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Abstract

Test-time adaptation (TTA) aims to address distributional shifts between train-
ing and testing data using only unlabeled test data streams for continual model
adaptation. However, most TTA methods assume benign test streams, while test
samples could be unexpectedly diverse in the wild. For instance, an unseen object
or noise could appear in autonomous driving. This leads to a new threat to existing
TTA algorithms; we found that prior TTA algorithms suffer from those noisy test
samples as they blindly adapt to incoming samples. To address this problem, we
present Screening-out Test-Time Adaptation (SoTTA), a novel TTA algorithm
that is robust to noisy samples. The key enabler of SoTTA is two-fold: (i) input-
wise robustness via high-confidence uniform-class sampling that effectively filters
out the impact of noisy samples and (ii) parameter-wise robustness via entropy-
sharpness minimization that improves the robustness of model parameters against
large gradients from noisy samples. Our evaluation with standard TTA benchmarks
with various noisy scenarios shows that our method outperforms state-of-the-art
TTA methods under the presence of noisy samples and achieves comparable ac-
curacy to those methods without noisy samples. The source code is available at
https://github.com/taeckyung/SoTTA.

1 Introduction

Deep learning has achieved remarkable performance in various domains [6, 8, 33], but its effectiveness
is often limited when the test and training data distributions are misaligned. This phenomenon, known
as domain shift [31], is prevalent in real-world scenarios where unexpected environmental changes
and noises result in poor model performance. For instance, in autonomous driving, weather conditions
can change rapidly. To address this challenge, Test-Time Adaptation (TTA) [1, 5, 29, 38, 39, 44] has
emerged as a promising paradigm that aims to improve the generalization ability of deep learning
models by adapting them to test samples, without requiring further data collection or labeling costs.

While TTA has been acknowledged as a promising method for enhancing the robustness of machine
learning models against domain shifts, the evaluation of TTA frequently relies on the assumption that
the test stream contains only benign test samples of interest. However, test data can be unexpectedly
diverse in real-world settings, containing not only relevant data but also extraneous elements that
are outside the model’s scope, which we refer to noisy samples (Figure 1). For instance, unexpected
noises can be introduced in autonomous driving scenarios, such as dust on the camera or adversarial
samples by malicious users. As shown in Figure 2, we found that most of the prior TTA algorithms
showed significantly degraded accuracy with the presence of noisy samples (e.g., 81.0%→ 52.1% in
TENT [38] and 82.2%→ 54.8% in CoTTA [39]).

∗Equal contribution.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/taeckyung/SoTTA


Benign sample Noisy sample

tOnline data stream

Acc: 81%

Clean TTA

Noisy TTA
Update

Update

Acc: 52%

Figure 1: Unlike prior assumptions (Clean TTA), real-
world test streams could include unexpected noisy sam-
ples out of the model’s scope (Noisy TTA), such as
glare, fallen leaf covering the lens, unseen objects (e.g.,
a flamingo), and noise in autonomous driving scenar-
ios. The accuracy of existing TTA methods degrades
in such cases.
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Figure 2: Average classification accuracy
(%) of existing TTA methods and our
method (SoTTA) on CIFAR10-C. The perfor-
mance of existing methods degrades when
noisy data are mixed into the test stream
(Noisy) compared with the original assump-
tion (Clean). Higher is better.

To ensure the robustness of TTA against noisy samples, an intuitive solution might be screening out
noisy samples from the test stream. Out-of-distribution (OOD) detection [10, 11, 18, 19, 20, 21, 24,
25, 43] is a representative method for this, as it tries to detect whether a sample is drawn from the
same distribution as the training data or not. Similarly, open-set domain adaptation (OSDA) [30, 35]
and universal domain adaptation (UDA) [34, 42] generalize the adaptation scenario by assuming that
unknown classes are present in test data that are not in training data. However, these methods require
access to a whole batch of training data and unlabeled target data, which do not often comply with
TTA settings where the model has no access to train data at test time due to privacy issues [38] and
storing a large batch of data is often infeasible due to resource constraints [12]. Therefore, how to
make online TTA robust under practical noisy settings is still an open question.

In this paper, we propose Screening-out Test-Time Adaptation (SoTTA) that is robust to noisy
samples. SoTTA achieves robustness to noisy samples in two perspectives: (i) input-wise robustness
and (ii) parameter-wise robustness. Input-wise robustness aims to filter out noisy samples so that the
model will be trained only with benign samples. We achieve this goal via High-confidence Uniform-
class Sampling (HUS) that avoids selecting noisy samples when updating the model (Section 3.1).
Parameter-wise robustness pursues updating the model weights in a way that prevents model drifting
due to large gradients caused by noisy samples. We achieve this via entropy-sharpness minimization
(ESM) that makes the loss landscape smoother and parameters resilient to weight perturbation caused
by noisy samples (Section 3.2).

We evaluate SoTTA with three common TTA benchmarks (CIFAR10-C, CIFAR100-C, and ImageNet-
C [9]) under four noisy scenarios with different levels of distributional shifts: Near, Far, Attack,
and Noise (Section 2). We compare SoTTA with eight state-of-the-art TTA algorithms [1, 17,
27, 28, 29, 38, 39, 44], including the latest studies that address temporal distribution changes in
TTA [1, 28, 29, 39, 44]. SoTTA showed its effectiveness with the presence of noisy samples. For
instance, in CIFAR10-C, SoTTA achieved 80.0% accuracy under the strongest shift case (Noise),
which is a 22.3%p improvement via TTA and 6.4%p better than the best baseline [44]. In addition,
SoTTA achieves comparable performance to state-of-the-art TTA algorithms without noisy samples,
e.g., showing 82.2% accuracy when the best baseline’s accuracy is 82.4% in CIFAR10-C.

Contributions. (i) We highlight that test sample diversity in real-world scenarios is an important
problem but has not been investigated yet in the literature. We found that most existing TTA algorithms
undergo significant performance degradation with sample diversity. (ii) As a solution, we propose
SoTTA that is robust to noisy samples by achieving input-wise and parameter-wise robustness. (iii)
Our evaluation with three TTA benchmarks (CIFAR10-C, CIFAR100-C, and ImageNet-C) show that
SoTTA outperforms the existing baselines.
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(a) Benign. (b) Near. (c) Far. (d) Attack. (e) Noise.

Figure 3: Five test sample scenarios considered in this work: Benign, Near, Far, Attack, and Noise.
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Figure 4: Overview of SoTTA. SoTTA achieves input-wise robustness via high-confidence uniform-
class sampling (HUS) and parameter-wise robustness via entropy-sharpness minimization (ESM).

2 Preliminaries

Test-time adaptation. Let DS = {XS ,Y} be source data and (xi, yi) ∈ XS × Y be each instance
and the label pair that follows a probability distribution of the source data PS(x, y). Similarly, let
DT = {X T ,Y} be target data and (xj , yj) ∈ X T × Y be each target instance and the label pair
following a target probability distribution PT (x, y), where yj is usually unknown to the learning
algorithm. The covariate shift assumption [31] is given between source and target data distributions,
which is defined as PS(x) ̸= PT (x) and PS(y|x) = PT (y|x). Given an off-the-shelf model f(·; Θ)
pre-trained from DS , the (fully) test-time adaptation (TTA) [38] aims to adapt f(·; Θ) to the target
distribution PT utilizing only xj given test time.

Noisy test samples. We define noisy test samples to represent any samples that are not included in the
target data distribution, i.e., x̃ /∈ X T . We use the term noisy to distinguish it from out-of-distribution
(OOD), as TTA typically aims to adapt to OOD samples, such as corrupted ones. Theoretically, there
could be numerous categories of noisy samples. In this study, we consider five scenarios: Benign,
Near, Far2, Attack, and Noise. Figure 3 shows examples of these scenarios. Benign is the typical
setting of TTA studies without noisy samples, Near represents a semantic shift [41] from target
distribution, Far is a severer shift where covariate shift is evident [41], Attack refers to intelligently
generated adversarial attack with perturbation [40], and Noise refers to random noise. We focus on
these scenarios to understand the impact of noisy samples in TTA as well as the simplicity of analysis.
Detailed settings are described in Section 4.

3 Methodology

Problem and challenges. Prior TTA methods assume test samples are benign and blindly adapt to
incoming batches of test samples. The presence of noisy samples during test time can significantly
degrade their performance for those TTA algorithms, which has not been explored in the literature
yet. Dealing with noisy samples in TTA scenarios is particularly challenging as (i) TTA has no
access to the source data, (ii) no labels are given for target test data, and (iii) the model is continually
adapted and thus a desirable solution should apply to varying models. This makes it difficult to apply
existing solutions that deal with a similar problem. For instance, out-of-distribution (OOD) detection
studies [11, 19, 20, 43] are built on the assumption that a model is fixed at test time, and open-set
domain adaptation (OSDA) methods [30, 35, 42] require labeled source and unlabeled target data for
training.

2We borrowed the term Near and Far from the OOD detection benchmark [41].
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Methodology overview. To address the problem, we propose Screening-out Test-Time Adaptation
(SoTTA), whose overview is described in Figure 4. SoTTA achieves robustness to noisy samples in
two perspectives: (i) input-wise robustness via high-confidence uniform-class sampling that avoids
selecting noisy samples when updating the model (Section 3.1), and (ii) parameter-wise robustness
via entropy-sharpness minimization that makes parameters resilient to weight perturbation caused by
noisy samples (Section 3.2).

3.1 Input-wise robustness via high-confidence uniform-class sampling
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Figure 5: Model predictions on benign (CIFAR10-C) and
noisy samples.

Our first approach is to ensure input-
wise robustness to noisy samples by
filtering out them when selecting sam-
ples for adaptation. As locating noisy
samples without their labels is chal-
lenging, our idea is based on the em-
pirical observation of the model pre-
dictions with respect to noisy samples.

Observation. Our hypothesis is that
noisy samples have distinguished
properties from benign samples due to
the distributional shifts, and this could
be observable via the models’ prediction outputs. We investigate two types of features that work
as proxies for identifying benign samples: (i) confidence of the samples and (ii) predicted class
distributions. Specifically, we compared the distribution of the softmax confidence (Figure 5a) and the
predicted class distribution (Figure 5b) of benign samples with noisy samples. First, the confidence
of the samples is relatively lower than that of benign samples. The more severe the distribution
shift, the lower the confidence (e.g., Far is less confidence than Near), which is also in line with
findings of previous studies that pre-trained models show higher confidence on target distribution than
out-of-distribution data [10, 21]. Second, we found that noisy samples are often skewed in terms of
predictions, and this phenomenon is prominent in more severe shifts (e.g., Noise), except for Attack,
whose objective is to make the model fail to correctly classify. These skewed distributions could lead
to an undesirable bias in p(y) and thus might negatively impact the TTA objective, such as entropy
minimization [38].

Algorithm 1 High-confidence Uniform-class Sampling (HUS)

Input: test data stream xt, memory M with capacity N
for test time t ∈ {1, · · · , T} do

ŷt ← f(x; Θ)
if C(x; Θ) > C0 then ▷ Sampling confident data

if |M |< N then
Add (xt, ŷt) to M

else
Y∗ ← the most prevalent class(es) in M
if ŷt /∈ Y∗ then ▷ Balancing classes

Randomly discard (xi, ŷi) from M where ŷi ∈ Y∗

else
Randomly discard (xi, ŷi) from M where ŷi = ŷt

Add (xt, ŷt) to M

Solution. Based on the aforementioned empirical analysis, we propose High-confidence Uniform-
class Sampling (HUS) that avoids using noisy samples for adaptation by utilizing a small memory.
We maintain confident samples while balancing their predicted classes in the memory. The selected
samples in the memory are then used for adaptation. We describe the procedure as a pseudo-code
code in Algorithm 1. Given a target test sample x, HUS measures its confidence. Specifically, we
define the confidence C(x; Θ) of each test sample x as:

C(x; Θ) = max
i=1···n

(
eŷi∑n
j=1 e

ŷj

)
where ŷ = f(x; Θ). (1)

4



We store the sample if its confidence is higher than the predefined threshold C0. In this way, we
maintain only high-confidence samples in the memory used for adaptation and thus reduce the impact
of low-confidence noisy samples.

Furthermore, while storing data in the memory, we balance classes among them. Specifically, if the
predicted class of the current test sample is not in the most prevalent class in the memory, then HUS
randomly replaces one random sample in the most prevalent class with the new sample. Otherwise,
if the current sample belongs to the most prevalent class in the memory, HUS replaces one random
sample in the same class with the current one. We can maintain classes uniformly with this strategy,
which is effective for not only filtering out noisy samples but also removing class biases among
samples when used for adaptation, which we found is beneficial for TTA. We found these two memory
management strategies not only effectively reduce the impact of noisy samples for adaptation but
also improve the model performance in benign-only cases by avoiding model drifting due to biased
and low-confidence samples (Section 4).

With the stored samples in the memory, we update the normalization statistics and affine parameters
in batch normalization (BN) [13] layers, following the prior TTA methods [29, 38, 44]. This is known
as not only computationally efficient but also showed comparable performance improvement to
updating the whole layers. While we aim to avoid using noisy samples for adaptation, a few noisy
samples could still be stored in the memory, e.g., when they are similar to benign samples or outliers.
To be robust to temporal variances of the samples in the memory, we take the exponential moving
average to update the BN statistics (means µ and variances σ2) instead of directly using the statistics
from the samples in the memory. Specifically, we update the means and variances of BN layers as:
(i) µ̂t = (1−m)µ̂t−1 +mµt and (ii) σ̂2

t = (1−m)σ̂2
t−1 +mσ2

t , where m ∈ [0, 1] is a momentum
hyperparameter. We describe updating the affine parameters in Section 3.2.

3.2 Parameter-wise robustness via entropy-sharpness minimization
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Figure 6: Cumulative accuracy (%) of benign samples
(CIFAR10-C) and gradient norm of noisy samples (Noise) as
the adaptation proceeds. The dotted line refers to the source
model accuracy.

Our second approach is to secure
parameter-wise robustness to noisy
samples by training the model in a
way that is robust to noisy samples.
Our idea is based on the observation
that the parameter update is often cor-
rupted with noisy samples, and this
could be mitigated by smoothing the
loss landscape with respect to param-
eters.

Observation. While most existing
TTA algorithms utilize the entropy
minimization loss [5, 38, 44], it could
drift the model with high gradient
samples [29]. We observed that adaptation with noisy samples often hinders the model from adapting
to benign samples. Figure 6 shows an example of this phenomenon. Specifically, test samples consist
of 10k benign samples and 10k noisy samples (Noise), which are randomly shuffled. We computed
the cumulative accuracy for the benign test data and the gradient norm of noisy samples at each step.
As shown in Figure 6a, the gradient norm of noisy samples dropped rapidly, indicating that the model
is gradually adapting to these noise data. This leads to a significant accuracy drop for benign samples.
The key question here is how to prevent the model from overfitting to noisy samples. Figure 6b shows
the result with entropy-sharpness minimization (ESM) that we explain in the following paragraph.
With ESM, the gradient norm of noise data remains high, and the accuracy for benign samples
improved after adaptation as intended.

Solution. To make the model parameters robust to adaptation with noisy samples, the entropy loss
landscape should be smoother so that the model becomes resilient to unexpected model drift due
to noisy samples. To that end, we jointly minimize the naive entropy loss and the sharpness of
the entropy loss and thus make the loss landscape robust to model weight perturbations by large
gradients from noisy samples. Specifically, we replace the naive entropy minimization E with the
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entropy-sharpness minimization (ESM) as:

min
Θ

ES(x,Θ) = min
Θ

max
||ϵ||2≤ρ

E(x; Θ + ϵ), (2)

where the entropy-sharpness ES(x,Θ) is defined as the maximum objective around the weight per-
turbation with L2-norm constraint ρ. To tackle this joint optimization problem, we follow sharpness-
aware minimization [4] similar to [29], which originally aims to improve the generalizability of
models over standard optimization algorithms such as stochastic gradient descent (SGD). We repur-
pose this optimization to make the model robust to noisy samples in TTA scenarios.

Specifically, assuming ρ≪ 1, the optimization can be approximated via a first-order Taylor expan-
sion:

ϵ∗(Θ) ≜ argmax
||ϵ||2≤ρ

E(x; Θ + ϵ) ≈ argmax
||ϵ||2≤ρ

ϵT∇ΘE(x; Θ). (3)

The solution for this approximation problem is given by the classical dual norm problem:

ϵ̂(Θ) = ρ sign(∇ΘE(x; Θ)) |∇ΘE(x; Θ)|q−1 /
(
||∇ΘE(x; Θ)||qq

)1/p
, (4)

where 1/p + 1/q = 1. We set p = 2 for further implementation, following the suggestion [4].
By substituting ϵ̂(Θ) to the original entropy-sharpness minimization problem, the final gradient
approximation is:

∇ΘES(x,Θ) ≈ ∇ΘE(x,Θ)|Θ+ϵ̂(Θ). (5)

In summary, we calculate the entropy-sharpness minimization objective via two steps. First, at time
step t, it calculates the ϵ̂(Θt) with previous parameters and entropy loss. It generates the temporal
model with the new parameters: Θt + ϵ̂(Θt). Second, based on the temporary model, the second step
updates the original model’s parameters with the approximation in Equation 5. By putting it together
with HUS (Section 3.1), parameters are updated by:

Θt = Θt−t0 − η∇ΘE(x,Θ)|x=HUSC0
(t), Θ=Θt−t0

+ϵ̂(Θt−t0
), (6)

where η is the step size and t0 is the model adaptation interval. For simplicity, we set the model
adaptation interval the same as the memory capacity, i.e., t0 = N . In the experiments, we use N = 64,
which is one of the most widely-used batch sizes in TTA methods [36, 38, 44].

4 Experiments

This section describes our experimental setup and demonstrates the results in various settings. Please
refer to Appendix A and B for further details.

Scenario. To mimic the presence of noisy samples in addition to the original target test samples, we
injected various noisy datasets into target datasets and randomly shuffled them, which we detail in the
following paragraphs. We report the classification accuracy of the original target samples to measure
the performance of the model in the presence of noisy samples. We ran all experiments with three
random seeds (0, 1, 2) and reported the average accuracy and standard deviations in Appendix B.

