.9 44.1

CoTTA [44] 23.1
± 0.7

21.5
± 0.6

28.0
± 0.3

11.7
± 0.5

29.2
± 0.6

13.3
± 0.6

12.0
± 0.5

16.6
± 0.2

16.6
± 0.3

13.8
± 0.4

8.8
± 0.2

14.9
± 0.5

20.6
± 0.7

17.3
± 0.5

19.9
± 0.4 17.8

NOTE 33.5
± 1.7

30.0
± 1.6

38.2
± 0.9

12.6
± 0.8

34.4
± 0.8

11.5
± 0.5

12.9
± 0.6

14.1
± 0.2

15.2
± 0.8

14.0
± 0.6

7.4
± 0.2

7.8
± 0.2

20.7
± 0.3

24.7
± 0.7

24.2
± 0.4 20.1

NOTE* 23.8
± 0.7

23.0
± 0.9

31.1
± 0.3

11.8
± 0.6

30.9
± 1.3

11.8
± 0.4

11.9
± 0.7

15.3
± 1.3

14.0
± 0.7

13.3
± 0.7

8.6
± 0.2

7.5
± 0.3

21.2
± 0.3

16.9
± 0.6

23.0
± 1.2 17.6

Table 12: Average classification error (%) and their corresponding standard deviations on CIFAR100-
C with uniformly distributed test streams, shown per domain. Bold type indicates those of lowest
classification error, while those with Red font are performance degradation after adaptation. Averaged
over 3 runs. NOTE* indicates NOTE used directly with test batches (without using PBRS)

Method G
au

ss
ia

n

Sh
ot

Im
pu

ls
e

D
ef

oc
us

G
la

ss

M
ot

io
n

Zo
om

Sn
ow

Fr
os

t

Fo
g

B
rig

ht
ne

ss

C
on

tra
st

El
as

tic

Pi
xe
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te
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EG