Target datasets. We used three standard TTA benchmarks: CIFAR10-C, CIFAR100-C, and
ImageNet-C [9] as our target datasets. All datasets contain 15 different types and five levels of
corruption, where we use the most severe corruption level of five. For each corruption type, the
CIFAR10-C/CIFAR100-C dataset has 10,000 test data with 10/100 classes, and the ImageNet-C
dataset has 50,000 test data with 1000 classes. We use ResNet18 [8] as the backbone network. We
pre-trained the model for CIFAR10 with training data and used the TorchVision [23] pre-trained
model for ImageNet.

Noisy datasets. Besides the target datasets (Benign) mentioned above, we consider four noisy
scenarios (Figure 3): CIFAR100 [15]/ImageNet [3] (Near), MNIST [26] (Far), adversarial attack
(Attack), and uniform random noise (Noise). As both CIFAR10-C and ImageNet-C have real-world
images for object recognition tasks, CIFAR100 would be a near dataset to them. For CIFAR100-C,
we select ImageNet [3] for a near dataset. We select MNIST as a far dataset because they are not
real-world images. We referred to the OOD benchmark [41] for choosing the term Near and Far and
the datasets. For the adversarial attack, we adopt the Distribution Invading Attack (DIA), which is an
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Table 1: Classification accuracy (%) on CIFAR10-C for 15 types of corruptions under five scenarios:
Benign, Near, Far, Attack, and Noise. Benign contains only benign target samples, while other
scenarios include both benign and each type of noisy samples specified. Bold numbers are the highest
accuracy. Averaged over three different random seeds.
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Method Gau. Shot Imp. Def. Gla. Mot. Zoom Snow Fro. Fog Brit. Cont. Elas. Pix. JPEG Avg.
Source 26.0 33.2 24.7 56.7 52.0 67.4 64.8 78.0 67.0 74.1 91.5 33.9 76.6 46.4 73.2 57.7
BN Stats [27] 67.0 69.0 60.4 87.8 65.6 86.3 87.4 81.6 80.3 85.4 90.7 86.9 76.7 79.3 71.9 78.4
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LAME [1] 21.8 29.2 19.7 53.3 52.1 65.9 62.5 79.2 69.3 73.1 90.1 28.0 75.7 43.8 74.1 55.9
CoTTA [39] 76.9 78.6 72.3 88.2 70.9 86.8 88.1 83.4 83.4 86.1 91.2 84.9 79.2 83.0 79.9 82.2
EATA [28] 76.0 78.2 68.2 88.4 70.1 87.4 88.4 84.5 85.0 88.0 91.5 89.9 77.8 84.8 78.4 82.4
SAR [29] 68.3 69.7 58.9 87.8 62.9 86.3 87.4 81.6 80.3 85.4 90.7 86.9 76.7 79.3 72.0 78.3
RoTTA [44] 65.2 67.4 58.3 87.2 64.4 85.8 87.3 81.2 76.9 85.3 90.7 57.2 76.5 77.7 71.6 75.5

Benign

SoTTA 75.0 77.5 68.8 88.8 70.7 87.5 89.0 85.4 84.0 88.2 91.9 83.9 79.8 83.9 78.3 82.2
Source 26.0 33.2 24.7 56.7 52.0 67.4 64.8 78.0 67.0 74.1 91.5 33.9 76.6 46.4 73.2 57.7
BN Stats [27] 64.9 66.3 58.2 84.1 62.7 84.2 85.0 83.1 82.5 85.5 92.4 85.3 76.5 67.4 70.3 76.6
PL [17] 63.2 63.5 51.7 81.6 58.4 78.4 83.3 79.2 79.7 80.3 89.2 79.5 73.1 70.9 69.3 73.4
TENT [38] 64.7 64.7 50.2 81.3 59.6 80.8 83.8 79.6 78.3 80.0 88.6 83.7 73.5 74.3 71.1 74.3
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SAR [29] 59.0 60.9 52.8 78.2 55.4 83.7 81.8 78.8 78.6 85.5 92.4 85.3 66.6 64.0 63.8 72.4
RoTTA [44] 66.3 68.3 59.4 86.0 63.2 85.4 87.0 83.5 82.8 86.4 92.4 84.8 77.1 71.6 71.6 77.7
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SoTTA 74.3 76.7 66.5 87.5 66.9 86.4 87.8 84.4 83.8 87.2 91.3 88.4 78.7 82.4 78.0 81.4
Source 26.0 33.2 24.7 56.7 52.0 67.4 64.8 78.0 67.0 74.1 91.5 33.9 76.6 46.4 73.2 57.7
BN Stats [27] 62.7 66.1 56.0 86.5 60.7 84.2 87.2 79.8 78.4 85.7 89.9 80.2 75.5 69.8 65.0 75.2
PL [17] 55.2 54.1 48.3 83.2 49.3 80.0 83.0 76.8 73.3 80.6 87.6 74.6 70.5 66.8 63.6 69.8
TENT [38] 51.6 57.4 43.7 84.8 43.5 83.3 85.3 80.4 73.1 83.5 88.9 80.8 73.5 72.2 66.7 71.2
LAME [1] 22.8 29.6 19.3 53.2 50.4 64.6 60.7 79.1 67.9 72.8 90.1 28.1 74.7 44.4 74.3 55.5
CoTTA [39] 67.4 71.1 59.4 83.3 61.2 82.3 84.3 80.4 80.4 83.8 87.2 58.0 76.0 70.3 72.9 74.5
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TENT [38] 62.9 65.2 56.7 74.8 54.5 73.4 75.2 73.8 71.8 72.1 83.0 73.7 63.1 70.0 64.0 68.9
LAME [1] 21.0 28.0 17.3 52.7 52.9 65.9 62.0 79.3 70.4 73.9 90.3 28.4 75.6 44.2 74.2 55.9
CoTTA [39] 53.1 57.0 49.7 67.9 55.9 69.7 71.3 74.3 69.5 68.1 84.9 47.0 68.6 62.3 71.6 69.5
EATA [28] 66.6 68.7 57.9 75.2 57.2 74.7 75.5 75.1 73.5 73.8 83.5 76.0 64.3 73.5 67.8 70.9
SAR [29] 46.1 48.1 40.3 63.3 42.2 63.5 62.5 62.3 59.3 62.1 75.4 65.1 50.6 53.9 47.6 56.2
RoTTA [44] 69.7 71.8 62.9 88.6 67.8 87.4 88.7 83.2 80.1 87.1 91.8 63.5 78.4 80.6 74.1 78.4

Attack

SoTTA 78.2 80.8 72.3 90.1 73.6 89.2 90.3 87.4 86.2 89.3 92.9 87.8 81.3 86.6 81.0 84.5
Source 26.0 33.2 24.7 56.7 52.0 67.4 64.8 78.0 67.0 74.1 91.5 33.9 76.6 46.4 73.2 57.7
BN Stats [27] 51.7 53.9 45.5 52.7 41.5 51.0 55.1 62.8 63.8 53.8 76.9 55.8 46.8 54.8 56.4 54.8
PL [17] 47.6 52.7 44.7 48.9 36.1 49.4 54.1 61.9 56.5 50.9 77.1 45.2 43.1 49.4 59.5 51.8
TENT [38] 54.0 57.1 36.7 48.9 28.3 50.5 51.0 64.0 64.7 49.5 80.5 43.7 38.4 56.7 57.0 52.1
LAME [1] 21.8 28.6 18.5 51.6 50.8 64.3 60.9 78.4 67.3 71.7 90.5 27.0 75.1 43.0 73.4 54.9
CoTTA [39] 60.4 60.3 52.4 47.3 41.6 44.1 52.0 62.7 66.6 47.7 79.0 44.7 42.8 60.2 60.2 54.8
EATA [28] 42.2 41.0 33.2 32.7 25.0 27.9 34.3 40.8 42.6 31.6 61.5 20.3 27.5 35.8 43.1 36.0
SAR [29] 57.5 59.3 49.6 57.2 43.7 54.4 59.4 64.8 65.4 57.9 77.1 60.2 50.0 58.3 59.8 58.3
RoTTA [44] 64.4 66.9 56.1 80.1 59.1 79.8 82.2 79.7 78.7 77.8 91.2 69.0 72.3 73.4 72.8 73.6

Noise

SoTTA 73.3 77.7 66.8 86.1 64.0 84.3 86.6 83.1 82.0 85.7 91.1 84.1 77.1 81.6 77.2 80.0

adversarial attack algorithm designed for TTA [40]. We inject the small perturbations to malicious
samples to increase the overall error rate on benign data in the same batch. For the uniform random
noise, we generate pixel-wise uniform-random images with the same size as the target images. We
set the number of noisy samples equal to each target dataset as default, and we also investigated the
impact of the number of noisy samples in the following ablation study (Figure 7). In cases where
the number of noisy samples is different from the target datasets, we randomly resampled them. To
ensure that the learning algorithm does not know the information of noisy samples beforehand, the
pixel values of all noisy images are normalized with respect to the target dataset.

Baselines. We consider various state-of-the-art TTA methods as baselines. Source evaluates the
pre-trained model directly on the target data without adaptation. Test-time batch normalization (BN
stats) [27] updates the BN statistics from the test batch. Pseudo-Label (PL) [17] optimizes the
trainable BN parameters via pseudo labels. Test entropy minimization (TENT) [38] updates the BN
parameters via entropy minimization.

We also consider the latest TTA algorithms that improve robustness to temporal distribution changes
in test streams to understand their performance to noisy samples. Laplacian adjusted maximum-
likelihood estimation (LAME) [1] modifies the classifier output probability without modifying
model internal parameters. Continual test-time adaptation (CoTTA) [39] uses weight-averaged and
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Table 2: Classification accuracy (%) on CIFAR100-C. Bold numbers are the highest accuracy.
Averaged over three different random seeds for 15 types of corruption.

Method Benign Near Far Attack Noise Avg.
Source 33.2 ± 0.4 33.2 ± 0.4 33.2 ± 0.4 33.2 ± 0.4 33.2 ± 0.4 33.2 ± 0.4

BN Stats [27] 53.7 ± 0.2 50.8 ± 0.1 46.8 ± 0.1 29.2 ± 0.4 28.3 ± 0.3 41.8 ± 0.1

PL [17] 56.6 ± 0.2 48.0 ± 0.3 42.8 ± 0.7 39.0 ± 0.4 23.8 ± 0.6 42.1 ± 0.3

TENT [38] 59.5 ± 0.0 46.4 ± 1.4 40.0 ± 1.3 31.9 ± 0.7 20.0 ± 0.9 39.5 ± 0.7

LAME [1] 31.0 ± 0.5 31.5 ± 0.5 30.8 ± 0.7 31.0 ± 0.6 31.1 ± 0.7 31.1 ± 0.6

CoTTA [39] 55.8 ± 0.4 50.0 ± 0.3 42.4 ± 0.4 37.2 ± 0.2 27.3 ± 0.3 42.6 ± 0.2

EATA [28] 23.5 ± 1.9 6.1 ± 0.3 4.8 ± 0.5 3.7 ± 0.6 2.4 ± 0.2 8.1 ± 0.3

SAR [29] 57.3 ± 0.3 55.4 ± 0.1 51.2 ± 0.1 34.4 ± 0.3 38.1 ± 1.2 47.3 ± 0.3

RoTTA [44] 48.7 ± 0.6 49.4 ± 0.5 49.8 ± 0.9 51.5 ± 0.4 48.3 ± 0.5 49.6 ± 0.6

SoTTA 60.5 ± 0.0 57.1 ± 0.2 59.0 ± 0.4 61.9 ± 0.0 58.6 ± 1.0 59.4 ± 0.3

Table 3: Classification accuracy (%) on ImageNet-C. Bold numbers are the highest accuracy. Averaged
over three different random seeds for 15 types of corruption.

Method Benign Near Far Attack Noise Avg.
Source 14.6 ± 0.0 14.6 ± 0.0 14.6 ± 0.0 14.6 ± 0.0 14.6 ± 0.0 14.6 ± 0.0

BN Stats [27] 27.1 ± 0.0 18.9 ± 0.1 14.8 ± 0.0 17.4 ± 0.8 12.8 ± 0.0 18.2 ± 0.1

PL [17] 30.5 ± 0.1 6.9 ± 0.0 5.1 ± 0.2 18.1 ± 1.3 3.4 ± 0.6 12.8 ± 0.2

TENT [38] 27.1 ± 0.0 18.9 ± 0.1 14.8 ± 0.0 17.4 ± 0.8 12.8 ± 0.0 18.2 ± 0.1

LAME [1] 14.4 ± 0.0 14.4 ± 0.1 14.4 ± 0.0 14.0 ± 0.6 14.3 ± 0.0 14.3 ± 0.1

CoTTA [39] 32.2 ± 0.1 23.3 ± 0.2 17.6 ± 0.2 28.3 ± 1.3 16.0 ± 0.9 23.4 ± 0.2

EATA [28] 38.0 ± 0.1 25.6 ± 0.4 23.1 ± 0.1 26.1 ± 0.1 20.7 ± 0.2 26.7 ± 0.0

SAR [29] 36.1 ± 0.1 27.6 ± 0.3 23.5 ± 0.4 26.8 ± 1.0 22.0 ± 0.4 27.2 ± 0.2

RoTTA [44] 29.7 ± 0.0 25.6 ± 0.4 29.2 ± 0.2 32.0 ± 1.2 31.2 ± 0.2 29.5 ± 0.3

SoTTA 39.8 ± 0.0 27.9 ± 0.3 36.1 ± 0.1 41.1 ± 0.1 39.0 ± 0.1 36.8 ± 0.0

augmentation-averaged predictions and avoids catastrophic forgetting by stochastically restoring a
part of the model. Efficient anti-forgetting test-time adaptation (EATA) [28] uses entropy and diversity
weight with Fisher regularization to prevent forgetting. Sharpness-aware and reliable optimization
(SAR) [29] removes high-entropy samples and optimizes entropy with sharpness minimization [4].
Robust test-time adaptation (RoTTA) [44] utilizes the teacher-student model to stabilize while
selecting the data with category-balanced sampling with timeliness and uncertainty.

Hyperparameters. We adopt the hyperparameters of the baselines from the original paper or official
codes. We use the test batch size of 64 in all methods for a fair comparison. Accordingly, we set the
memory size to 64 and adapted the model for every 64 samples for our method and RoTTA [44].
We conduct TTA in an online manner. We used a fixed hyperparameter of BN momentum m = 0.2
and updated the BN affine parameters via the Adam optimizer [14] with a fixed learning rate of
l = 0.001 and a single adaptation epoch. The confidence threshold C0 is set to 0.99 for CIFAR10-C,
0.66 for CIFAR100-C, and 0.33 for ImageNet-C. We set the sharpness threshold ρ = 0.05 as previous
works [4, 29]. We specify further details of the hyperparameters in Appendix A.

Overall result. Table 1 shows the result on CIFAR10-C for 15 types of corruptions under five noisy
scenarios described in Figure 3. We observed significant performance degradation in most of the
baselines under the noisy settings. In addition, the extent of accuracy degradation from the Benign
case is more prominent in more severe shift cases (e.g., the degree of degradation is generally Near <
Far < Attack < Noise). Popular TTA baselines (BN stats, PL, and TENT) might fail due to updating
with noisy samples. State-of-the-art TTA baselines that address temporal distribution shifts in TTA
(LAME, CoTTA, EATA, SAR, and RoTTA) still suffered from noisy scenarios, as they are not
designed to deal with unexpected samples. On the other hand, SoTTA showed its robustness across
different scenarios. This validates the effectiveness of our approaches to ensure both input-wise and
parameter-wise robustness. Interestingly, we found that SoTTA showed comparable performance to
state-of-the-art baselines in the Benign case as well. Our interpretation of this result is two-fold. First,
our high-confidence uniform-class sampling strategy filters not only noisy samples but also benign
samples that would negatively impact the algorithm’s objective. This implies that there exist samples
that are more beneficial for adaptation, which aligns with the findings that high-entropy samples
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Table 4: Classification accuracy (%) and corresponding standard deviation of varying ablative settings
in SoTTA on CIFAR10-C. Bold numbers are the highest accuracy. Averaged over three different
random seeds for 15 types of corruption.

Method Benign Near Far Attack Noise Avg.
Source 57.7 ± 1.0 57.7 ± 1.0 57.7 ± 1.0 57.7 ± 1.0 57.7 ± 1.0 57.7 ± 1.0

HC 34.9 ± 4.8 13.6 ± 0.3 17.6 ± 3.8 16.9 ± 1.6 16.8 ± 0.2 20.0 ± 2.0

UC 66.4 ± 3.0 62.1 ± 0.8 56.5 ± 2.0 70.0 ± 3.9 59.5 ± 3.0 62.9 ± 0.7

HC + UC (HUS) 69.8 ± 1.1 61.7 ± 1.3 58.4 ± 0.5 40.9 ± 5.5 58.9 ± 2.6 57.9 ± 0.8

ESM 82.6 ± 0.2 77.9 ± 0.4 72.8 ± 0.7 83.4 ± 0.2 60.5 ± 1.8 75.4 ± 0.5

HC + ESM 82.3 ± 0.2 80.9 ± 0.6 74.9 ± 2.4 83.5 ± 0.2 68.7 ± 7.0 78.0 ± 2.0

UC + ESM 82.2 ± 0.2 78.0 ± 0.4 75.9 ± 0.5 84.3 ± 0.1 77.7 ± 0.7 79.6 ± 0.2

HUS + ESM (SoTTA) 82.2 ± 0.3 81.4 ± 0.5 81.6 ± 0.6 84.5 ± 0.2 80.0 ± 1.4 81.9 ± 0.5

harm adaptation performance [29]. Second, entropy-sharpness minimization helps ensure both the
robustness to noisy samples and the generalizability of the model by preventing model drifts from
large gradients, leading to performance improvement with benign samples. We found similar patterns
for the CIFAR100-C (Table 2) and ImageNet-C (Table 3). More details are in Appendix B.

Impact of individual components of SoTTA. We conducted an ablative study to further investigate
the effectiveness of SoTTA’s individual components. Table 4 shows the result of the ablation study
for CIFAR10-C. For input-wise robustness, HC refers to high-confidence sampling, and UC refers
to uniform-class sampling. The two strategies are integrated into our high-confidence uniform-class
sampling (HUS). ESM is our entropy-sharpness minimization for parameter-wise robustness. Note
that we utilized FIFO memory with the same size for the UC case without HC and the native entropy
minimization where we did not utilize ESM. Overall, the accuracy is improved as we sequentially
added each approach of SoTTA. This validates our claim that ensuring both input-wise and parameter-
wise robustness via HUS and ESM is a synergetic strategy to combat noisy samples in TTA.
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Figure 7: Classification accuracy (%) vary-
ing the size of noisy samples on CIFAR10-
C under Noise.

Impact of the number of noisy samples. We also in-
vestigate the effect of the size of noisy samples on TTA
algorithms. Specifically, for the CIFAR10-C dataset
with the Noise case, we varied the noise samples from
5,000 (5k) to 20,000 (20k) while fixing the size of be-
nign samples as 10,000. Figure 7 shows the result. We
observe that the accuracy of most baselines tends to
deteriorate with a larger number of noisy samples and is
sometimes even worse than without adaptation (Source).
SoTTA showed its resilience to the size of noisy sam-
ples with 1.9%p degradation from 5k to 20k samples.
RoTTA also showed its robustness to noisy samples to
some extent, but the performance gain is around 6.4%p
lower than SoTTA.

5 Related work

Test-time adaptation. While test-time adaptation (TTA) attempts to optimize model parameters with
unlabeled test data streams, it lacks consideration of spoiling of the sample itself; i.e., it inevitably
adapts to potential outlier samples mixed in the stream, such as adversarial data or mere noise.
Most existing TTA algorithms directly optimize the model with incoming sample data. Test-time
normalization [27, 36] updates the batch norm statistics in test-time to minimize the expected loss.
TENT [38] minimizes the entropy of the model’s predictions on a batch of test data.On the one
hand, recent studies promote the robustness of the model, yet the consideration is limited to temporal
distribution shifts of test data [1, 4, 5, 28, 29, 39, 44]. For instance, CoTTA [39] tries to adapt
the model in a continually changing target environment via self-training and stochastical restoring.
NOTE [5] proposes instance-aware batch normalization combined with prediction-balanced reservoir
sampling to ensure model robustness towards temporally correlated data stream, which requires
retraining with source data. We provide a method-wise comparison with EATA [28], SAR [29], and
RoTTA [44] in Appendix D.2. To conclude, while existing TTA methods seek the robustness of the
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model to temporal distribution shifts, they do not consider scenarios where noisy samples appear in
test streams.

Out-of-distribution detection. Out-of-distribution (OOD) detection [10, 11, 18, 19, 20, 21, 24, 25,
43] aims to ensure the robustness of the model by identifying when a given data falls outside the
training distribution. A representative method is a thresholding approach [10, 19, 20, 21], that defines
a scoring function given an input and pretrained classifier. The sample is detected as OOD data if
the output of the scoring function is higher than a threshold. Importantly, OOD detection studies are
built on the condition that training and test domains are the same, which differs from TTA’s scenario.
Furthermore, OOD detection assumes that a model is fixed during test time, while a model changes
continually in TTA. These collectively make it difficult to apply OOD detection studies directly to
TTA scenarios.

Open-set domain adaptation. Open-set Domain Adaptation (OSDA) assumes that a target domain
contains unknown classes not discovered in a source domain [30, 35] in domain adaptation scenarios.
These methods aim to learn a mapping function between the source and target domains. While the
target scenario that a model could encounter unknown classes of data in the test time is similar to
our objective, these methods do not fit into TTA as it assumes both labeled source and unlabeled
target data are available in the training time. Universal domain adaptation (UDA) [34, 42] further
generalizes the assumption of OSDA by allowing unknown classes to present in both the source
and the target domains. However, the same problem still remains as it requires labeled source and
unlabeled target data in training time, which do not often comply with TTA settings where the model
has no access to train data at test time due to privacy issues [38].

6 Discussion and conclusion

We investigate the problem of having noisy samples and the performance degradations caused by
those samples in existing TTA methods. To address this issue, we propose SoTTA that is robust to
noisy samples by high-confidence uniform-class sampling and entropy-sharpness minimization. Our
evaluation with four noisy scenarios reveals that SoTTA outperforms state-of-the-art TTA methods
in those scenarios. We believe that the takeaways from this study are a meaningful stride towards
practical advances in overcoming domain shifts in test time.

Limitations and future work. While we focus on four noisy test stream scenarios, real-world test
streams might have other types of sample diversities that are not considered in this work. Furthermore,
recent TTA algorithms consider various temporal distribution shifts, such as temporally-correlated
streams [5] and domain changes [39]. Towards developing a TTA algorithm robust to any test streams
in the wild, more comprehensive and realistic considerations should be taken into account, which we
believe is a meaningful future direction.

Potential negative societal impacts. As TTA requires continual computations for every test sample
for adaptation, environmental concerns might be raised such as carbon emissions [37]. Recent studies
such as memory-economic TTA [12] might be an effective way to mitigate this problem.
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A Experiment details

We conducted all experiments in the paper using three random seeds (0, 1, 2) and reported the average
accuracies and their corresponding standard deviations. The experiments were performed on NVIDIA
GeForce RTX 3090 and NVIDIA TITAN RTX GPUs. For a single execution of SoTTA, the test-time
adaptation phase consumed 1 minutes for CIFAR10-C/CIFAR100-C and 10 minutes for ImageNet-C.

A.1 Baseline details

In this study, we utilized the official implementations of the baseline methods. To ensure consistency,
we adopted the reported best hyperparameters documented in the respective papers or source code
repositories. Furthermore, we present supplementary information regarding the implementation
specifics of the baseline methods and provide a comprehensive overview of our experimental setup,
including detailed descriptions of the employed hyperparameters.

SoTTA (Ours). We used ADAM optimizer [14], with a BN momentum of m = 0.2, and learning
rate of l = 0.001 with a single adaptation epoch. We set the HUS size to 64 and the confidence
threshold C0 to 0.99 for CIFAR10-C (10 classes), 0.66 for CIFAR100-C (100 classes), and 0.33 for
ImageNet-C (1,000 classes). We set entropy-sharpness L2-norm constraint ρ = 0.5 following the
suggestion [4].

PL. For PL [17], we only updated the BN layers following the previous studies [38, 39]. We set the
learning rate as LR = 0.001 as the same as TENT [38].

TENT. For TENT [38], we set the learning rate as LR = 0.001 for CIFAR10-C and LR = 0.00025
for ImageNet-C, following the guidance provided in the original paper. We referred to the official
code3 for implementations.

LAME. LAME [1] relies on an affinity matrix and incorporates hyperparameters associated with it.
We followed the hyperparameter selection specified by the authors in their paper and referred to their
official code4 for implementation details. Specifically, we employed the kNN affinity matrix with a
value of k set to 5.

CoTTA. CoTTA [39] incorporates three hyperparameters: the augmentation confidence threshold
pth, restoration factor p, and exponential moving average (EMA) factor m. To ensure consistency, we
adopted the hyperparameter values recommended by the authors. Specifically, we set the restoration
factor to p = 0.01 and the EMA factor to α = 0.999. For the augmentation confidence threshold,
the authors provide a guideline for its selection, suggesting using the 5% quantile of the softmax
predictions’ confidence on the source domains. We followed this guideline, which results in pth =
0.92 for CIFAR10-C, pth = 0.72 for CIFAR100-C, and pth = 0.1 for ImageNet-C. We referred to
the official code5 for implementing CoTTA.

EATA. For EATA [28], we followed the settings from the original paper. We set LR =
0.005/0.005/0.00025 for CIFAR10-C/CIFAR100-C/ImageNet-C, entropy constant E0 = 0.4×ln|Y|
where |Y| is number of classes. We set cosine sample similarity threshold ϵ = 0.4/0.4/0.05, trade-off
parameter β = 1/1/2, 000, the moving average factor α = 0.1. We utilized 2,000 samples for
calculating Fisher importance as suggested. We referred to the official code6 for implementing EATA.

SAR. SAR [29] aims to adapt to diverse batch sizes, and we chose a typical batch size of 64 for a
fair comparison. We followed the learning rate as LR = 0.00025, sharpness threshold ρ = 0.5, and
entropy threshold E0 = 0.4 × ln|Y| where |Y| is the total number of classes, as suggested in the
original paper. Finally, we froze the top layer (layer4 for ResNet18) as the original paper, and SoTTA
also follows this implementation. We referred to the original code7 for implementing SAR.

3https://github.com/DequanWang/tent
4https://github.com/fiveai/LAME
5https://github.com/qinenergy/cotta
6https://github.com/mr-eggplant/EATA
7https://github.com/mr-eggplant/SAR
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RoTTA. RoTTA [44] uses Adam Optimizer by setting learning rate as LR = 0.001 and β = 0.9.
We followed the authors’ hyperparameters selection from the paper, including BN-statistic exponential
moving average updating rate as α = 0.05, the Teacher model’s exponential moving average updating
rate as ν = 0.001, timeliness parameter as λt = 1.0, and uncertainty parameter as λu = 1.0. We
referred to the original code8 for implementing RoTTA.

A.2 Target dataset details

CIFAR10-C/CIFAR100-C. CIFAR10-C/CIFAR100-C [9] serves as a widely adopted benchmark
for evaluating the robustness of models against corruptions [27, 36, 38, 39]. Both datasets consist
of 50,000 training samples and 10,000 test samples, categorized into 10/100 classes. To assess the
robustness of models, datasets introduce 15 types of corruptions to the test data, including Gaussian
Noise, Shot Noise, Impulse Noise, Defocus Blur, Frosted Glass Blur, Motion Blur, Zoom Blur,
Snow, Frost, Fog, Brightness, Contrast, Elastic Transformation, Pixelate, and JPEG Compression.
For our experiments, we adopt the highest severity level of corruption, level 5, in line with previous
studies [27, 36, 38, 39]. Consequently, the datasets consist of 150,000 corrupted test samples. To train
our models, we employ the ResNet18 [8] architecture as the backbone network. The model is trained
on the clean training data to generate the source models. We utilize stochastic gradient descent with
a momentum of 0.9 and cosine annealing learning rate scheduling [22] for 200 epochs. The initial
learning rate is set to 0.1, and a batch size 128 is used during training.

ImageNet-C. ImageNet-C is another widely adopted benchmark for evaluating the robustness
of models against corruptions [1, 27, 36, 38, 39]. The ImageNet dataset [3] consists of 1,281,167
training samples and 50,000 test samples. Similar to CIFAR10-C, ImageNet-C applies the same 15
types of corruptions, resulting in 750,000 corrupted test samples. We utilize the highest severity level
of corruption, equivalent to CIFAR10-C. For our experiments, we employ a pre-trained ResNet18 [8]
model from the TorchVision library [23], which is pre-trained on the ImageNet dataset [3] and is
widely used as a backbone for various computer vision tasks.

A.3 Noisy dataset details

CIFAR100 (Near). CIFAR100 [15] consists of 50,000/10,000 training/test data with 100 classes.
We utilized training data without any corruption. We undersampled the dataset to 10,000 for the
CIFAR10-C and CIFAR100-C target cases by randomly removing samples and used the entire training
set (50,000) for the ImageNet-C target case.

ImageNet (Near). ImageNet [3] consists of 1,281,167/50,000 training/test data with 1,000 classes. We
utilized test data without any corruption. We undersampled the dataset to 10,000 for the CIFAR100-C
target case by randomly removing samples.

MNIST (Far). MNIST [16] contains 60,000/10,000 training/test data with 10 classes. We utilized
test data without any corruption. We used the entire test set for the CIFAR10-C/CIFAR100-C target
case, and oversampled the dataset by randomly resampling, which results in 50,000 samples that is
equivalent to the size of each ImageNet-C target data.

Attack. We implemented the modified indiscriminate distribution invading attack (DIA) [40]. First,
we duplicated the entire set of target samples and treated them as malicious samples. Subsequently, we
randomly shuffled these duplicated samples within the original target sample set. During the adaptation
phase, we injected perturbations into the malicious samples to increase the overall error rate on benign
samples within the same batch. As a result, we perturbed 10,000 samples (CIFAR10-C/CIFAR100-C)
and 50,000 samples (ImageNet-C) to serve as attack samples. For CIFAR10-C/CIFAR100-C, we
used hyperparameters of maximum perturbation constraint ϵ = 0.1, attack learning rate α = 1/255,
and attacking steps N = 10. For ImageNet-C, we used hyperparameters of maximum perturbation
constraint ϵ = 0.2, attack learning rate α = 1/255, and attacking steps N = 1.

Uniform random noise (Noise). We generated a uniform random valued image in the scaled RGB
range [0, 1], with the same height and width as the corresponding target dataset. We generated the
same amount of noise samples as each target dataset.

8https://github.com/BIT-DA/RoTTA
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B Result details

Table 5: Classification accuracy (%) and their corresponding standard deviations on CIFAR10-C for
15 types of corruptions under five scenarios. Bold numbers are the highest accuracy. Averaged over
three different random seeds.

Noise Blur Weather Digital

Method Gau. Shot Imp. Def. Gla. Mot. Zoom Snow Fro. Fog Brit. Cont. Elas. Pix. JPEG Avg.
26.0 33.2 24.7 56.7 52.0 67.4 64.8 78.0 67.0 74.1 91.5 33.9 76.6 46.4 73.2 57.7Source
± 3.3 ± 3.5 ± 4.2 ± 2.7 ± 2.7 ± 1.2 ± 2.6 ± 0.4 ± 2.5 ± 0.8 ± 0.3 ± 1.8 ± 0.7 ± 0.6 ± 0.8 ± 1.0
67.0 69.0 60.4 87.8 65.6 86.3 87.4 81.6 80.3 85.4 90.7 86.9 76.7 79.3 71.9 78.4BN Stats [27]
± 0.5 ± 0.8 ± 0.9 ± 0.2 ± 0.7 ± 0.1 ± 0.4 ± 0.4 ± 0.5 ± 0.6 ± 0.2 ± 0.4 ± 0.2 ± 0.0 ± 0.6 ± 0.3
71.1 72.9 62.2 86.9 64.4 85.3 86.6 80.8 78.8 84.9 89.6 84.0 76.2 80.0 73.1 78.5PL [17]
± 1.2 ± 0.6 ± 1.3 ± 0.0 ± 0.4 ± 1.2 ± 0.9 ± 1.0 ± 1.8 ± 0.3 ± 1.0 ± 0.2 ± 0.6 ± 0.7 ± 1.4 ± 0.3
74.5 77.6 66.6 88.2 66.2 86.9 88.8 83.7 81.3 86.0 91.1 86.9 77.9 82.7 76.7 81.0TENT [38]
± 0.7 ± 0.8 ± 1.3 ± 0.3 ± 2.0 ± 0.8 ± 0.4 ± 0.5 ± 1.3 ± 1.5 ± 0.4 ± 0.6 ± 0.3 ± 0.9 ± 1.4 ± 0.4
21.8 29.2 19.7 53.3 52.1 65.9 62.5 79.2 69.3 73.1 90.1 28.0 75.7 43.8 74.1 55.9LAME [1]
± 3.6 ± 4.0 ± 4.7 ± 1.6 ± 3.7 ± 0.3 ± 1.4 ± 0.7 ± 4.4 ± 1.7 ± 0.3 ± 1.1 ± 0.7 ± 1.1 ± 0.9 ± 0.5
76.9 78.6 72.3 88.2 70.9 86.8 88.1 83.4 83.4 86.1 91.2 84.9 79.2 83.0 79.9 82.2CoTTA [39]
± 0.6 ± 0.1 ± 0.2 ± 0.5 ± 1.0 ± 0.2 ± 0.5 ± 0.3 ± 0.5 ± 0.5 ± 0.2 ± 0.2 ± 0.5 ± 0.3 ± 0.6 ± 0.2
76.0 78.2 68.2 88.4 70.1 87.4 88.4 84.5 85.0 88.0 91.5 89.9 77.8 84.8 78.4 82.4EATA [28]
± 0.8 ± 0.8 ± 0.7 ± 0.2 ± 1.9 ± 0.5 ± 0.1 ± 0.3 ± 0.3 ± 0.2 ± 0.3 ± 0.6 ± 0.5 ± 0.5 ± 1.2 ± 0.2
68.3 69.7 58.9 87.8 62.9 86.3 87.4 81.6 80.3 85.4 90.7 86.9 76.7 79.3 72.0 78.3SAR [29]
± 1.2 ± 1 ± 6.9 ± 0.2 ± 5.3 ± 0.1 ± 0.4 ± 0.4 ± 0.5 ± 0.6 ± 0.2 ± 0.5 ± 0.2 ± 0 ± 0.5 ± 0.7
65.2 67.4 58.3 87.2 64.4 85.8 87.3 81.2 76.9 85.3 90.7 57.2 76.5 77.7 71.6 75.5RoTTA [44]
± 0.8 ± 1.1 ± 0.9 ± 0.2 ± 1.2 ± 0.5 ± 0.5 ± 1 ± 1 ± 0.6 ± 0.5 ± 2.9 ± 0.5 ± 0.4 ± 0.9 ± 0.7
75.0 77.5 68.8 88.8 70.7 87.5 89.0 85.4 84.0 88.2 91.9 83.9 79.8 83.9 78.3 82.2

Benign

SoTTA
± 1.1 ± 0.6 ± 0.7 ± 0.4 ± 1.2 ± 0.5 ± 0.5 ± 0.3 ± 0.7 ± 0.2 ± 0.1 ± 1.5 ± 0.4 ± 0.5 ± 0.7 ± 0.3