Avg

Source 88.1
± 0.2

86.8
± 0.6

93.7
± 0.6

64.9
± 0.4

79.7
± 0.9

55.5
± 0.3

57.7
± 0.2

53.8
± 0.4

66.3
± 0.8

59.3
± 0.4

33.0
± 0.3

81.4
± 0.4

49.2
± 0.4

73.6
± 1.1

55.5
± 0.3 66.6

BN Stats [29] 60.9
± 0.8

59.9
± 0.6

65.7
± 0.8

33.7
± 0.4

57.6
± 0.4

36.5
± 0.2

35.2
± 0.4

46.7
± 0.3

46.9
± 0.4

42.8
± 0.7

32.3
± 0.4

35.6
± 0.5

45.8
± 0.3

43.6
± 0.3

55.5
± 0.2 46.6

ONDA [27] 60.8
± 0.9

60.2
± 0.5

66.0
± 0.6

33.9
± 0.4

57.5
± 0.4

36.3
± 0.4

34.6
± 0.4

46.5
± 0.3

47.2
± 0.3

42.1
± 0.6

32.1
± 0.5

36.4
± 0.4

45.5
± 0.1

43.4
± 0.8

55.1
± 0.1 46.5

PL [22] 52.2
± 0.9

50.3
± 1.0

59.4
± 0.9

33.5
± 0.5

54.0
± 0.6

35.7
± 0.3

33.1
± 0.5

42.8
± 0.9

44.5
± 1.6

39.2
± 1.3

30.9
± 0.2

35.5
± 0.2

45.5
± 1.0

39.9
± 0.3

50.4
± 1.3 43.1

TENT [41] 48.7
± 0.8

47.2
± 0.6

55.6
± 0.9

31.5
± 0.2

50.9
± 0.5

33.5
± 0.4

31.7
± 0.2

39.6
± 0.3

41.0
± 0.1

36.8
± 0.7

29.4
± 0.3

33.6
± 0.4

42.3
± 0.6

36.8
± 0.5

46.4
± 0.5 40.3

LAME [4] 91.0
± 1.0

89.5
± 1.0

95.2
± 0.7

68.1
± 0.9

82.7
± 1.1

57.1
± 0.5

60.2
± 0.3

54.7
± 0.3

68.9
± 1.2

61.8
± 0.6

33.7
± 0.5

85.2
± 0.4

50.3
± 0.2

76.7
± 1.3

56.2
± 0.5 68.8

CoTTA [44] 52.8
± 0.7

51.0
± 0.4

56.9
± 0.6

35.8
± 0.4

53.9
± 0.2

37.9
± 0.5

36.8
± 0.1

45.2
± 0.5

44.5
± 0.1

44.0
± 0.2

32.2
± 0.5

41.3
± 1.4

46.1
± 0.1

39.7
± 0.3

46.9
± 0.7 44.3

NOTE 65.6
± 1.0

62.6
± 0.7

72.0
± 0.2

36.8
± 0.7

60.5
± 0.7

34.9
± 0.5

36.7
± 0.2

39.6
± 0.2

41.7
± 0.6

42.3
± 0.3

28.6
± 0.2

32.3
± 0.9

43.8
± 0.2

47.7
± 0.4

50.9
± 0.2 46.4

NOTE* 51.8
± 1.0

50.0
± 0.3

60.7
± 0.4

32.6
± 0.2

54.4
± 0.3

33.0
± 0.2

33.5
± 0.4

38.5
± 0.3

38.6
± 0.1

36.7
± 0.3

29.7
± 0.5

27.3
± 0.3

43.2
± 0.4

37.1
± 0.2

47.6
± 0.9 41.0
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Table 13: Average classification error (%) and their corresponding standard deviations on ImageNet-C
with temporally correlated test streams, shown per corruption. Bold type indicates those of lowest
classification error, while those with Red font are performance degradation after adaptation. Averaged
over 3 runs.
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Avg