26.0 33.2 24.7 56.7 52.0 67.4 64.8 78.0 67.0 74.1 91.5 33.9 76.6 46.4 73.2 57.7Source
± 3.3 ± 3.5 ± 4.2 ± 2.7 ± 2.7 ± 1.2 ± 2.6 ± 0.4 ± 2.5 ± 0.8 ± 0.3 ± 1.8 ± 0.7 ± 0.6 ± 0.8 ± 1.0
64.9 66.3 58.2 84.1 62.7 84.2 85.0 83.1 82.5 85.5 92.4 85.3 76.5 67.4 70.3 76.6BN Stats [27]
± 0.8 ± 0.9 ± 0.7 ± 0.5 ± 0.6 ± 0.4 ± 0.2 ± 0.6 ± 0.5 ± 0.5 ± 0.1 ± 0.2 ± 0.6 ± 0.3 ± 1.0 ± 0.4
63.2 63.5 51.7 81.6 58.4 78.4 83.3 79.2 79.7 80.3 89.2 79.5 73.1 70.9 69.3 73.4PL [17]
± 1.0 ± 3.4 ± 4.4 ± 1.0 ± 1.5 ± 1.6 ± 0.6 ± 0.5 ± 2.1 ± 1.9 ± 1.1 ± 0.1 ± 1.6 ± 0.6 ± 1.7 ± 0.2
64.7 64.7 50.2 81.3 59.6 80.8 83.8 79.6 78.3 80.0 88.6 83.7 73.5 74.3 71.1 74.3TENT [38]
± 3.6 ± 5.4 ± 4.9 ± 2.3 ± 2.9 ± 1.1 ± 1.0 ± 1.1 ± 2.7 ± 3.8 ± 1.0 ± 1.4 ± 1.0 ± 0.5 ± 2.8 ± 0.9
24.3 31.6 19.9 53.9 53.2 65.9 62.5 79.0 69.5 73.1 90.1 28.4 75.0 44.8 74.2 56.4LAME [1]
± 3.0 ± 3.3 ± 4.3 ± 1.4 ± 3.6 ± 0.7 ± 1.2 ± 0.4 ± 3.8 ± 1.5 ± 0.2 ± 1.1 ± 0.7 ± 1.0 ± 1.1 ± 0.6
72.7 74.3 66.0 82.6 67.6 81.8 84.1 84.1 85.5 82.5 91.1 69.9 78.1 76.1 79.3 78.4CoTTA [39]
± 0.2 ± 0.7 ± 0.1 ± 0.6 ± 0.9 ± 0.5 ± 0.4 ± 0.8 ± 0.3 ± 1.1 ± 0.3 ± 0.5 ± 1.0 ± 0.5 ± 0.7 ± 0.4
51.5 50.3 40.1 70.4 45.8 72.8 77.2 66.8 67.4 74.4 83.9 68.2 60.2 67.3 62.1 63.9EATA [28]
± 3.4 ± 2.4 ± 2.2 ± 5.6 ± 2.4 ± 0.9 ± 1.4 ± 2.0 ± 5.0 ± 1.2 ± 1.2 ± 7.5 ± 1.8 ± 2.0 ± 5.4 ± 0.4
59.0 60.9 52.8 78.2 55.4 83.7 81.8 78.8 78.6 85.5 92.4 85.3 66.6 64.0 63.8 72.4SAR [29]
± 15.4 ± 14.3 ± 14.4 ± 10.0 ± 14.7 ± 0.7 ± 5.7 ± 7.2 ± 6.7 ± 0.5 ± 0.1 ± 0.1 ± 17.8 ± 12.2 ± 14.4 ± 8.8
66.3 68.3 59.4 86.0 63.2 85.4 87.0 83.5 82.8 86.4 92.4 84.8 77.1 71.6 71.6 77.7RoTTA [44]
± 0.7 ± 1.3 ± 0.7 ± 0.4 ± 0.7 ± 0.3 ± 0.4 ± 0.8 ± 0.7 ± 0.5 ± 0.3 ± 1.4 ± 0.8 ± 0.4 ± 0.6 ± 0.6
74.3 76.7 66.5 87.5 66.9 86.4 87.8 84.4 83.8 87.2 91.3 88.4 78.7 82.4 78.0 81.4

Near

SoTTA
± 1.4 ± 0.9 ± 2.2 ± 0.1 ± 0.8 ± 0.6 ± 0.5 ± 0.6 ± 0.2 ± 0.5 ± 0.2 ± 0.7 ± 1.1 ± 0.5 ± 0.6 ± 0.5

26.0 33.2 24.7 56.7 52.0 67.4 64.8 78.0 67.0 74.1 91.5 33.9 76.6 46.4 73.2 57.7Source
± 3.3 ± 3.5 ± 4.2 ± 2.7 ± 2.7 ± 1.2 ± 2.6 ± 0.4 ± 2.5 ± 0.8 ± 0.3 ± 1.8 ± 0.7 ± 0.6 ± 0.8 ± 1.0
62.7 66.1 56.0 86.5 60.7 84.2 87.2 79.8 78.4 85.7 89.9 80.2 75.5 69.8 65.0 75.2BN Stats [27]
± 1.3 ± 1.4 ± 0.9 ± 0.2 ± 0.7 ± 0.8 ± 0.1 ± 0.4 ± 0.6 ± 0.2 ± 0.0 ± 1.0 ± 0.6 ± 1.0 ± 0.1 ± 0.3
55.2 54.1 48.3 83.2 49.3 80.0 83.0 76.8 73.3 80.6 87.6 74.6 70.5 66.8 63.6 69.8PL [17]
± 2.9 ± 5.2 ± 5.2 ± 0.8 ± 4.4 ± 2.4 ± 1.9 ± 1.2 ± 2.8 ± 1.9 ± 1.4 ± 2.0 ± 2.7 ± 5.9 ± 2.6 ± 1.5
51.6 57.4 43.7 84.8 43.5 83.3 85.3 80.4 73.1 83.5 88.9 80.8 73.5 72.2 66.7 71.2TENT [38]
± 8.6 ± 6.2 ± 11.4 ± 0.8 ± 7.5 ± 0.8 ± 0.6 ± 1.1 ± 3.5 ± 0.4 ± 0.4 ± 7.5 ± 1.7 ± 2.4 ± 4.3 ± 1.0
22.8 29.6 19.3 53.2 50.4 64.6 60.7 79.1 67.9 72.8 90.1 28.1 74.7 44.4 74.3 55.5LAME [1]
± 3.4 ± 3.7 ± 4.2 ± 1.6 ± 3.7 ± 0.8 ± 1.2 ± 0.7 ± 4.0 ± 1.5 ± 0.2 ± 1.1 ± 0.8 ± 0.7 ± 1.0 ± 0.4
67.4 71.1 59.4 83.3 61.2 82.3 84.3 80.4 80.4 83.8 87.2 58.0 76.0 70.3 72.9 74.5CoTTA [39]
± 1.9 ± 1.0 ± 2.7 ± 0.5 ± 0.6 ± 0.9 ± 0.3 ± 1.2 ± 1.5 ± 1.3 ± 1.4 ± 4.7 ± 0.4 ± 3.5 ± 2.7 ± 1.2
40.0 46.4 34.9 73.5 35.2 59.3 76.4 61.1 59.5 68.4 85.2 55.2 46.5 53.5 49.0 56.3EATA [28]
± 2.3 ± 3.9 ± 0.9 ± 0.3 ± 2.9 ± 2.8 ± 0.7 ± 3.0 ± 2.9 ± 7.1 ± 2.1 ± 9.0 ± 1.2 ± 5.1 ± 5.5 ± 0.5
60.3 62.6 50.9 86.5 55.4 84.3 87.2 79.8 78.3 85.7 89.9 80.2 70.1 67.8 60.9 73.3SAR [29]
± 7.7 ± 7.9 ± 9.8 ± 0.2 ± 9.6 ± 0.7 ± 0.1 ± 0.3 ± 0.5 ± 0.2 ± 0.1 ± 0.9 ± 10.1 ± 6.2 ± 9.5 ± 3.9
67.3 69.8 61.1 88.1 66.0 86.6 88.0 82.0 78.8 86.2 91.2 61.7 77.5 79.6 73.0 77.1RoTTA [44]
± 0.5 ± 1.0 ± 1.9 ± 0.4 ± 0.9 ± 0.5 ± 0.6 ± 1.1 ± 1.4 ± 0.6 ± 0.4 ± 9.5 ± 0.8 ± 1.0 ± 1.0 ± 1.1
73.3 76.3 66.3 88.5 68.3 86.8 88.3 84.1 84.2 87.2 92.0 89.0 77.8 83.8 77.8 81.6

Far

SoTTA
± 1.2 ± 1.9 ± 2.5 ± 0.6 ± 2.3 ± 0.7 ± 0.2 ± 1.0 ± 0.6 ± 0.4 ± 0.4 ± 1.1 ± 1.8 ± 0.9 ± 1.2 ± 0.6

26.0 33.2 24.7 56.7 52.0 67.4 64.8 78.0 67.0 74.1 91.5 33.9 76.6 46.4 73.2 57.7Source
± 3.3 ± 3.5 ± 4.2 ± 2.7 ± 2.7 ± 1.2 ± 2.6 ± 0.4 ± 2.5 ± 0.8 ± 0.3 ± 1.8 ± 0.7 ± 0.6 ± 0.8 ± 1.0
44.5 46.8 39.8 63.3 42.1 63.5 62.5 62.3 59.3 62.1 75.4 65.1 50.6 53.9 46.9 55.9BN Stats [27]
± 1.3 ± 1.5 ± 1.1 ± 1.2 ± 1.7 ± 1.7 ± 1.2 ± 1.7 ± 1.7 ± 1.5 ± 1.0 ± 1.4 ± 1.3 ± 1.6 ± 1.9 ± 1.4
59.1 61.4 53.1 73.1 51.9 71.7 72.3 71.3 69.1 69.8 81.5 72.1 60.9 67.4 60.1 66.3PL [17]
± 0.9 ± 1.5 ± 2.0 ± 0.9 ± 2.0 ± 1.8 ± 1.1 ± 1.7 ± 1.7 ± 0.8 ± 0.9 ± 0.7 ± 1.8 ± 1.2 ± 1.4 ± 1.3
62.9 65.2 56.7 74.8 54.5 73.4 75.2 73.8 71.8 72.1 83.0 73.7 63.1 70.0 64.0 68.9TENT [38]
± 0.6 ± 0.3 ± 1.1 ± 1.0 ± 2.0 ± 0.8 ± 0.9 ± 0.6 ± 1.8 ± 0.6 ± 0.7 ± 0.5 ± 1.3 ± 1.0 ± 1.4 ± 0.9
21.0 28.0 17.3 52.7 52.9 65.9 62.0 79.3 70.4 73.9 90.3 28.4 75.6 44.2 74.2 55.9LAME [1]
± 3.5 ± 4.1 ± 4.3 ± 1.9 ± 3.6 ± 0.5 ± 1.2 ± 0.6 ± 4.5 ± 1.6 ± 0.2 ± 1.0 ± 0.7 ± 1.0 ± 1.1 ± 0.5
53.1 57.0 49.7 67.9 55.9 69.7 71.3 74.3 69.5 68.1 84.9 47.0 68.6 62.3 71.6 69.5CoTTA [39]
± 1.6 ± 1.2 ± 1.8 ± 0.7 ± 2.4 ± 1.6 ± 0.6 ± 1.8 ± 1.9 ± 2.0 ± 0.4 ± 2.9 ± 1.9 ± 1.6 ± 1.3 ± 1.5
66.6 68.7 57.9 75.2 57.2 74.7 75.5 75.1 73.5 73.8 83.5 76.0 64.3 73.5 67.8 70.9EATA [28]
± 0.4 ± 0.5 ± 0.5 ± 0.7 ± 0.8 ± 1.0 ± 0.9 ± 1.0 ± 0.8 ± 0.5 ± 0.6 ± 0.9 ± 1.0 ± 0.6 ± 1.1 ± 0.6
46.1 48.1 40.3 63.3 42.2 63.5 62.5 62.3 59.3 62.1 75.4 65.1 50.6 53.9 47.6 56.2SAR [29]
± 3.9 ± 3.5 ± 1.7 ± 1.2 ± 1.6 ± 1.8 ± 1.2 ± 1.7 ± 1.7 ± 1.5 ± 1.0 ± 1.4 ± 1.2 ± 1.7 ± 2.9 ± 1.8
69.7 71.8 62.9 88.6 67.8 87.4 88.7 83.2 80.1 87.1 91.8 63.5 78.4 80.6 74.1 78.4RoTTA [44]
± 0.7 ± 1.0 ± 1.0 ± 0.3 ± 0.7 ± 0.2 ± 0.6 ± 0.7 ± 0.8 ± 0.3 ± 0.3 ± 3.7 ± 0.8 ± 0.2 ± 0.7 ± 0.7
78.2 80.8 72.3 90.1 73.6 89.2 90.3 87.4 86.2 89.3 92.9 87.8 81.3 86.6 81.0 84.5

Attack

SoTTA
± 0.3 ± 0.1 ± 0.8 ± 0.2 ± 0.9 ± 0.4 ± 0.5 ± 0.5 ± 0.6 ± 0.6 ± 0.1 ± 0.7 ± 0.8 ± 0.3 ± 0.3 ± 0.2

26.0 33.2 24.7 56.7 52.0 67.4 64.8 78.0 67.0 74.1 91.5 33.9 76.6 46.4 73.2 57.7Source
± 3.3 ± 3.5 ± 4.2 ± 2.7 ± 2.7 ± 1.2 ± 2.6 ± 0.4 ± 2.5 ± 0.8 ± 0.3 ± 1.8 ± 0.7 ± 0.6 ± 0.8 ± 1.0
51.7 53.9 45.5 52.7 41.5 51.0 55.1 62.8 63.8 53.8 76.9 55.8 46.8 54.8 56.4 54.8BN Stats [27]
± 0.3 ± 0.6 ± 0.7 ± 2.0 ± 1.7 ± 0.7 ± 1.5 ± 0.7 ± 0.2 ± 0.6 ± 0.3 ± 2.5 ± 1.8 ± 0.7 ± 1.0 ± 0.8
47.6 52.7 44.7 48.9 36.1 49.4 54.1 61.9 56.5 50.9 77.1 45.2 43.1 49.4 59.5 51.8PL [17]
± 9.9 ± 2.4 ± 4.3 ± 12.6 ± 5.1 ± 1.8 ± 2.9 ± 2.4 ± 4.4 ± 1.3 ± 3.7 ± 4.8 ± 4.5 ± 5.6 ± 4.7 ± 0.9
54.0 57.1 36.7 48.9 28.3 50.5 51.0 64.0 64.7 49.5 80.5 43.7 38.4 56.7 57.0 52.1TENT [38]
± 6.7 ± 5.6 ± 9.1 ± 6.8 ± 4.5 ± 3.1 ± 5.0 ± 4.1 ± 5.2 ± 1.9 ± 1.4 ± 3.0 ± 2.2 ± 6.4 ± 4.5 ± 0.4
21.8 28.6 18.5 51.6 50.8 64.3 60.9 78.4 67.3 71.7 90.5 27.0 75.1 43.0 73.4 54.9LAME [1]
± 3.5 ± 3.7 ± 3.1 ± 2.3 ± 3.6 ± 0.2 ± 1.8 ± 0.5 ± 3.8 ± 1.2 ± 0.2 ± 1.2 ± 0.7 ± 0.9 ± 1.0 ± 0.6
60.4 60.3 52.4 47.3 41.6 44.1 52.0 62.7 66.6 47.7 79.0 44.7 42.8 60.2 60.2 54.8CoTTA [39]
± 2.1 ± 3.5 ± 1.6 ± 3.0 ± 0.4 ± 2.7 ± 4.7 ± 0.6 ± 0.8 ± 2.4 ± 1.7 ± 1.1 ± 4.3 ± 0.5 ± 1.0 ± 1.3
42.2 41.0 33.2 32.7 25.0 27.9 34.3 40.8 42.6 31.6 61.5 20.3 27.5 35.8 43.1 36.0EATA [28]
± 1.1 ± 1.1 ± 5.9 ± 5.1 ± 1.5 ± 2.1 ± 5.4 ± 2.7 ± 6.5 ± 11.5 ± 5.7 ± 2.2 ± 4.1 ± 4.5 ± 8.3 ± 0.8
57.5 59.3 49.6 57.2 43.7 54.4 59.4 64.8 65.4 57.9 77.1 60.2 50.0 58.3 59.8 58.3SAR [29]
± 1.0 ± 0.2 ± 1.7 ± 1.1 ± 1.7 ± 1.5 ± 1.6 ± 1.0 ± 0.3 ± 0.4 ± 0.2 ± 1.8 ± 1.2 ± 0.6 ± 0.1 ± 0.3
64.4 66.9 56.1 80.1 59.1 79.8 82.2 79.7 78.7 77.8 91.2 69.0 72.3 73.4 72.8 73.6RoTTA [44]
± 0.5 ± 0.8 ± 1.4 ± 0.4 ± 0.5 ± 0.2 ± 0.8 ± 0.8 ± 0.7 ± 0.4 ± 0.6 ± 4.0 ± 1.2 ± 0.2 ± 0.7 ± 0.5
73.3 77.7 66.8 86.1 64.0 84.3 86.6 83.1 82.0 85.7 91.1 84.1 77.1 81.6 77.2 80.0

Noise

SoTTA
± 1.5 ± 0.8 ± 1.8 ± 2.1 ± 2.8 ± 0.7 ± 1.1 ± 0.7 ± 1.8 ± 2.7 ± 0.4 ± 2.4 ± 3.3 ± 2.8 ± 2.2 ± 1.4
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Table 6: Classification accuracy (%) and their corresponding standard deviations on CIFAR100-C for
15 types of corruptions under five scenarios. Bold numbers are the highest accuracy. Averaged over
three different random seeds.

Noise Blur Weather Digital

Method Gau. Shot Imp. Def. Gla. Mot. Zoom Snow Fro. Fog Brit. Cont. Elas. Pix. JPEG Avg.
10.6 12.1 7.2 34.9 19.6 44.1 41.9 46.3 34.2 41.1 67.3 18.5 50.4 24.9 44.6 33.2Source
± 1.3 ± 1.2 ± 0.9 ± 0.3 ± 0.6 ± 0.6 ± 0.4 ± 0.2 ± 0.4 ± 0.9 ± 0.1 ± 0.6 ± 0.3 ± 2.5 ± 0.6 ± 0.4
39.2 40.7 34.1 66.1 42.5 63.6 64.8 53.8 53.5 58.1 68.2 64.5 53.9 56.6 45.2 53.7BN stats [27]
± 0.9 ± 0.6 ± 0.7 ± 0.1 ± 0.4 ± 0.6 ± 0.1 ± 0.5 ± 0.2 ± 0.3 ± 0.2 ± 0.5 ± 0.4 ± 0.7 ± 0.3 ± 0.2
46.5 48.7 40.8 66.3 45.5 63.7 65.7 56.8 55.1 61.0 68.6 64.6 54.6 60.9 49.6 56.6PL [17]
± 0.2 ± 0.9 ± 1.2 ± 0.5 ± 1.2 ± 0.7 ± 0.6 ± 0.6 ± 0.6 ± 0.2 ± 0.8 ± 0.6 ± 0.5 ± 0.4 ± 0.3 ± 0.2
50.0 52.0 44.2 67.9 48.7 66.1 68.0 59.7 59.3 63.4 70.8 67.3 57.5 63.6 53.7 59.5TENT [38]
± 0.5 ± 0.8 ± 0.5 ± 0.3 ± 0.5 ± 0.5 ± 0.4 ± 0.5 ± 0.3 ± 0.2 ± 0.3 ± 0.3 ± 0.4 ± 0.3 ± 0.2 ± 0.0
7.8 9.0 5.9 31.6 16.6 42.3 39.8 45.5 31.7 38.3 66.4 15.1 49.5 21.6 43.9 31.0LAME [1]
± 1.7 ± 1.7 ± 0.8 ± 0.3 ± 0.6 ± 0.8 ± 0.5 ± 0.2 ± 1.0 ± 1.1 ± 0.3 ± 0.6 ± 0.4 ± 2.8 ± 0.7 ± 0.5
47.5 48.5 43.2 64.0 46.4 61.7 62.8 55.3 56.1 56.7 68.1 58.4 54.3 60.2 53.4 55.8CoTTA [39]
± 0.4 ± 0.5 ± 0.5 ± 0.3 ± 0.8 ± 0.8 ± 0.3 ± 0.8 ± 0.6 ± 0.4 ± 0.1 ± 0.7 ± 0.1 ± 0.4 ± 0.2 ± 0.4
11.1 12.2 7.2 35.0 10.4 31.5 39.6 21.6 17.9 23.6 56.4 34.7 15.2 21.7 14.7 23.5EATA [28]
± 1.7 ± 1.3 ± 0.2 ± 1.2 ± 1.0 ± 4.6 ± 7.0 ± 1.8 ± 2.0 ± 3.2 ± 5.5 ± 5.6 ± 1.9 ± 3.4 ± 1.1 ± 1.9
46.5 48.5 40.9 67.4 46.1 64.9 66.3 56.9 56.4 61.2 69.8 66.8 56.1 60.3 50.8 57.3SAR [29]
± 0.6 ± 0.8 ± 0.7 ± 0.3 ± 0.6 ± 0.8 ± 0.3 ± 0.5 ± 0.3 ± 0.4 ± 0.2 ± 0.5 ± 0.3 ± 0.4 ± 0.3 ± 0.3
35.7 36.9 31.6 63.9 40.3 61.6 63.0 51.2 44.1 56.4 66.1 31.5 52.3 52.9 43.1 48.7RoTTA [44]
± 1.2 ± 1.1 ± 1.0 ± 0.3 ± 0.2 ± 0.7 ± 0.8 ± 0.5 ± 0.9 ± 0.2 ± 0.5 ± 1.4 ± 0.6 ± 1.1 ± 0.6 ± 0.6
52.0 53.4 45.0 68.8 49.1 66.7 69.0 61.7 60.2 64.7 72.2 66.4 58.6 64.1 55.0 60.5

Benign

SoTTA
± 0.6 ± 0.4 ± 1.1 ± 0.2 ± 0.8 ± 0.6 ± 0.2 ± 0.6 ± 0.2 ± 0.6 ± 0.3 ± 0.5 ± 0.5 ± 0.2 ± 0.4 ± 0.0

10.6 12.1 7.2 34.9 19.6 44.1 41.9 46.3 34.2 41.1 67.3 18.5 50.4 24.9 44.6 33.2Source
± 1.3 ± 1.2 ± 0.9 ± 0.3 ± 0.6 ± 0.6 ± 0.4 ± 0.2 ± 0.4 ± 0.9 ± 0.1 ± 0.6 ± 0.3 ± 2.5 ± 0.6 ± 0.4
36.0 37.1 31.5 58.6 37.7 58.2 60.1 56.1 56.1 56.6 71.7 54.9 52.4 49.8 45.4 50.8BN stats [27]
± 0.6 ± 0.6 ± 1.0 ± 0.3 ± 0.2 ± 0.1 ± 0.8 ± 0.4 ± 0.3 ± 0.1 ± 0.3 ± 0.5 ± 0.5 ± 0.7 ± 0.6 ± 0.1
32.4 32.1 26.5 58.4 33.5 56.9 58.8 51.5 50.5 53.4 66.7 51.4 49.3 53.1 45.3 48.0PL [17]
± 2.0 ± 2.1 ± 1.7 ± 1.8 ± 0.6 ± 1.5 ± 1.9 ± 0.6 ± 1.5 ± 2.0 ± 1.2 ± 3.9 ± 0.9 ± 0.5 ± 0.8 ± 0.3
26.8 27.1 21.4 58.7 24.5 58.0 60.8 50.6 47.7 52.6 66.3 58.2 46.2 52.1 44.5 46.4TENT [38]
± 5.6 ± 0.6 ± 2.9 ± 2.1 ± 2.1 ± 1.1 ± 0.8 ± 1.1 ± 2.2 ± 2.1 ± 1.2 ± 0.0 ± 0.3 ± 1.0 ± 1.6 ± 1.4
8.1 9.6 5.9 32.6 17.2 43.0 40.4 45.7 32.7 39.1 66.8 15.6 49.8 22.3 44.0 31.5LAME [1]
± 1.6 ± 1.6 ± 0.9 ± 0.4 ± 0.5 ± 0.6 ± 0.6 ± 0.4 ± 0.7 ± 0.8 ± 0.1 ± 0.6 ± 0.4 ± 2.5 ± 0.6 ± 0.5
40.5 41.3 36.9 51.5 39.5 53.4 54.8 56.8 57.2 52.6 67.3 38.2 51.3 56.4 52.7 50.0CoTTA [39]
± 0.8 ± 0.3 ± 0.5 ± 0.6 ± 0.5 ± 0.4 ± 0.9 ± 0.4 ± 0.5 ± 0.8 ± 0.1 ± 0.5 ± 0.9 ± 0.1 ± 0.3 ± 0.3
4.5 4.3 3.6 7.4 4.9 7.6 7.5 7.0 5.7 5.8 9.9 5.2 6.6 5.7 5.7 6.1EATA [28]
± 0.9 ± 0.3 ± 0.3 ± 0.4 ± 0.3 ± 1.3 ± 0.6 ± 1.3 ± 1.0 ± 0.2 ± 1.3 ± 0.4 ± 0.3 ± 0.5 ± 0.7 ± 0.3
43.3 44.6 38.3 62.6 40.5 61.5 63.5 58.6 58.5 61.4 72.1 62.0 54.6 57.5 51.6 55.4SAR [29]
± 0.1 ± 0.7 ± 0.9 ± 0.5 ± 0.3 ± 0.4 ± 0.8 ± 0.5 ± 0.1 ± 0.5 ± 0.4 ± 0.3 ± 0.1 ± 0.3 ± 0.5 ± 0.1
36.6 38.6 30.5 64.0 38.1 61.9 63.7 55.1 50.3 58.4 68.2 26.6 52.7 52.3 44.3 49.4RoTTA [44]
± 0.7 ± 0.4 ± 1.5 ± 0.4 ± 0.1 ± 0.6 ± 0.5 ± 1.0 ± 2.2 ± 0.3 ± 0.6 ± 1.1 ± 0.6 ± 1.2 ± 1.0 ± 0.5
47.2 48.5 40.4 64.8 42.4 63.4 65.8 59.1 58.2 62.2 70.8 65.8 54.3 60.7 53.4 57.1

Near

SoTTA
± 1.1 ± 0.7 ± 1.8 ± 0.4 ± 0.3 ± 0.3 ± 0.5 ± 0.3 ± 0.6 ± 0.5 ± 0.3 ± 0.5 ± 0.1 ± 0.4 ± 0.7 ± 0.2

10.6 12.1 7.2 34.9 19.6 44.1 41.9 46.3 34.2 41.1 67.3 18.5 50.4 24.9 44.6 33.2Source
± 1.3 ± 1.2 ± 0.9 ± 0.3 ± 0.6 ± 0.6 ± 0.4 ± 0.2 ± 0.4 ± 0.9 ± 0.1 ± 0.6 ± 0.3 ± 2.5 ± 0.6 ± 0.4
32.5 34.4 27.9 59.1 34.2 56.3 59.6 48.4 48.6 53.5 64.1 51.9 47.6 46.9 37.0 46.8BN stats [27]
± 0.4 ± 0.4 ± 0.7 ± 0.7 ± 0.3 ± 0.8 ± 0.2 ± 0.1 ± 0.2 ± 0.4 ± 0.4 ± 0.6 ± 0.7 ± 0.4 ± 0.4 ± 0.1
24.7 26.3 19.7 57.6 26.1 53.7 57.5 47.2 44.0 50.2 62.1 48.1 42.0 45.6 37.0 42.8PL [17]
± 1.9 ± 3.6 ± 1.0 ± 1.1 ± 2.7 ± 1.7 ± 1.7 ± 1.8 ± 0.5 ± 1.4 ± 0.8 ± 1.8 ± 0.7 ± 2.1 ± 1.3 ± 0.7
17.3 16.9 13.9 57.5 19.8 55.0 60.0 39.9 40.8 49.8 63.6 51.6 37.0 44.5 32.7 40.0TENT [38]
± 2.1 ± 2.0 ± 1.6 ± 2.2 ± 2.1 ± 0.5 ± 0.6 ± 5.2 ± 2.9 ± 2.7 ± 0.4 ± 4.5 ± 2.7 ± 3.7 ± 3.6 ± 1.3
7.8 9.2 5.9 31.2 17.0 41.4 38.5 44.9 31.9 38.6 65.5 14.9 49.2 22.1 43.3 30.8LAME [1]
± 1.7 ± 1.8 ± 1.0 ± 0.9 ± 0.6 ± 1.2 ± 1.2 ± 0.4 ± 0.8 ± 1.1 ± 0.7 ± 0.9 ± 0.3 ± 2.6 ± 0.4 ± 0.7
32.1 34.5 28.6 47.2 32.7 49.8 51.1 45.9 46.7 49.3 56.7 29.8 44.0 46.4 41.8 42.4CoTTA [39]
± 0.7 ± 1.2 ± 0.4 ± 0.9 ± 1.2 ± 0.4 ± 0.5 ± 2.5 ± 0.2 ± 0.7 ± 0.8 ± 0.7 ± 0.2 ± 0.8 ± 0.6 ± 0.4
3.3 3.4 3.2 6.7 3.6 5.9 6.8 4.4 4.5 4.6 7.2 4.3 4.1 5.0 4.8 4.8EATA [28]
± 0.4 ± 0.5 ± 0.6 ± 0.9 ± 1.1 ± 0.5 ± 1.2 ± 0.7 ± 0.1 ± 1.0 ± 0.7 ± 1.0 ± 0.3 ± 0.8 ± 0.8 ± 0.5
37.4 38.9 32.2 62.3 36.9 60.3 63.3 51.8 52.5 56.7 66.8 61.1 50.4 53.6 44.2 51.2SAR [29]
± 0.4 ± 1.1 ± 0.8 ± 0.3 ± 0.3 ± 0.1 ± 0.4 ± 0.3 ± 0.1 ± 0.7 ± 0.4 ± 1.0 ± 0.4 ± 0.7 ± 0.8 ± 0.1
39.3 40.6 35.2 64.7 42.3 62.4 63.7 51.8 45.3 57.4 66.2 26.3 52.6 55.2 44.0 49.8RoTTA [44]
± 2.4 ± 2.2 ± 2.2 ± 0.3 ± 1.6 ± 0.6 ± 0.5 ± 0.9 ± 1.7 ± 0.3 ± 0.9 ± 0.7 ± 0.6 ± 1.1 ± 1.4 ± 0.9
50.8 51.5 42.3 66.9 46.2 64.5 67.3 60.3 59.5 63.8 70.7 68.6 55.8 62.5 54.0 59.0

Far

SoTTA
± 1.1 ± 0.9 ± 0.9 ± 0.5 ± 1.0 ± 0.3 ± 0.3 ± 0.0 ± 0.5 ± 0.1 ± 0.6 ± 0.9 ± 0.4 ± 0.4 ± 1.1 ± 0.4

10.6 12.1 7.2 34.9 19.6 44.1 41.9 46.3 34.2 41.1 67.3 18.5 50.4 24.9 44.6 33.2Source
± 1.3 ± 1.2 ± 0.9 ± 0.3 ± 0.6 ± 0.6 ± 0.4 ± 0.2 ± 0.4 ± 0.9 ± 0.1 ± 0.6 ± 0.3 ± 2.5 ± 0.6 ± 0.4
19.0 19.5 15.6 36.2 20.3 37.7 36.2 31.2 30.1 31.2 45.8 35.2 28.0 30.8 21.8 29.2BN stats [27]
± 0.4 ± 0.4 ± 0.7 ± 0.8 ± 0.3 ± 0.4 ± 0.6 ± 0.2 ± 0.4 ± 0.6 ± 0.4 ± 0.1 ± 0.4 ± 0.7 ± 0.5 ± 0.4
33.8 34.8 29.0 43.8 29.3 44.4 45.1 41.9 40.1 39.8 53.7 39.8 36.0 42.5 35.3 39.3PL [17]
± 1.3 ± 0.8 ± 0.5 ± 1.3 ± 0.4 ± 0.2 ± 0.7 ± 0.1 ± 0.4 ± 0.2 ± 0.4 ± 0.3 ± 0.7 ± 0.2 ± 0.6 ± 0.4
28.7 29.9 23.3 37.0 21.7 36.5 37.4 34.4 32.6 30.7 46.4 29.1 26.5 35.1 29.0 31.9TENT [38]
± 0.9 ± 1.0 ± 0.4 ± 1.0 ± 0.7 ± 0.6 ± 0.7 ± 0.4 ± 0.8 ± 0.7 ± 0.4 ± 1.5 ± 0.6 ± 0.4 ± 1.1 ± 0.7
7.6 9.1 5.9 31.8 16.4 42.3 39.4 45.5 31.9 38.4 66.3 15.0 49.4 21.5 43.7 31.0LAME [1]
± 1.6 ± 1.6 ± 0.8 ± 0.5 ± 0.6 ± 0.7 ± 0.5 ± 0.3 ± 0.9 ± 1.1 ± 0.3 ± 0.7 ± 0.4 ± 2.7 ± 0.6 ± 0.6
34.4 34.5 29.9 41.7 31.1 40.9 42.5 38.4 37.8 32.5 50.6 25.2 35.3 43.4 39.8 37.2CoTTA [39]
± 0.8 ± 0.6 ± 0.6 ± 1.0 ± 0.9 ± 0.4 ± 1.0 ± 0.2 ± 0.7 ± 0.4 ± 0.4 ± 0.8 ± 1.1 ± 0.3 ± 0.4 ± 0.2
2.2 2.0 2.5 4.4 1.7 3.7 3.8 3.1 2.8 3.5 15.1 2.9 2.5 3.4 2.7 3.7EATA [28]
± 0.9 ± 0.7 ± 0.5 ± 0.1 ± 0.4 ± 0.8 ± 0.4 ± 0.3 ± 1.1 ± 0.6 ± 7.3 ± 0.7 ± 0.6 ± 0.7 ± 0.3 ± 0.6
27.0 28.2 23.1 40.7 24.3 40.8 40.6 35.9 34.7 35.6 49.3 39.4 31.0 37.1 28.5 34.4SAR [29]
± 0.5 ± 0.6 ± 0.3 ± 0.6 ± 0.0 ± 0.1 ± 0.5 ± 0.2 ± 0.3 ± 0.4 ± 0.2 ± 0.1 ± 0.3 ± 0.6 ± 0.6 ± 0.3
40.5 41.7 35.9 66.2 43.5 64.1 65.5 54.5 49.5 59.8 68.3 25.7 54.7 56.6 46.2 51.5RoTTA [44]
± 0.9 ± 0.7 ± 0.9 ± 0.3 ± 0.1 ± 0.7 ± 0.4 ± 0.3 ± 1.3 ± 0.0 ± 0.5 ± 4.0 ± 0.1 ± 0.6 ± 0.7 ± 0.4
54.3 55.6 47.6 69.6 51.6 67.8 69.7 62.7 61.7 66.2 72.5 68.3 59.4 65.3 56.5 61.9

Attack

SoTTA
± 0.7 ± 0.7 ± 0.2 ± 0.2 ± 0.5 ± 0.1 ± 0.2 ± 0.3 ± 0.3 ± 0.1 ± 0.1 ± 1.2 ± 0.5 ± 0.4 ± 0.6 ± 0.0

10.6 12.1 7.2 34.9 19.6 44.1 41.9 46.3 34.2 41.1 67.3 18.5 50.4 24.9 44.6 33.2Source
± 1.3 ± 1.2 ± 0.9 ± 0.3 ± 0.6 ± 0.6 ± 0.4 ± 0.2 ± 0.4 ± 0.9 ± 0.1 ± 0.6 ± 0.3 ± 2.5 ± 0.6 ± 0.4
25.5 25.5 20.8 28.2 22.0 28.4 31.0 30.7 32.6 24.5 44.2 25.8 26.3 29.4 29.4 28.3BN stats [27]
± 1.0 ± 0.5 ± 0.9 ± 0.5 ± 0.1 ± 0.3 ± 0.4 ± 0.6 ± 0.3 ± 0.2 ± 0.5 ± 0.5 ± 0.2 ± 0.8 ± 0.6 ± 0.3
21.4 25.6 15.8 22.5 16.1 19.8 23.8 28.1 30.7 21.1 47.4 14.0 21.6 26.4 23.4 23.8PL [17]
± 2.4 ± 3.4 ± 2.4 ± 2.1 ± 0.2 ± 2.3 ± 1.0 ± 0.3 ± 0.5 ± 1.4 ± 1.6 ± 2.1 ± 2.6 ± 4.5 ± 2.6 ± 0.6
16.4 17.3 11.3 20.1 11.2 17.8 24.3 20.0 24.6 16.3 50.9 10.9 13.5 25.3 19.5 20.0TENT [38]
± 3.0 ± 5.5 ± 3.3 ± 4.2 ± 0.1 ± 2.3 ± 1.9 ± 2.7 ± 4.6 ± 1.5 ± 1.8 ± 1.6 ± 0.8 ± 3.8 ± 1.8 ± 0.9
7.9 9.2 6.1 32.0 16.5 42.5 39.8 45.0 31.9 38.8 66.2 15.1 49.8 21.7 43.6 31.1LAME [1]
± 1.6 ± 1.7 ± 0.8 ± 0.5 ± 0.6 ± 1.0 ± 0.7 ± 1.0 ± 1.2 ± 1.1 ± 0.5 ± 0.9 ± 0.4 ± 2.7 ± 0.2 ± 0.7
28.6 28.4 25.3 25.6 21.8 25.3 28.2 28.4 31.0 20.4 38.2 20.1 25.1 33.3 30.4 27.3CoTTA [39]
± 0.9 ± 0.3 ± 0.7 ± 0.8 ± 1.1 ± 1.5 ± 0.7 ± 1.4 ± 0.4 ± 0.4 ± 1.2 ± 0.5 ± 0.9 ± 0.7 ± 0.8 ± 0.3
2.8 2.7 2.3 2.6 2.0 2.0 2.8 1.9 2.4 2.0 2.7 2.2 3.0 2.1 2.6 2.4EATA [28]
± 1.5 ± 0.6 ± 0.3 ± 0.3 ± 0.6 ± 0.3 ± 0.3 ± 0.1 ± 0.4 ± 0.2 ± 0.7 ± 0.3 ± 0.3 ± 0.3 ± 0.2 ± 0.2
37.5 37.8 29.3 38.8 26.4 38.9 42.4 41.2 42.7 36.4 57.2 32.1 32.9 40.7 37.7 38.1SAR [29]
± 1.9 ± 2.1 ± 2.9 ± 0.5 ± 2.4 ± 2.2 ± 1.0 ± 3.9 ± 0.5 ± 2.5 ± 0.8 ± 1.3 ± 3.5 ± 1.8 ± 1.2 ± 1.2
36.6 37.9 31.2 61.9 40.4 60.7 61.9 51.7 45.7 55.9 66.5 25.5 51.6 53.0 44.5 48.3RoTTA [44]
± 1.0 ± 1.5 ± 1.4 ± 1.0 ± 0.4 ± 0.3 ± 0.6 ± 0.5 ± 0.7 ± 0.4 ± 0.4 ± 1.5 ± 0.7 ± 0.9 ± 1.0 ± 0.5
50.4 52.3 41.9 66.3 45.5 65.4 66.7 60.1 59.3 63.1 70.7 65.6 55.9 61.8 54.6 58.6

Noise

SoTTA
± 2.5 ± 0.7 ± 3.5 ± 0.8 ± 0.7 ± 0.5 ± 0.6 ± 0.9 ± 0.2 ± 1.0 ± 0.3 ± 1.1 ± 1.4 ± 1.9 ± 0.6 ± 1.0
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Table 7: Classification accuracy (%) and their corresponding standard deviations on ImageNet-C for
15 types of corruptions under five scenarios. Bold numbers are the highest accuracy. Averaged over
three different random seeds.