Source 98.4
± 0.0

97.7
± 0.0

98.4
± 0.0

90.6
± 0.0

92.5
± 0.0

89.8
± 0.0

81.8
± 0.0

89.5
± 0.0

85.0
± 0.0

86.4
± 0.0

51.1
± 0.0

97.2
± 0.0

85.3
± 0.0

76.9
± 0.0

71.7
± 0.0 86.1

BN Stats 89.4
± 0.0

88.5
± 0.1

89.2
± 0.2

90.8
± 0.0

90.0
± 0.0

81.3
± 0.0

69.8
± 0.2

72.6
± 0.1

73.8
± 0.0

62.6
± 0.0

44.3
± 0.3

92.1
± 0.0

64.5
± 0.1

60.3
± 0.1

70.7
± 0.0 76.0

ONDA 89.2
± 0.0

88.2
± 0.0

89.0
± 0.1

90.9
± 0.1

90.0
± 0.1

81.6
± 0.1

69.5
± 0.0

72.6
± 0.1

73.7
± 0.0

62.7
± 0.1

43.9
± 0.0

92.1
± 0.0

64.3
± 0.0

60.1
± 0.1

70.0
± 0.0 75.9

PL 89.8
± 1.9

86.1
± 0.9

88.5
± 1.6

93.0
± 1.1

92.5
± 0.6

82.2
± 0.0

64.6
± 0.3

70.2
± 0.6

79.7
± 0.4

55.8
± 0.2

43.9
± 0.1

97.2
± 0.5

57.8
± 0.1

52.7
± 0.2

60.5
± 0.1 74.4

TENT 91.1
± 2.4

89.7
± 1.6

91.0
± 2.5

93.1
± 3.2

92.2
± 3.2

84.7
± 4.9

72.4
± 3.5

73.3
± 1.1

78.7
± 6.9

59.8
± 4.0

44.5
± 0.5

95.2
± 4.3

61.6
± 4.3

56.4
± 5.6

67.4
± 4.7 76.5

LAME 98.6
± 0.0

97.8
± 0.0

98.6
± 0.0

90.7
± 0.0

92.6
± 0.0

89.9
± 0.0

81.9
± 0.0

89.8
± 0.0

85.0
± 0.0

86.5
± 0.0

51.1
± 0.0

97.3
± 0.0

85.6
± 0.0

77.0
± 0.0

71.7
± 0.0 86.3

CoTTA 85.7
± 0.2

84.6
± 0.1

85.4
± 0.0

87.8
± 0.3

86.4
± 0.2

74.6
± 0.0

64.2
± 0.2

67.9
± 0.0

69.7
± 0.2

56.1
± 0.1

42.7
± 0.0

88.5
± 0.8

60.0
± 0.0

54.2
± 0.1

64.9
± 0.1 71.5

NOTE 87.6
± 0.1

85.7
± 0.1

87.2
± 0.2

83.3
± 0.2

83.2
± 0.2

73.6
± 0.0

65.4
± 0.2

65.0
± 0.0

68.6
± 0.1

57.9
± 0.0

43.5
± 0.1

75.9
± 0.1

61.2
± 0.1

54.1
± 0.0

62.8
± 0.1 70.3

NOTE* 89.5
± 0.4

87.9
± 0.2

88.9
± 0.3

84.6
± 0.2

83.7
± 0.2

74.4
± 0.1

66.6
± 0.1

66.1
± 0.2

71.2
± 0.1

58.2
± 0.1

44.7
± 0.1

78.8
± 0.1

61.2
± 0.2

54.8
± 0.0

64.8
± 0.1 71.7

Table 14: Average classification error (%) and their corresponding standard deviations on MNIST-C
with uniformly distributed test streams, shown per domain. Bold type indicates those of lowest
classification error, while those with Red font are performance degradation after adaptation. Averaged
over 3 runs. NOTE* indicates NOTE used directly with test batches (without using PBRS)

Method Sh
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Avg

Source 3.7
± 0.7

27.3
± 5.5

20.4
± 6.4

4.6
± 0.5

2.2
± 0.5

5.1
± 1.0

6.5
± 1.0

21.1
± 22.9

13.8
± 1.4

17.4
± 17.0

66.6
± 14.7

3.8
± 0.4

3.7
± 0.4

18.2
± 3.0

26.4
± 11.4 16.1

BN Stats [29] 2.9
± 0.7

7.0
± 1.6

9.1
± 1.0

3.0
± 0.8

2.0
± 0.3

3.8
± 0.2

6.1
± 0.7

1.1
± 0.1

12.5
± 0.8

6.5
± 2.6

2.2
± 0.5

3.3
± 0.3

2.5
± 0.2

11.4
± 0.2

6.7
± 0.9 5.3

ONDA [27] 2.6
± 0.6

6.5
± 1.4

8.6
± 1.0

2.8
± 0.8

1.8
± 0.2

3.5
± 0.2

5.7
± 0.7

1.0
± 0.1

11.7
± 1.1

6.1
± 2.6

2.6
± 0.9

3.0
± 0.4

2.2
± 0.2

11.0
± 0.4

6.2
± 0.8 5.0

PL [22] 1.6
± 0.3

3.5
± 0.7

4.8
± 0.8

1.7
± 0.0

1.5
± 0.0

2.3
± 0.1

4.9
± 0.7

0.8
± 0.1

6.8
± 0.8

2.7
± 0.6

1.0
± 0.0

2.2
± 0.3

1.7
± 0.2

5.3
± 0.4

3.9
± 0.9 3.0

TENT [41] 1.4
± 0.1

2.8
± 0.4

3.8
± 0.5

1.5
± 0.0

1.2
± 0.0

1.8
± 0.1

3.6
± 0.2

0.7
± 0.1

4.6
± 0.7

1.9
± 0.2

0.8
± 0.0

1.7
± 0.1

1.3
± 0.1

4.5
± 0.6

3.1
± 0.5 2.3

LAME [4] 3.0
± 0.8

30.7
± 8.3

18.9
± 5.8

3.4
± 0.5

1.9
± 0.3

4.2
± 0.5

6.3
± 0.9

25.9
± 29.8

13.9
± 1.9

18.5
± 21.2

78.2
± 9.8

3.3
± 0.7

3.2
± 0.3

19.3
± 3.2

28.0
± 12.7 17.2

CoTTA [44] 2.6
± 0.6

6.6
± 1.7

8.7
± 0.9

2.7
± 0.7

1.8
± 0.3

3.2
± 0.0

5.6
± 0.8

1.0
± 0.1

14.3
± 1.1

7.7
± 6.0

1.9
± 0.5

2.9
± 0.3

2.2
± 0.1

13.6
± 1.4

6.1
± 0.6 5.4

NOTE 2.5
± 0.8

10.7
± 1.9

10.9
± 2.0

2.0
± 0.3

1.5
± 0.0

2.4
± 0.1

5.5
± 0.3

0.9
± 0.1

5.5
± 0.2

12.1
± 5.7

1.2
± 0.1

2.8
± 0.3

3.0
± 0.1

10.9
± 1.6

9.1
± 0.4 5.4

NOTE* 1.3
± 0.2

2.7
± 0.1

3.8
± 0.5

1.3
± 0.1

1.1
± 0.1

1.6
± 0.0

3.5
± 0.1

0.7
± 0.0

2.8
± 0.0

2.2
± 0.1

0.7
± 0.1

1.7
± 0.4

1.4
± 0.2

4.8
± 1.1

3.5
± 0.1 2.2

B.2 Real distributions with domain shift

Since the adaptation is done from a single source domain to a single target domain in KITTI, no
further per-domain tables are specified here.
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Table 15: Average classification error (%) and their corresponding standard deviations on HARTH
with real test streams, shown per domain. Bold type indicates those of lowest classification error,
while those with Red font are performance degradation after adaptation. Averaged over 3 runs.

Method S008 S018 S019 S021 S022 S028 S029 Avg
Source 86.2 ± 1.3 44.7 ± 2.1 50.4 ± 9.5 74.8 ± 3.8 72.0 ± 2.6 53.0 ± 24.0 57.0 ± 16.7 62.6
BN Stats [29] 70.3 ± 1.4 73.8 ± 1.3 68.1 ± 3.0 64.9 ± 0.9 68.5 ± 0.3 65.5 ± 0.5 69.4 ± 1.4 68.6
ONDA [27] 75.3 ± 4.0 60.4 ± 0.9 63.1 ± 4.6 67.9 ± 0.4 70.0 ± 3.8 73.6 ± 0.7 74.5 ± 4.4 69.3
PL [22] 60.4 ± 1.3 71.4 ± 1.5 62.9 ± 1.9 61.8 ± 1.2 63.1 ± 0.4 64.5 ± 0.8 69.4 ± 2.0 64.8
TENT [41] 59.5 ± 0.3 71.0 ± 1.6 62.2 ± 1.9 61.1 ± 1.1 61.7 ± 0.4 64.1 ± 0.5 69.3 ± 2.1 64.1
LAME [4] 85.5 ± 1.7 43.4 ± 2.0 48.8 ± 10.9 73.2 ± 3.8 70.7 ± 2.6 51.2 ± 29.4 54.1 ± 20.6 61.0
CoTTA [44] 70.4 ± 1.4 73.8 ± 1.3 68.2 ± 2.9 64.9 ± 1.0 68.5 ± 0.2 65.5 ± 0.5 69.4 ± 1.4 68.7
NOTE 84.8 ± 0.7 32.9 ± 1.8 36.3 ± 10.9 69.1 ± 2.4 67.1 ± 1.2 30.0 ± 13.8 36.6 ± 9.8 51.0

Table 16: Average classification error (%) and their corresponding standard deviations on Extrasensory
with real test streams, shown per domain. Bold type indicates those of lowest classification error,
while those with Red font are performance degradation after adaptation. Due to the length of the
name of each domain, denoted here with the first three characters. Averaged over 3 runs.

Method 4FC 598 619 797 A5D C48 D7D Avg
Source 34.6 ± 2.5 40.1 ± 0.7 63.8 ± 5.7 45.3 ± 2.4 64.6 ± 3.7 39.6 ± 6.8 63.0 ± 3.9 50.2
BN Stats[29] 61.7 ± 4.2 50.1 ± 5.1 51.6 ± 1.5 59.4 ± 1.1 54.4 ± 1.0 52.4 ± 2.8 62.6 ± 2.9 56.0
ONDA [27] 36.3 ± 3.5 44.0 ± 2.2 50.8 ± 2.4 56.1 ± 1.9 59.7 ± 2.7 43.5 ± 5.9 46.7 ± 4.2 48.2
PL [22] 62.2 ± 4.3 50.0 ± 5.1 51.7 ± 1.8 59.2 ± 1.1 53.9 ± 1.1 52.3 ± 2.9 62.8 ± 3.0 56.0
TENT [41] 62.1 ± 4.6 49.8 ± 5.0 51.6 ± 1.9 59.4 ± 1.2 53.9 ± 1.0 52.2 ± 2.9 62.8 ± 3.0 56.0
LAME [4] 33.1 ± 2.4 37.8 ± 0.4 68.0 ± 8.8 37.1 ± 6.7 73.2 ± 2.6 39.0 ± 7.6 66.4 ± 4.0 50.7
CoTTA [44] 61.7 ± 4.2 50.0 ± 4.9 51.6 ± 1.5 59.4 ± 1.1 54.4 ± 1.0 52.4 ± 2.8 62.6 ± 2.9 56.0
NOTE 41.7 ± 5.9 40.7 ± 0.8 55.5 ± 10.8 45.8 ± 4.6 45.8 ± 10.4 32.9 ± 1.1 55.5 ± 10.4 45.4

B.3 Ablation study

Table 17: Average classification error (%) and their corresponding standard deviations of varying
ablation settings on CIFAR10-C with temporally correlated test streams, shown per domain. Bold
type indicates those of lowest classification error. Averaged over 3 runs.