Noise Blur Weather Digital

Method Gau. Shot Imp. Def. Gla. Mot. Zoom Snow Fro. Fog Brit. Cont. Elas. Pix. JPEG Avg.
1.2 1.8 1.0 11.4 8.7 11.2 17.6 10.9 16.5 14.3 51.3 3.4 16.8 23.1 29.6 14.6Source
± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0
13.0 14.1 13.4 11.7 12.8 23.1 33.3 29.1 28.1 40.3 57.7 11.9 38.4 43.8 36.4 27.1BN stats [27]
± 0.1 ± 0.1 ± 0.0 ± 0.0 ± 0.0 ± 0.1 ± 0.0 ± 0.1 ± 0.0 ± 0.1 ± 0.1 ± 0.1 ± 0.0 ± 0.1 ± 0.1 ± 0.0
14.9 18.3 16.5 11.2 13.2 29.1 39.1 35.5 26.0 47.6 58.3 5.2 46.5 50.5 45.6 30.5PL [17]
± 1.2 ± 1.3 ± 0.7 ± 0.7 ± 1.2 ± 1.6 ± 0.5 ± 1.1 ± 1.2 ± 0.6 ± 0.3 ± 0.3 ± 0.6 ± 0.2 ± 0.1 ± 0.1
13.0 14.1 13.4 11.7 12.8 23.1 33.3 29.1 28.1 40.3 57.7 11.9 38.4 43.8 36.4 27.1TENT [38]
± 0.1 ± 0.1 ± 0.0 ± 0.0 ± 0.0 ± 0.1 ± 0.0 ± 0.1 ± 0.0 ± 0.1 ± 0.1 ± 0.1 ± 0.0 ± 0.1 ± 0.1 ± 0.0
0.7 1.1 0.5 11.4 8.6 11.1 17.5 10.3 16.4 14.1 51.3 3.4 16.5 23.0 29.6 14.4LAME [1]
± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0
17.7 19.0 18.0 15.7 17.4 30.6 39.0 34.0 32.4 46.9 59.3 18.7 43.1 49.8 42.2 32.2CoTTA [39]
± 0.1 ± 0.2 ± 0.1 ± 0.1 ± 0.3 ± 0.1 ± 0.2 ± 0.3 ± 0.1 ± 0.2 ± 0.1 ± 0.3 ± 0.1 ± 0.2 ± 0.1 ± 0.1
25.9 27.5 25.9 23.7 23.9 35.2 43.2 40.2 36.2 50.3 59.9 30.6 48.4 51.8 47.0 38.0EATA [28]
± 0.2 ± 0.1 ± 0.2 ± 0.4 ± 0.4 ± 0.3 ± 0.0 ± 0.2 ± 0.2 ± 0.1 ± 0.0 ± 0.3 ± 0.0 ± 0.0 ± 0.1 ± 0.1
24.5 26.4 24.5 21.0 21.6 33.3 41.1 38.3 34.6 49.2 59.4 24.8 46.5 50.7 45.8 36.1SAR [29]
± 0.3 ± 0.1 ± 0.2 ± 0.1 ± 0.2 ± 0.0 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 1.0 ± 0.1 ± 0.2 ± 0.0 ± 0.1
15.1 16.5 15.5 13.1 14.2 25.5 36.1 31.8 28.9 44.2 59.5 15.6 41.6 46.8 40.3 29.7RoTTA [44]
± 0.1 ± 0.2 ± 0.1 ± 0.2 ± 0.0 ± 0.1 ± 0.1 ± 0.2 ± 0.1 ± 0.2 ± 0.0 ± 0.2 ± 0.1 ± 0.0 ± 0.1 ± 0.0
29.2 31.8 29.8 26.2 27.6 37.9 44.7 42.8 37.9 52.3 60.1 24.1 50.3 53.4 48.7 39.8

Benign

SoTTA
± 0.2 ± 0.3 ± 0.3 ± 0.2 ± 0.2 ± 0.2 ± 0.2 ± 0.2 ± 0.3 ± 0.2 ± 0.1 ± 0.5 ± 0.1 ± 0.1 ± 0.2 ± 0.0

1.2 1.8 1.0 11.4 8.7 11.2 17.6 10.9 16.5 14.3 51.3 3.4 16.8 23.1 29.6 14.6Source
± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0
5.8 6.9 6.7 8.5 8.5 15.5 24.6 19.1 21.5 26.8 49.7 4.5 26.2 31.7 27.3 18.9BN stats [27]
± 0.5 ± 0.1 ± 0.0 ± 0.7 ± 0.3 ± 0.0 ± 0.1 ± 0.4 ± 0.1 ± 0.0 ± 0.1 ± 0.2 ± 0.1 ± 0.0 ± 0.2 ± 0.1
0.5 0.7 0.6 2.2 1.6 4.4 7.2 3.8 3.6 11.4 35.6 0.6 6.5 18.7 5.7 6.9PL [17]
± 0.1 ± 0.1 ± 0.0 ± 0.1 ± 0.3 ± 0.2 ± 0.5 ± 0.4 ± 0.2 ± 0.8 ± 1.3 ± 0.0 ± 1.3 ± 0.6 ± 0.2 ± 0.0
5.8 6.9 6.7 8.5 8.5 15.5 24.6 19.1 21.5 26.8 49.7 4.5 26.2 31.7 27.3 18.9TENT [38]
± 0.5 ± 0.1 ± 0.0 ± 0.7 ± 0.3 ± 0.0 ± 0.1 ± 0.4 ± 0.1 ± 0.0 ± 0.1 ± 0.2 ± 0.1 ± 0.0 ± 0.2 ± 0.1
1.0 1.5 0.8 10.8 8.4 11.1 17.5 10.3 16.4 14.1 51.3 3.4 16.5 23.0 29.6 14.4LAME [1]
± 0.1 ± 0.0 ± 0.0 ± 1.0 ± 0.3 ± 0.0 ± 0.0 ± 0.2 ± 0.0 ± 0.0 ± 0.0 ± 0.1 ± 0.0 ± 0.0 ± 0.0 ± 0.1
6.6 7.8 7.4 11.6 11.1 23.1 30.5 24.6 24.8 36.0 53.7 5.8 31.8 41.4 34.0 23.3CoTTA [39]
± 0.9 ± 0.2 ± 0.1 ± 1.7 ± 0.2 ± 0.1 ± 0.2 ± 0.4 ± 0.0 ± 0.1 ± 0.3 ± 1.1 ± 0.1 ± 0.1 ± 0.3 ± 0.2
6.6 9.1 7.7 14.1 12.9 23.3 33.5 29.0 28.9 40.1 55.4 6.4 36.9 43.7 36.5 25.6EATA [28]
± 0.1 ± 0.1 ± 0.2 ± 0.0 ± 0.1 ± 0.2 ± 0.1 ± 0.0 ± 0.2 ± 0.1 ± 0.1 ± 0.8 ± 0.3 ± 0.3 ± 0.1 ± 0.1
6.7 10.2 8.1 15.9 13.5 28.1 37.0 32.9 28.2 44.6 56.8 1.8 40.8 47.7 41.6 27.6SAR [29]
± 1.3 ± 0.6 ± 0.6 ± 1.9 ± 0.7 ± 0.1 ± 0.1 ± 1.3 ± 0.5 ± 0.2 ± 0.0 ± 0.5 ± 0.4 ± 0.1 ± 0.3 ± 0.3
3.1 5.4 3.7 10.8 9.2 23.0 33.5 32.3 30.3 44.6 59.3 0.7 40.2 46.3 40.2 25.6RoTTA [44]
± 0.7 ± 1.0 ± 0.4 ± 1.0 ± 0.6 ± 0.4 ± 1.3 ± 0.8 ± 0.2 ± 0.0 ± 0.1 ± 0.1 ± 0.0 ± 0.3 ± 0.2 ± 0.4
0.3 5.8 0.5 21.7 21.5 26.9 39.0 35.0 28.1 46.5 56.1 0.5 44.8 49.2 43.2 27.9

Near

SoTTA
± 0.1 ± 4.0 ± 0.2 ± 0.8 ± 0.8 ± 4.9 ± 0.6 ± 0.5 ± 0.5 ± 0.2 ± 0.2 ± 0.1 ± 0.1 ± 0.3 ± 0.1 ± 0.3

1.2 1.8 1.0 11.4 8.7 11.2 17.6 10.9 16.5 14.3 51.3 3.4 16.8 23.1 29.6 14.6Source
± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0
4.5 5.0 5.0 4.2 5.3 9.1 16.2 17.4 18.0 22.2 43.3 1.2 23.2 26.9 20.9 14.8BN stats [27]
± 0.0 ± 0.1 ± 0.0 ± 0.0 ± 0.0 ± 0.1 ± 0.1 ± 0.1 ± 0.0 ± 0.1 ± 0.1 ± 0.0 ± 0.1 ± 0.0 ± 0.1 ± 0.0
0.4 0.5 0.5 0.7 1.0 1.4 3.4 2.2 2.8 6.6 34.7 0.2 6.3 12.2 4.3 5.1PL [17]
± 0.0 ± 0.0 ± 0.1 ± 0.1 ± 0.2 ± 0.1 ± 0.4 ± 0.2 ± 0.1 ± 2.1 ± 5.1 ± 0.0 ± 0.5 ± 1.4 ± 0.3 ± 0.2
4.5 5.0 5.0 4.2 5.3 9.2 16.2 17.4 18.0 22.2 43.3 1.2 23.2 26.9 20.9 14.8TENT [38]
± 0.0 ± 0.1 ± 0.0 ± 0.0 ± 0.0 ± 0.1 ± 0.1 ± 0.1 ± 0.0 ± 0.1 ± 0.1 ± 0.0 ± 0.1 ± 0.0 ± 0.1 ± 0.0
0.7 1.1 0.5 11.4 8.6 11.1 17.5 10.3 16.3 14.0 51.3 3.3 16.5 23.0 29.6 14.4LAME [1]
± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0
4.4 5.1 4.5 4.2 6.2 10.7 18.9 21.6 20.0 30.0 48.2 0.9 27.9 34.8 27.0 17.6CoTTA [39]
± 0.5 ± 0.7 ± 0.2 ± 0.3 ± 0.2 ± 0.8 ± 0.7 ± 1.0 ± 0.8 ± 0.2 ± 0.3 ± 0.4 ± 0.9 ± 0.7 ± 0.2 ± 0.2
7.9 10.1 10.1 8.9 10.2 17.9 28.8 27.1 26.8 38.2 52.2 0.8 34.3 40.2 32.6 23.1EATA [28]
± 0.6 ± 0.5 ± 0.4 ± 0.5 ± 0.2 ± 0.4 ± 0.3 ± 0.3 ± 0.2 ± 0.1 ± 0.2 ± 0.1 ± 0.2 ± 0.2 ± 0.1 ± 0.1
3.2 4.9 3.7 3.5 5.5 20.6 32.1 31.8 26.1 43.1 54.0 0.4 39.2 45.4 39.1 23.5SAR [29]
± 0.5 ± 1.2 ± 1.2 ± 1.7 ± 1.7 ± 1.5 ± 0.9 ± 0.2 ± 0.9 ± 0.1 ± 0.2 ± 0.1 ± 0.5 ± 0.2 ± 0.1 ± 0.4
13.9 15.5 16.2 12.1 12.8 25.0 35.8 33.6 29.5 45.8 59.4 8.0 41.9 47.0 41.0 29.2RoTTA [44]
± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.2 ± 0.2 ± 1.9 ± 0.8 ± 0.2 ± 0.2 ± 0.1 ± 0.1 ± 0.3 ± 0.2
26.9 29.5 27.3 22.3 23.6 35.8 42.2 40.8 35.5 50.7 58.4 1.6 48.3 52.2 46.8 36.1

Far

SoTTA
± 0.4 ± 0.4 ± 0.1 ± 0.2 ± 0.6 ± 0.4 ± 0.1 ± 0.6 ± 0.1 ± 0.4 ± 0.7 ± 1.1 ± 0.3 ± 0.3 ± 0.2 ± 0.1

1.2 1.8 1.0 11.4 8.7 11.2 17.6 10.9 16.5 14.3 51.3 3.4 16.8 23.1 29.6 14.6Source
± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0
6.4 7.7 6.7 7.2 7.3 12.5 20.0 19.2 17.6 24.8 46.1 10.5 25.1 24.5 24.9 17.4BN stats [27]
± 0.0 ± 0.1 ± 0.0 ± 0.1 ± 0.1 ± 0.9 ± 0.1 ± 0.2 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 10.3 ± 0.1 ± 0.8
6.5 7.8 6.3 4.0 4.4 10.5 22.2 20.0 9.7 28.8 48.6 1.9 34.5 29.8 36.0 18.1PL [17]
± 0.7 ± 0.5 ± 0.4 ± 0.2 ± 0.3 ± 0.6 ± 2.7 ± 1.7 ± 0.7 ± 0.4 ± 0.4 ± 0.2 ± 2.8 ± 18.9 ± 0.6 ± 1.3

6.4 7.7 6.7 7.2 7.3 12.5 20.0 19.2 17.6 24.8 46.1 10.5 25.1 24.5 25.0 17.4TENT [38]
± 0.0 ± 0.1 ± 0.0 ± 0.1 ± 0.1 ± 0.9 ± 0.1 ± 0.2 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 10.3 ± 0.1 ± 0.8
0.7 1.1 0.5 11.4 8.6 10.7 17.5 10.3 16.4 14.1 51.3 3.4 16.5 18.5 29.6 14.0LAME [1]
± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.6 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 7.7 ± 0.0 ± 0.6
17.2 18.6 17.3 14.5 15.0 27.0 32.7 31.9 28.3 40.2 52.0 18.8 38.6 34.3 38.7 28.3CoTTA [39]
± 0.2 ± 0.2 ± 0.2 ± 0.1 ± 0.1 ± 2.4 ± 0.1 ± 0.2 ± 0.2 ± 0.2 ± 0.1 ± 0.3 ± 0.2 ± 16.2 ± 0.1 ± 1.3
15.3 17.5 15.5 13.9 12.9 22.0 28.8 29.0 24.3 35.5 49.2 17.3 35.7 39.1 36.0 26.1EATA [28]
± 0.1 ± 0.2 ± 0.2 ± 0.2 ± 0.2 ± 0.1 ± 0.2 ± 0.4 ± 0.1 ± 0.1 ± 0.1 ± 0.8 ± 0.2 ± 0.1 ± 0.1 ± 0.1
19.1 21.2 18.8 15.6 15.1 22.5 29.1 29.5 25.2 35.8 49.0 17.3 35.8 31.4 36.7 26.8SAR [29]
± 0.1 ± 0.0 ± 0.1 ± 0.2 ± 0.2 ± 2.1 ± 0.1 ± 0.3 ± 0.0 ± 0.1 ± 0.1 ± 1.2 ± 0.1 ± 14.0 ± 0.0 ± 1.0
19.0 19.7 19.1 16.8 17.1 28.9 38.4 35.7 31.1 47.0 59.8 22.0 43.5 39.1 43.3 32.0RoTTA [44]
± 0.2 ± 0.3 ± 0.1 ± 0.1 ± 0.2 ± 1.8 ± 0.1 ± 0.2 ± 0.2 ± 0.1 ± 0.1 ± 0.0 ± 0.1 ± 16.7 ± 0.1 ± 1.2
30.9 33.5 31.7 28.3 29.4 40.0 45.4 44.2 38.9 53.1 60.5 25.4 51.3 54.5 49.5 41.1

Attack

SoTTA
± 0.3 ± 0.2 ± 0.2 ± 0.3 ± 0.0 ± 0.3 ± 0.2 ± 0.2 ± 0.2 ± 0.1 ± 0.0 ± 1.4 ± 0.2 ± 0.2 ± 0.1 ± 0.1