Method G
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n

Sh
ot
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e
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G
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M
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n

Zo
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Sn
ow

Fr
os

t

Fo
g

B
rig

ht
ne

ss

C
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tra
st

El
as

tic

Pi
xe

la
te

JP
EG

Avg

Source 74.0
± 3.3

66.8
± 3.5

75.3
± 4.2

43.3
± 2.7

48.0
± 2.7

32.6
± 1.2

35.2
± 2.6

22.0
± 0.4

33.0
± 2.5

25.9
± 0.9

8.5
± 0.3

66.1
± 1.8

23.4
± 0.7

53.6
± 0.7

26.8
± 0.7 42.3

IABN 44.5
± 2.7

41.3
± 2.3

48.0
± 1.9

16.3
± 1.0

39.9
± 0.1

13.8
± 0.7

16.1
± 0.7

14.9
± 0.3

17.8
± 0.6

16.3
± 0.6

7.6
± 0.2

8.8
± 0.3

22.5
± 0.3

34.0
± 1.2

26.7
± 0.6 24.6

PBRS 45.2
± 3.0

38.5
± 4.9

46.8
± 3.3

24.5
± 2.2

38.2
± 2.8

19.1
± 0.9

20.0
± 0.2

16.5
± 0.2

19.1
± 2.4

16.5
± 0.4

7.1
± 0.7

34.4
± 3.0

21.5
± 0.5

39.8
± 4.7

25.2
± 0.4 27.5

IABN + RS 33.7
± 6.4

30.0
± 6.7

37.6
± 2.9

13.6
± 0.3

34.9
± 1.9

12.4
± 1.2

14.5
± 1.7

13.9
± 1.1

15.0
± 3.1

14.0
± 1.3

7.2
± 0.0

7.4
± 0.7

21.1
± 0.9

26.2
± 4.4

25.9
± 1.1 20.5

IABN + PBRS 34.9
± 1.6

32.3
± 3.1

39.6
± 2.5

13.6
± 0.5

35.8
± 1.9

11.8
± 0.8

14.5
± 0.5

14.1
± 0.6

15.2
± 1.3

14.2
± 0.6

7.7
± 0.3

7.6
± 0.6

20.8
± 0.7

27.7
± 2.6

26.4
± 0.5 21.1
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Table 18: Average classification error (%) and their corresponding standard deviations of varying
ablation settings on CIFAR100-C with temporally correlated test streams, shown per domain. Bold
type indicates those of lowest classification error. Averaged over 3 runs.
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Avg

Source 88.1
± 0.2

86.8
± 0.6

93.7
± 0.6

64.9
± 0.4

79.7
± 0.9

55.5
± 0.3

57.7
± 0.2

53.8
± 0.4

66.3
± 0.8

59.3
± 0.4

33.0
± 0.3

81.4
± 0.4

49.2
± 0.4

73.6
± 1.1

55.5
± 0.3 66.6

IABN 79.3
± 0.7

77.2
± 0.7

84.2
± 1.0

45.0
± 0.6

69.6
± 0.3

40.9
± 0.3

43.1
± 0.6

42.5
± 0.4

48.6
± 0.3

52.5
± 0.5

30.4
± 0.1

40.5
± 0.7

47.6
± 0.5

59.8
± 1.1

56.2
± 0.4 54.5

PBRS 68.8
± 0.6

66.2
± 0.4

73.3
± 0.9

46.2
± 0.6

64.9
± 1.5

41.8
± 0.6

41.7
± 0.3

44.2
± 0.4

48.5
± 0.7

44.7
± 0.2

28.3
± 0.2

60.1
± 0.4

44.2
± 0.4

51.9
± 0.8

50.5
± 0.5 51.7

IABN + RS 66.8
± 2.1

65.2
± 0.3

73.1
± 1.0

38.7
± 0.4

63.0
± 0.9

36.6
± 0.0

38.0
± 0.2

41.9
± 0.8

43.9
± 0.4

44.6
± 0.5

29.5
± 0.3

33.5
± 0.7

46.0
± 0.5

49.9
± 0.9

52.4
± 0.4 48.2

IABN + PBRS 66.2
± 0.8

64.2
± 1.6

72.6
± 0.4

37.2
± 0.8

61.1
± 0.7

35.4
± 0.3

37.4
± 0.4

40.0
± 0.4

42.5
± 0.3

43.4
± 0.5

29.4
± 0.1

32.1
± 0.5

44.3
± 0.4

47.5
± 0.6

51.3
± 0.3 47.0

Table 19: Average classification error (%) and their corresponding standard deviations of varying
ablation settings on CIFAR10-C with uniformly distributed test streams, shown per domain. Bold
type indicates those of lowest classification error. Averaged over 3 runs.
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Avg

Source 74.0
± 3.3

66.8
± 3.5

75.3
± 4.2

43.3
± 2.7

48.0
± 2.7

32.6
± 1.2

35.2
± 2.6

22.0
± 0.4

33.0
± 2.5

25.9
± 0.9

8.5
± 0.3

66.1
± 1.8

23.4
± 0.7

53.6
± 0.7

26.8
± 0.7 42.3

IABN 44.5
± 2.7

41.4
± 2.3

48.1
± 1.9

16.3
± 1.0

39.9
± 0.1

13.9
± 0.7

16.2
± 0.7

14.9
± 0.3

17.9
± 0.6

16.4
± 0.5

7.6
± 0.2

8.8
± 0.3

22.5
± 0.4

34.1
± 1.2

26.7
± 0.6 24.6

PBRS 43.4
± 0.8

37.9
± 0.6

46.2
± 1.5

21.8
± 2.0

36.8
± 1.0

18.1
± 0.3

17.6
± 0.8

16.1
± 0.1

19.3
± 0.5

15.2
± 0.3

7.1
± 0.4

32.5
± 1.5

20.0
± 0.2

30.7
± 0.7

23.8
± 0.1 25.8

IABN + RS 33.8
± 1.6

31.1
± 0.9

40.4
± 1.3

13.3
± 0.7

35.6
± 0.2

11.8
± 0.6

13.2
± 0.3

14.6
± 0.3

14.9
± 0.6

14.7
± 0.4

7.7
± 0.2

8.1
± 0.4

22.3
± 0.5

24.6
± 1.9

25.1
± 1.2 20.7

IABN + PBRS 33.5
± 1.7

30.0
± 1.6

38.2
± 0.9

12.6
± 0.8

34.4
± 0.8

11.5
± 0.5

12.9
± 0.6

14.1
± 0.2

15.2
± 0.8

14.0
± 0.6

7.4
± 0.2

7.8
± 0.2

20.7
± 0.3

24.7
± 0.7

24.2
± 0.4 20.1

Table 20: Average classification error (%) and their corresponding standard deviations of varying
ablation settings on CIFAR100-C with uniformly distributed test streams, shown per domain. Bold
type indicates those of lowest classification error. Averaged over 3 runs.
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Source 88.1
± 0.2