1.2 1.8 1.0 11.4 8.7 11.2 17.6 10.9 16.5 14.3 51.3 3.4 16.8 23.1 29.6 14.6Source
± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0
7.0 7.5 7.4 5.1 6.0 7.5 11.9 12.4 11.4 10.7 34.5 4.4 16.3 23.9 25.7 12.8BN stats [27]
± 0.1 ± 0.1 ± 0.0 ± 0.1 ± 0.0 ± 0.0 ± 0.1 ± 0.1 ± 0.0 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.0
0.5 0.9 1.1 0.6 0.6 0.7 1.5 1.6 1.4 1.1 19.0 0.5 2.8 11.2 7.7 3.4PL [17]
± 0.1 ± 0.4 ± 0.3 ± 0.1 ± 0.1 ± 0.1 ± 0.2 ± 0.2 ± 0.1 ± 0.4 ± 5.7 ± 0.1 ± 1.4 ± 2.6 ± 1.9 ± 0.6
7.0 7.5 7.4 5.1 6.0 7.6 11.8 12.3 11.3 10.6 34.5 4.5 16.3 23.9 25.6 12.8TENT [38]
± 0.1 ± 0.1 ± 0.0 ± 0.1 ± 0.0 ± 0.1 ± 0.1 ± 0.1 ± 0.0 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.0
0.7 1.1 0.5 11.4 8.5 11.1 17.5 10.3 16.4 14.0 51.3 3.4 16.5 23.0 29.6 14.3LAME [1]
± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.0
8.3 9.0 9.2 4.3 5.4 7.8 13.3 16.6 13.7 14.9 44.0 3.2 19.4 30.9 32.3 16.0CoTTA [39]
± 0.1 ± 0.8 ± 0.0 ± 0.4 ± 0.3 ± 0.2 ± 0.8 ± 0.1 ± 0.0 ± 0.7 ± 0.8 ± 0.6 ± 0.1 ± 1.2 ± 0.4 ± 0.9
14.0 14.8 14.3 8.5 9.0 12.4 21.1 22.0 19.5 24.6 46.6 2.1 28.0 37.3 36.5 20.7EATA [28]
± 0.1 ± 0.2 ± 0.4 ± 0.3 ± 0.4 ± 0.3 ± 0.4 ± 0.5 ± 0.2 ± 0.3 ± 0.2 ± 0.4 ± 0.3 ± 0.3 ± 0.2 ± 0.2
13.9 18.8 16.3 5.1 3.4 6.6 25.0 27.6 19.8 33.9 49.8 1.0 29.0 41.2 38.3 22.0SAR [29]
± 4.0 ± 1.5 ± 0.5 ± 1.2 ± 0.3 ± 2.1 ± 0.4 ± 0.5 ± 1.7 ± 0.2 ± 0.1 ± 0.1 ± 1.4 ± 0.1 ± 1.4 ± 0.4
16.2 17.2 16.5 17.7 16.6 26.8 37.3 33.4 29.3 45.0 59.4 21.0 42.4 48.2 41.3 31.2RoTTA [44]
± 0.2 ± 0.4 ± 0.2 ± 0.1 ± 0.1 ± 0.0 ± 0.1 ± 0.2 ± 0.4 ± 0.1 ± 0.1 ± 0.3 ± 0.1 ± 0.2 ± 1.5 ± 0.2
27.5 30.4 28.3 26.5 27.3 37.7 43.6 42.4 36.9 51.6 59.2 23.8 49.6 53.0 48.2 39.0

Noise

SoTTA
± 0.6 ± 0.2 ± 0.1 ± 0.3 ± 0.4 ± 0.1 ± 0.1 ± 0.2 ± 0.6 ± 0.1 ± 0.1 ± 0.3 ± 0.3 ± 0.1 ± 0.1 ± 0.1
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Table 8: Classification accuracy (%) and their corresponding standard deviations on ablation study of
individual components on CIFAR10-C for 15 types of corruptions under five scenarios. Bold numbers
are the highest accuracy. Averaged over three different random seeds.

Noise Blur Weather Digital

Method Gau. Shot Imp. Def. Gla. Mot. Zoom Snow Fro. Fog Brit. Cont. Elas. Pix. JPEG Avg.
26.0 33.2 24.7 56.7 52.0 67.4 64.8 78.0 67.0 74.1 91.5 33.9 76.6 46.4 73.2 57.7Source
± 3.3 ± 3.5 ± 4.2 ± 2.7 ± 2.7 ± 1.2 ± 2.6 ± 0.4 ± 2.5 ± 0.8 ± 0.3 ± 1.8 ± 0.7 ± 0.6 ± 0.8 ± 1.0

10.2 10.9 10.7 61.9 14.2 41.8 82.0 32.1 36.3 52.3 88.7 11.2 34.0 14.2 23.5 34.9HC
± 0.1 ± 0.9 ± 0.7 ± 31.5 ± 0.4 ± 21.6 ± 2.0 ± 11.6 ± 17.7 ± 28.7 ± 1.1 ± 1.3 ± 15.8 ± 3.9 ± 3.8 ± 4.8

26.0 42.0 10.5 82.4 59.0 79.3 82.5 77.5 76.5 81.5 86.3 73.2 73.3 74.9 71.4 66.4UC
± 19.5 ± 27.4 ± 0.5 ± 0.8 ± 1.2 ± 1.8 ± 1.4 ± 1.2 ± 1.5 ± 0.6 ± 1.5 ± 6.0 ± 1.1 ± 1.6 ± 1.4 ± 3.0

20.7 57.8 21.1 84.6 62.4 83.4 85.2 80.5 79.3 84.5 89.8 69.5 76.4 76.3 75.1 69.8HC + UC (HUS)
± 15.1 ± 4.7 ± 9.5 ± 0.9 ± 1.8 ± 0.5 ± 1.1 ± 1.4 ± 0.5 ± 1.0 ± 0.3 ± 11.5 ± 1.3 ± 2.2 ± 0.4 ± 1.1

76.0 78.3 69.3 89.0 69.7 87.9 89.6 85.3 84.1 87.7 92.1 88.1 79.6 84.2 78.5 82.6ESM
± 0.6 ± 0.4 ± 0.5 ± 0.2 ± 1.7 ± 0.4 ± 0.2 ± 0.4 ± 0.7 ± 0.3 ± 0.2 ± 0.8 ± 1.0 ± 0.4 ± 0.3 ± 0.2

74.9 78.1 69.0 88.8 70.9 87.7 89.2 85.7 84.4 87.8 92.2 84.0 79.7 83.7 78.1 82.3HC + ESM
± 0.8 ± 0.0 ± 0.6 ± 0.3 ± 0.6 ± 0.6 ± 0.1 ± 0.5 ± 0.1 ± 0.1 ± 0.3 ± 0.6 ± 0.7 ± 0.8 ± 0.4 ± 0.2

74.9 77.1 68.2 88.7 71.0 87.4 89.1 85.0 84.0 87.8 92.0 86.2 79.8 84.4 78.0 82.2UC + ESM
± 0.5 ± 1.1 ± 0.5 ± 0.4 ± 1.5 ± 0.3 ± 1.0 ± 0.5 ± 0.3 ± 0.9 ± 0.3 ± 2.4 ± 1.0 ± 0.6 ± 0.8 ± 0.2

75.0 77.5 68.8 88.8 70.7 87.5 89.0 85.4 84.0 88.2 91.9 83.9 79.8 83.9 78.3 82.2

Benign

HUS + ESM (SoTTA)
± 1.1 ± 0.6 ± 0.7 ± 0.4 ± 1.2 ± 0.5 ± 0.5 ± 0.3 ± 0.7 ± 0.2 ± 0.1 ± 1.5 ± 0.4 ± 0.5 ± 0.7 ± 0.3

26.0 33.2 24.7 56.7 52.0 67.4 64.8 78.0 67.0 74.1 91.5 33.9 76.6 46.4 73.2 57.7Source
± 3.3 ± 3.5 ± 4.2 ± 2.7 ± 2.7 ± 1.2 ± 2.6 ± 0.4 ± 2.5 ± 0.8 ± 0.3 ± 1.8 ± 0.7 ± 0.6 ± 0.8 ± 1.0

10.3 10.6 10.1 12.6 12.3 11.9 16.7 16.1 14.4 14.5 16.6 11.2 19.7 13.2 14.0 13.6HC
± 0.1 ± 0.3 ± 0.0 ± 2.9 ± 2.5 ± 0.5 ± 4.8 ± 1.9 ± 1.4 ± 2.4 ± 0.6 ± 1.5 ± 3.6 ± 1.2 ± 0.7 ± 0.3

42.6 48.3 20.8 73.3 50.4 73.1 74.9 71.0 67.5 74.7 82.4 59.7 64.3 64.9 64.2 62.1UC
± 6.6 ± 2.4 ± 4.5 ± 2.2 ± 3.9 ± 1.8 ± 3.3 ± 2.2 ± 1.9 ± 4.7 ± 0.9 ± 1.9 ± 0.8 ± 5.6 ± 1.9 ± 0.8

32.8 42.5 15.9 73.8 51.1 73.8 77.8 65.1 70.8 77.6 84.6 61.6 69.7 62.6 66.2 61.7HC + UC (HUS)
± 2.5 ± 3.5 ± 7.3 ± 2.5 ± 2.1 ± 1.9 ± 2.8 ± 13.4 ± 1.1 ± 0.5 ± 0.8 ± 2.7 ± 1.2 ± 4.7 ± 3.2 ± 1.3

67.9 69.7 58.5 84.6 63.0 83.9 86.7 82.5 81.3 85.2 90.6 83.3 77.9 76.7 76.0 77.9ESM
± 1.4 ± 0.5 ± 0.6 ± 1.4 ± 3.5 ± 0.8 ± 0.1 ± 0.4 ± 0.5 ± 0.6 ± 0.4 ± 2.5 ± 1.9 ± 1.5 ± 1.5 ± 0.4

73.6 75.6 64.3 87.3 66.7 86.3 87.6 84.8 83.2 86.9 90.9 87.3 79.1 82.3 77.3 80.9HC + ESM
± 1.4 ± 1.7 ± 3.9 ± 1.0 ± 0.6 ± 0.7 ± 0.5 ± 0.2 ± 0.3 ± 0.9 ± 0.7 ± 0.5 ± 0.9 ± 0.8 ± 1.3 ± 0.6

68.1 69.4 60.3 84.8 64.6 84.2 85.5 82.2 81.7 85.3 90.8 84.4 77.0 75.5 76.5 78.0UC + ESM
± 2.3 ± 0.9 ± 2.9 ± 0.6 ± 2.3 ± 1.1 ± 0.2 ± 0.6 ± 1.7 ± 0.7 ± 0.4 ± 1.0 ± 1.2 ± 0.1 ± 0.9 ± 0.4

74.3 76.7 66.5 87.5 66.9 86.4 87.8 84.4 83.8 87.2 91.3 88.4 78.7 82.4 78.0 81.4

Near

HUS + ESM (SoTTA)
± 1.4 ± 0.9 ± 2.2 ± 0.1 ± 0.8 ± 0.6 ± 0.5 ± 0.6 ± 0.2 ± 0.5 ± 0.2 ± 0.7 ± 1.1 ± 0.5 ± 0.6 ± 0.5

26.0 33.2 24.7 56.7 52.0 67.4 64.8 78.0 67.0 74.1 91.5 33.9 76.6 46.4 73.2 57.7Source
± 3.3 ± 3.5 ± 4.2 ± 2.7 ± 2.7 ± 1.2 ± 2.6 ± 0.4 ± 2.5 ± 0.8 ± 0.3 ± 1.8 ± 0.7 ± 0.6 ± 0.8 ± 1.0

10.3 10.7 10.1 15.4 12.1 17.4 26.7 16.2 16.6 17.9 55.5 11.0 15.3 12.9 15.8 17.6HC
± 0.1 ± 0.8 ± 0.0 ± 7.3 ± 0.7 ± 6.7 ± 22.2 ± 3.1 ± 2.6 ± 7.7 ± 28.4 ± 0.7 ± 1.6 ± 1.6 ± 4.7 ± 3.8

49.3 43.5 10.2 66.8 46.7 65.3 69.4 67.5 62.0 65.8 74.3 55.4 55.8 59.2 55.8 56.5UC
± 4.9 ± 6.2 ± 0.3 ± 4.4 ± 1.8 ± 3.3 ± 3.8 ± 0.5 ± 3.1 ± 3.8 ± 1.7 ± 11.1 ± 5.4 ± 1.0 ± 4.0 ± 2.0

18.5 26.2 11.9 70.0 49.2 72.0 77.7 72.8 70.2 75.2 84.2 53.9 62.9 65.2 66.3 58.4HC + UC (HUS)
± 7.1 ± 15.7 ± 3.3 ± 3.0 ± 6.2 ± 2.9 ± 2.9 ± 1.0 ± 3.6 ± 1.8 ± 1.0 ± 9.4 ± 4.8 ± 2.3 ± 2.8 ± 0.5

59.2 62.0 49.7 84.3 52.2 83.3 85.2 78.3 75.0 85.2 88.5 78.8 71.9 71.8 66.6 72.8ESM
± 2.2 ± 1.8 ± 4.0 ± 2.1 ± 2.3 ± 0.9 ± 0.8 ± 0.6 ± 0.6 ± 0.7 ± 0.3 ± 5.5 ± 2.0 ± 2.9 ± 2.3 ± 0.7

60.6 64.7 55.2 84.8 55.7 82.1 83.9 81.8 82.2 83.6 90.3 82.5 70.4 76.6 69.0 74.9HC + ESM
± 3.2 ± 3.4 ± 7.7 ± 0.3 ± 8.8 ± 1.3 ± 1.7 ± 1.0 ± 1.7 ± 2.6 ± 0.9 ± 0.6 ± 5.5 ± 2.4 ± 6.1 ± 2.4

64.0 67.7 57.3 84.2 56.5 84.5 85.9 78.7 79.0 85.1 90.8 84.9 73.5 76.8 69.3 75.9UC + ESM
± 1.9 ± 4.6 ± 2.9 ± 1.1 ± 3.5 ± 0.8 ± 0.7 ± 1.6 ± 1.1 ± 0.8 ± 0.4 ± 0.9 ± 1.0 ± 1.1 ± 1.9 ± 0.5

73.3 76.3 66.3 88.5 68.3 86.8 88.3 84.1 84.2 87.2 92.0 89.0 77.8 83.8 77.8 81.6

Far

HUS + ESM (SoTTA)
± 1.2 ± 1.9 ± 2.5 ± 0.6 ± 2.3 ± 0.7 ± 0.2 ± 1.0 ± 0.6 ± 0.4 ± 0.4 ± 1.1 ± 1.8 ± 0.9 ± 1.2 ± 0.6

26.0 33.2 24.7 56.7 52.0 67.4 64.8 78.0 67.0 74.1 91.5 33.9 76.6 46.4 73.2 57.7Source
± 3.3 ± 3.5 ± 4.2 ± 2.7 ± 2.7 ± 1.2 ± 2.6 ± 0.4 ± 2.5 ± 0.8 ± 0.3 ± 1.8 ± 0.7 ± 0.6 ± 0.8 ± 1.0

10.2 10.4 10.1 15.1 11.7 21.5 31.6 17.1 13.1 22.0 32.6 10.5 18.5 11.9 17.2 16.9HC
± 0.0 ± 0.3 ± 0.0 ± 7.0 ± 0.2 ± 4.4 ± 11.7 ± 3.5 ± 0.5 ± 6.7 ± 10.5 ± 0.3 ± 4.5 ± 0.5 ± 0.8 ± 1.6

44.1 47.3 10.1 82.9 63.1 81.7 84.8 79.1 79.0 83.7 88.3 81.0 73.2 78.5 73.3 70.0UC
± 29.5 ± 32.3 ± 0.2 ± 1.4 ± 2.4 ± 1.5 ± 1.2 ± 1.8 ± 0.9 ± 1.0 ± 0.7 ± 0.8 ± 1.8 ± 3.8 ± 1.5 ± 3.9

16.1 26.3 10.3 35.4 42.1 47.9 54.4 46.4 45.3 55.0 49.8 47.5 42.6 57.1 36.5 40.9HC + UC (HUS)
± 7.5 ± 23.9 ± 0.4 ± 19.3 ± 14.5 ± 14.7 ± 29.7 ± 14.4 ± 31.9 ± 24.3 ± 3.2 ± 27.0 ± 22.5 ± 11.6 ± 14.9 ± 5.5

77.0 79.5 71.6 89.0 71.8 88.3 89.6 86.3 85.5 88.1 92.1 87.2 80.4 85.4 79.8 83.4ESM
± 0.6 ± 0.3 ± 0.4 ± 0.6 ± 0.6 ± 0.3 ± 0.6 ± 0.7 ± 0.6 ± 0.4 ± 0.0 ± 1.3 ± 0.8 ± 0.5 ± 0.9 ± 0.2

77.8 79.7 70.9 89.3 71.8 87.9 89.6 86.1 85.4 88.7 92.2 87.3 80.4 85.7 79.8 83.5HC + ESM
± 0.3 ± 0.3 ± 0.2 ± 0.3 ± 1.4 ± 0.4 ± 0.5 ± 0.2 ± 0.3 ± 0.2 ± 0.1 ± 0.5 ± 0.6 ± 0.3 ± 0.6 ± 0.2

78.2 80.1 72.3 89.9 73.6 89.1 90.2 86.7 85.7 89.3 92.8 88.6 81.0 86.0 80.5 84.3UC + ESM
± 0.2 ± 0.4 ± 0.9 ± 0.2 ± 0.8 ± 0.1 ± 0.2 ± 0.2 ± 0.2 ± 0.3 ± 0.1 ± 0.2 ± 0.8 ± 0.4 ± 0.5 ± 0.1

78.2 80.8 72.3 90.1 73.6 89.2 90.3 87.4 86.2 89.3 92.9 87.8 81.3 86.6 81.0 84.5

Attack

HUS + ESM (SoTTA)
± 0.3 ± 0.1 ± 0.8 ± 0.2 ± 0.9 ± 0.4 ± 0.5 ± 0.5 ± 0.6 ± 0.6 ± 0.1 ± 0.7 ± 0.8 ± 0.3 ± 0.3 ± 0.2

26.0 33.2 24.7 56.7 52.0 67.4 64.8 78.0 67.0 74.1 91.5 33.9 76.6 46.4 73.2 57.7Source
± 3.3 ± 3.5 ± 4.2 ± 2.7 ± 2.7 ± 1.2 ± 2.6 ± 0.4 ± 2.5 ± 0.8 ± 0.3 ± 1.8 ± 0.7 ± 0.6 ± 0.8 ± 1.0