86.8
± 0.6

93.7
± 0.6

64.9
± 0.4

79.7
± 0.9

55.5
± 0.3

57.7
± 0.2

53.8
± 0.4

66.3
± 0.8

59.3
± 0.4

33.0
± 0.3

81.4
± 0.4

49.2
± 0.4

73.6
± 1.1

55.5
± 0.3 66.6

IABN 79.3
± 0.6

77.2
± 0.6

84.3
± 1.0

45.0
± 0.5

69.6
± 0.2

40.9
± 0.3

43.1
± 0.6

42.5
± 0.4

48.6
± 0.3

52.5
± 0.5

30.5
± 0.1

40.5
± 0.7

47.6
± 0.5

59.8
± 1.1

56.2
± 0.4 54.5

PBRS 68.6
± 1.0

66.0
± 0.3

72.9
± 0.3

45.3
± 0.3

64.1
± 0.8

40.9
± 0.5

41.6
± 0.5

43.7
± 0.2

47.9
± 0.2

44.2
± 0.3

28.3
± 0.3

59.9
± 0.7

44.2
± 0.5

51.1
± 1.6

50.4
± 0.6 51.3

IABN + RS 67.1
± 1.2

65.6
± 0.3

74.0
± 0.4

39.0
± 0.3

61.4
± 1.3

36.5
± 0.1

38.7
± 0.8

41.4
± 0.2

44.0
± 0.4

45.0
± 0.2

30.0
± 0.2

34.0
± 0.2

46.0
± 1.4

48.8
± 1.3

52.5
± 0.5 48.3

IABN + PBRS 65.6
± 1.0

62.6
± 0.7

72.0
± 0.2

36.8
± 0.7

60.5
± 0.7

34.9
± 0.5

36.7
± 0.2

39.6
± 0.2

41.7
± 0.6

42.3
± 0.3

28.6
± 0.2

32.3
± 0.9

43.8
± 0.2

47.7
± 0.4

50.9
± 0.2 46.4
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C Replacing BN with IABN during test time

Table 21: Average classification error (%) and corresponding standard deviations of varying ablation
settings on CIFAR10-C/100-C under temporally correlated (non-i.i.d.) and uniformly distributed
(i.i.d.) test data stream. IABN* refers to replacing BN with IABN during test time (no pre-training
with IABN layers). Bold type indicates those of lowest classification error. Averaged over 3 runs.

Temporally correlated test stream Uniformly distributed test stream
Method CIFAR10-C CIFAR100-C Avg CIFAR10-C CIFAR100-C Avg
Source 42.3 ± 1.1 66.6 ± 0.1 54.4 42.3 ± 1.1 66.6 ± 0.1 54.4
IABN* 27.1 ± 0.4 60.8 ± 0.1 44.0 27.1 ± 0.4 60.8 ± 0.2 44.0
IABN 24.6 ± 0.6 54.5 ± 0.1 39.5 24.6 ± 0.6 54.5 ± 0.1 39.5
IABN*+PBRS 24.9 ± 0.2 55.9 ± 0.2 40.4 23.2 ± 0.4 55.3 ± 0.1 39.3
IABN+PBRS 21.1 ± 0.6 47.0 ± 0.1 34.0 20.1 ± 0.5 46.4 ± 0.0 33.2

For pre-trained models with BN layers such as ResNet [12], NOTE needs to re-train the model by
replacing BN layers with IABN layers in order to utilize the effectiveness of IABN. This requires
additional computational cost of re-training, which might make it inconvenient to utilize off-the-shelf
models. We further investigate whether simply switching BN to IABN without re-training still leads
to performance gain.

Table 21 shows the result of this experiment, where IABN* refers to replacing BN with IABN during
test time. We note that IABN* still shows significant reduction of errors under CIFAR10-C and
CIFAR100-C datasets compared with BN (Source). We interpret this as the normalization correction
in IABN is valid to some extent without re-training of the model. We notice that IABN* outperforms
the baselines in CIFAR10-C with 27.1% error, while the second best (LAME) shows 36.2% error 1.
In addition, IABN* also shows improvement combined with PBRS. This implies that IABN can
be used without re-training the model, which aligns with the fully test-time adaptation paradigm
introduced in a recent study [41].

D License of assets

Datasets KITTI dataset (CC-BY-NC-SA 3.0), KITTI-rain dataset (CC-BY-NC-SA 3.0), CIFAR10,
100 (MIT License), ImageNet-C (Apache 2.0), MNIST-C (CC-BY-NC-SA 4.0), HARTH datset (MIT
License), and the Extrasensory dataset (CC-BY-NC-SA 4.0)

Codes Code for rain augmentation on KITTI dataset (Apache 2.0), torch-vision for ResNet18
and ResNet50 (Apache 2.0), code for depth estimation used in rain augmentation on KITTI dataset
(UCLB ACP-A License), code for generating Dirichlet distributions (Apache 2.0), official repository
of CoTTA (MIT License), official repository of TENT (MIT License), and the official repository of
LAME (CC BY-NC-SA 4.0).
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Figure 12: Illustration of the real-time cumulative classification error change of different methods on
the HARTH dataset. The x-axis denotes the samples in order, whereas the y-axis denotes the error
rate in percentage. Note that some lines are not clearly visible due to overlap.
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(e) A5D.
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(f) C48.
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(g) D7D.

Figure 13: Illustration of the real-time cumulative classification error change of different methods on
the Extrasensory dataset. The x-axis denotes the samples in order, whereas the y-axis denotes the
error rate in percentage. Note that some lines are not clearly visible due to overlap.
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