10.3 10.3 10.1 17.5 11.8 18.1 18.9 19.0 14.1 25.4 41.6 11.1 15.1 13.7 14.6 16.8HC
± 0.3 ± 0.1 ± 0.0 ± 9.5 ± 1.0 ± 3.7 ± 5.6 ± 1.3 ± 1.0 ± 10.9 ± 6.3 ± 1.5 ± 0.6 ± 0.6 ± 1.1 ± 0.2

24.8 41.8 10.1 72.4 53.0 70.0 74.1 69.9 69.9 66.6 77.9 67.7 64.2 67.2 63.2 59.5UC
± 25.5 ± 27.4 ± 0.0 ± 3.4 ± 2.2 ± 1.5 ± 2.2 ± 2.1 ± 1.2 ± 10.0 ± 0.6 ± 1.9 ± 2.1 ± 1.1 ± 2.9 ± 3.0

21.7 40.5 10.7 74.0 46.6 72.5 78.1 73.3 71.3 76.6 81.1 40.9 65.9 67.4 63.3 58.9HC + UC (HUS)
± 14.1 ± 19.4 ± 1.0 ± 4.6 ± 13.0 ± 4.1 ± 3.6 ± 0.9 ± 1.9 ± 2.3 ± 1.2 ± 17.3 ± 0.9 ± 2.7 ± 6.0 ± 2.6

59.4 59.9 51.7 62.0 44.3 57.1 65.8 65.8 67.4 60.9 77.8 56.2 51.9 63.8 63.6 60.5ESM
± 2.1 ± 1.4 ± 1.5 ± 14.5 ± 7.0 ± 15.7 ± 5.7 ± 2.1 ± 3.7 ± 4.7 ± 2.6 ± 7.1 ± 4.3 ± 11.3 ± 6.3 ± 5.3

65.0 68.2 58.0 74.8 48.4 67.6 75.1 71.4 70.8 74.0 81.0 70.8 62.4 72.9 70.1 68.7HC + ESM
± 2.0 ± 2.0 ± 3.2 ± 3.4 ± 4.2 ± 1.3 ± 2.8 ± 0.9 ± 4.0 ± 1.4 ± 0.2 ± 3.7 ± 2.3 ± 3.5 ± 2.3 ± 1.1

70.8 75.9 64.7 83.4 62.2 82.2 84.6 81.2 80.1 82.6 90.1 79.8 73.6 77.7 76.9 77.7UC + ESM
± 4.7 ± 3.7 ± 2.9 ± 2.0 ± 2.1 ± 4.6 ± 0.9 ± 0.9 ± 1.2 ± 2.4 ± 1.1 ± 5.2 ± 3.6 ± 1.2 ± 1.0 ± 1.8

73.3 77.7 66.8 86.1 64.0 84.3 86.6 83.1 82.0 85.7 91.1 84.1 77.1 81.6 77.2 80.0

Noise

HUS + ESM (SoTTA)
± 1.5 ± 0.8 ± 1.8 ± 2.1 ± 2.8 ± 0.7 ± 1.1 ± 0.7 ± 1.8 ± 2.7 ± 0.4 ± 2.4 ± 3.3 ± 2.8 ± 2.2 ± 1.4
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Table 9: Classification accuracy (%) and their corresponding standard deviations on ablation study of
the size of Noise on CIFAR10-C for 15 types of corruptions. Bold numbers are the highest accuracy.
Averaged over three different random seeds.

Noise Blur Weather Digital

Method Gau. Shot Imp. Def. Gla. Mot. Zoom Snow Fro. Fog Brit. Cont. Elas. Pix. JPEG Avg.
26.0 33.2 24.7 56.7 52.0 67.4 64.8 78.0 67.0 74.1 91.5 33.9 76.6 46.4 73.2 57.7Source
± 3.3 ± 3.5 ± 4.2 ± 2.7 ± 2.7 ± 1.2 ± 2.6 ± 0.4 ± 2.5 ± 0.8 ± 0.3 ± 1.8 ± 0.7 ± 0.6 ± 0.8 ± 1.0

59.6 61.6 51.5 66.9 49.8 65.3 68.6 71.2 71.5 65.0 84.2 70.0 58.8 63.5 65.4 64.9BN stats [27]
± 0.2 ± 0.7 ± 0.6 ± 1.2 ± 0.9 ± 0.1 ± 0.7 ± 0.5 ± 0.2 ± 0.6 ± 0.3 ± 1.1 ± 1.2 ± 0.5 ± 0.9 ± 0.4

59.9 61.3 52.1 66.4 46.1 62.7 67.2 69.6 69.2 65.4 83.8 66.8 55.5 64.9 65.6 63.8PL [17]
± 4.7 ± 3.6 ± 1.7 ± 1.4 ± 4.2 ± 1.5 ± 2.7 ± 1.5 ± 1.3 ± 2.0 ± 1.2 ± 4.4 ± 3.0 ± 1.2 ± 4.3 ± 0.3

64.3 70.0 59.3 68.8 47.7 65.8 72.4 73.6 73.4 65.4 88.2 69.0 63.7 72.2 67.8 68.1TENT [38]
± 2.0 ± 2.4 ± 0.1 ± 4.2 ± 3.1 ± 3.0 ± 4.9 ± 5.0 ± 5.3 ± 6.0 ± 0.8 ± 2.6 ± 3.8 ± 1.2 ± 5.6 ± 1.3

22.0 28.9 18.8 52.2 51.2 64.9 61.5 78.9 68.0 72.3 90.3 27.6 75.3 43.6 73.8 55.3LAME [1]
± 3.6 ± 3.7 ± 3.5 ± 2.1 ± 3.5 ± 0.5 ± 1.4 ± 0.6 ± 4.1 ± 1.4 ± 0.3 ± 1.3 ± 0.7 ± 0.9 ± 1.0 ± 0.5

68.6 69.7 61.8 64.9 53.1 62.1 68.8 72.6 75.9 64.5 86.1 62.1 59.7 71.0 70.2 67.4CoTTA [39]
± 1.5 ± 1.6 ± 1.8 ± 3.8 ± 4.0 ± 2.7 ± 2.0 ± 1.2 ± 0.4 ± 3.8 ± 0.3 ± 1.5 ± 2.8 ± 2.3 ± 1.7 ± 1.6

58.4 61.7 45.1 58.8 38.7 57.9 64.5 62.7 63.3 62.2 76.0 54.6 48.2 64.6 60.5 58.5EATA [28]
± 0.3 ± 2.8 ± 6.5 ± 3.7 ± 9.3 ± 2.5 ± 3.9 ± 1.9 ± 3.3 ± 3.6 ± 0.7 ± 16.1 ± 2.9 ± 2.5 ± 1.7 ± 0.8

60.9 63.0 53.6 67.5 50.5 65.9 69.1 71.2 71.4 65.4 84.2 70.3 59.4 63.7 65.7 65.5SAR [29]
± 1.3 ± 1.9 ± 2.5 ± 0.8 ± 0.4 ± 0.5 ± 0.4 ± 0.6 ± 0.2 ± 0.3 ± 0.3 ± 0.9 ± 0.7 ± 0.5 ± 0.6 ± 0.3

64.9 67.0 56.9 81.4 59.9 81.1 83.1 80.1 78.3 78.9 91.0 68.0 72.8 73.9 72.9 74.0RoTTA [44]
± 0.5 ± 0.8 ± 1.2 ± 0.6 ± 0.9 ± 0.8 ± 0.4 ± 0.7 ± 1.1 ± 0.5 ± 0.4 ± 4.6 ± 0.7 ± 0.2 ± 0.9 ± 0.8

74.1 77.3 67.4 86.2 64.7 85.0 87.5 84.3 82.3 85.0 91.4 83.5 77.8 82.7 78.6 80.5

5000

SoTTA
± 1.0 ± 0.9 ± 0.2 ± 1.9 ± 2.5 ± 2.3 ± 1.1 ± 0.4 ± 1.0 ± 2.5 ± 0.3 ± 3.4 ± 2.2 ± 1.4 ± 0.9 ± 1.0

26.0 33.2 24.7 56.7 52.0 67.4 64.8 78.0 67.0 74.1 91.5 33.9 76.6 46.4 73.2 57.7Source
± 3.3 ± 3.5 ± 4.2 ± 2.7 ± 2.7 ± 1.2 ± 2.6 ± 0.4 ± 2.5 ± 0.8 ± 0.3 ± 1.8 ± 0.7 ± 0.6 ± 0.8 ± 1.0

51.7 53.9 45.5 52.7 41.5 51.0 55.1 62.8 63.8 53.8 76.9 55.8 46.8 54.8 56.4 54.8BN stats [27]
± 0.3 ± 0.6 ± 0.7 ± 2.0 ± 1.7 ± 0.7 ± 1.5 ± 0.7 ± 0.2 ± 0.6 ± 0.3 ± 2.5 ± 1.8 ± 0.7 ± 1.0 ± 0.8

47.6 52.7 44.7 48.9 36.1 49.4 54.1 61.9 56.5 50.9 77.1 45.2 43.1 49.4 59.5 51.8PL [17]
± 9.9 ± 2.4 ± 4.3 ± 12.6 ± 5.1 ± 1.8 ± 2.9 ± 2.4 ± 4.4 ± 1.3 ± 3.7 ± 4.8 ± 4.5 ± 5.6 ± 4.7 ± 0.9

54.0 57.1 36.7 48.9 28.3 50.5 51.0 64.0 64.7 49.5 80.5 43.7 38.4 56.7 57.0 52.1TENT [38]
± 6.7 ± 5.6 ± 9.1 ± 6.8 ± 4.5 ± 3.1 ± 5.0 ± 4.1 ± 5.2 ± 1.9 ± 1.4 ± 3.0 ± 2.2 ± 6.4 ± 4.5 ± 0.4

21.8 28.6 18.5 51.6 50.8 64.3 60.9 78.4 67.3 71.7 90.5 27.0 75.1 43.0 73.4 54.9LAME [1]
± 3.5 ± 3.7 ± 3.1 ± 2.3 ± 3.6 ± 0.2 ± 1.8 ± 0.5 ± 3.8 ± 1.2 ± 0.2 ± 1.2 ± 0.7 ± 0.9 ± 1.0 ± 0.6

60.4 60.3 52.4 47.3 41.6 44.1 52.0 62.7 66.6 47.7 79.0 44.7 42.8 60.2 60.2 54.8CoTTA [39]
± 2.1 ± 3.5 ± 1.6 ± 3.0 ± 0.4 ± 2.7 ± 4.7 ± 0.6 ± 0.8 ± 2.4 ± 1.7 ± 1.1 ± 4.3 ± 0.5 ± 1.0 ± 1.3

42.2 41.0 33.2 32.7 25.0 27.9 34.3 40.8 42.6 31.6 61.5 20.3 27.5 35.8 43.1 36.0EATA [28]
± 1.1 ± 1.1 ± 5.9 ± 5.1 ± 1.5 ± 2.1 ± 5.4 ± 2.7 ± 6.5 ± 11.5 ± 5.7 ± 2.2 ± 4.1 ± 4.5 ± 8.3 ± 0.8

57.5 59.3 49.6 57.2 43.7 54.4 59.4 64.8 65.4 57.9 77.1 60.2 50.0 58.3 59.8 58.3SAR [29]
± 1.0 ± 0.2 ± 1.7 ± 1.1 ± 1.7 ± 1.5 ± 1.6 ± 1.0 ± 0.3 ± 0.4 ± 0.2 ± 1.8 ± 1.2 ± 0.6 ± 0.1 ± 0.3

64.4 66.9 56.1 80.1 59.1 79.8 82.2 79.7 78.7 77.8 91.2 69.0 72.3 73.4 72.8 73.6RoTTA [44]
± 0.5 ± 0.8 ± 1.4 ± 0.4 ± 0.5 ± 0.2 ± 0.8 ± 0.8 ± 0.7 ± 0.4 ± 0.6 ± 4.0 ± 1.2 ± 0.2 ± 0.7 ± 0.5

73.3 77.7 66.8 86.1 64.0 84.3 86.6 83.1 82.0 85.7 91.1 84.1 77.1 81.6 77.2 80.0

10000

SoTTA
± 1.5 ± 0.8 ± 1.8 ± 2.1 ± 2.8 ± 0.7 ± 1.1 ± 0.7 ± 1.8 ± 2.7 ± 0.4 ± 2.4 ± 3.3 ± 2.8 ± 2.2 ± 1.4

26.0 33.2 24.7 56.7 52.0 67.4 64.8 78.0 67.0 74.1 91.5 33.9 76.6 46.4 73.2 57.7Source
± 3.3 ± 3.5 ± 4.2 ± 2.7 ± 2.7 ± 1.2 ± 2.6 ± 0.4 ± 2.5 ± 0.8 ± 0.3 ± 1.8 ± 0.7 ± 0.6 ± 0.8 ± 1.0

41.3 42.9 37.2 37.4 32.6 36.1 39.6 52.0 52.7 40.6 65.0 37.4 33.9 44.1 44.4 42.5BN stats [27]
± 0.7 ± 1.0 ± 0.4 ± 2.1 ± 1.4 ± 1.0 ± 1.4 ± 0.7 ± 0.5 ± 1.2 ± 0.5 ± 4.1 ± 1.8 ± 0.9 ± 0.5 ± 0.8

25.5 22.6 27.6 20.5 21.7 20.2 21.8 50.0 41.7 24.0 60.8 17.7 21.3 23.1 29.5 28.5PL [17]
± 1.1 ± 3.2 ± 4.2 ± 7.0 ± 5.0 ± 6.7 ± 1.4 ± 8.4 ± 13.4 ± 9.0 ± 8.3 ± 3.6 ± 9.2 ± 5.0 ± 10.1 ± 2.3

21.5 19.7 21.4 14.2 18.5 17.8 15.3 44.2 36.6 15.2 63.8 19.9 13.3 28.1 25.0 25.0TENT [38]
± 4.5 ± 2.3 ± 2.2 ± 1.4 ± 3.4 ± 4.4 ± 3.5 ± 6.7 ± 4.8 ± 1.3 ± 5.2 ± 2.7 ± 1.8 ± 10.7 ± 8.3 ± 2.9

21.7 28.2 18.1 50.4 49.6 63.6 60.1 77.9 66.1 71.0 90.6 26.6 75.0 42.6 73.3 54.3LAME [1]
± 3.4 ± 3.6 ± 3.0 ± 2.7 ± 3.0 ± 0.6 ± 2.0 ± 0.5 ± 3.3 ± 0.7 ± 0.1 ± 1.4 ± 0.5 ± 0.7 ± 0.7 ± 0.6

42.7 46.7 39.0 31.0 29.8 32.0 35.3 50.9 55.3 31.9 67.6 28.9 29.5 45.9 46.8 40.9CoTTA [39]
± 1.5 ± 2.6 ± 3.0 ± 0.7 ± 2.2 ± 1.4 ± 2.4 ± 3.9 ± 3.5 ± 1.2 ± 1.2 ± 5.6 ± 3.2 ± 5.2 ± 2.8 ± 1.7

22.3 23.9 19.2 15.1 16.1 15.9 17.4 21.8 19.5 15.1 32.7 14.7 15.0 20.9 23.1 19.5EATA [28]
± 3.8 ± 3.5 ± 1.1 ± 1.6 ± 4.6 ± 3.1 ± 2.3 ± 5.5 ± 0.9 ± 1.2 ± 9.4 ± 1.7 ± 2.0 ± 0.6 ± 2.9 ± 0.6

41.6 43.7 39.6 33.4 29.3 34.6 38.1 55.8 56.1 38.5 68.4 33.0 28.9 46.6 45.3 42.2SAR [29]
± 1.9 ± 0.9 ± 2.6 ± 8.6 ± 5.4 ± 3.8 ± 3.2 ± 3.1 ± 3.0 ± 4.0 ± 3.2 ± 9.8 ± 7.2 ± 2.8 ± 0.8 ± 1.9

62.5 64.5 54.6 78.9 58.3 79.0 81.3 80.0 79.0 77.3 91.3 69.0 71.5 73.4 72.4 72.9RoTTA [44]
± 0.5 ± 1.1 ± 1.7 ± 0.4 ± 0.4 ± 0.7 ± 1.0 ± 0.3 ± 0.4 ± 0.5 ± 0.4 ± 1.4 ± 0.8 ± 0.3 ± 0.6 ± 0.3

73.2 75.6 63.3 83.2 61.0 84.5 86.3 82.6 81.0 84.8 89.7 82.8 72.9 81.1 77.5 78.6

20000

SoTTA
± 1.0 ± 2.8 ± 3.8 ± 2.8 ± 3.5 ± 2.6 ± 2.4 ± 0.6 ± 3.3 ± 1.8 ± 0.3 ± 4.9 ± 2.4 ± 1.5 ± 1.0 ± 1.5
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C Additional ablative studies

We conducted experiments to understand the sensitivity of our two hyperparameters: confidence
threshold (C0) and BN momentum (m). We varied C0 and m and reported the corresponding accuracy.
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Figure 8: Effect of hyperparameters on the model accuracy on CIFAR10-C for 15 types of corruptions
under five scenarios: Benign, Near, Far, Attack, and Noise. Averaged over three different random
seeds.

Confidence threshold. Our result shows that the selection of C0 shows similar patterns across
different scenarios (Benign ∼ Noise). The result illustrates a tradeoff; a low C0 value does not
effectively reject noisy samples, while a high C0 value filters benign data. We found a proper value of
C0 (0.99) that generally works well across the scenarios. Also, we found that the optimal C0 depends
primarily on in-distribution data. Our interpretation is that setting different C0 values for CIFAR10-C,
CIFAR100-C, and ImageNet-C is straightforward as they have a different number of classes (10, 100,
and 1,000), which leads to different ranges of the model’s confidence.

BN momentum. Across the tested range, the variations in performance were found to be negligible.
This finding indicates that choosing a low momentum value from within the specified range ([0.05,
0.3]) is adequate to maintain a favorable performance. Please note that setting a high momentum
would corrupt the result, which is implicated by the algorithms directly utilizing test-time statistics
(e.g., TENT) suffering from accuracy degradation with noisy data streams (e.g., TENT: 81.0%→
52.1% for Noise at Table 1).

D Further discussions

D.1 Theoretical explanation of the impact of noisy data streams

We provide a theoretical explanation of the impact of noisy data streams with a common entropy
minimization as an example. With the Bayesian-learning-based frameworks [2, 7], we can express the
posterior distribution p of the model in terms of training data D and benign test data B in test-time
adaptation:

log p(θ|D,B) = log q(θ)− λB

|B|

|B|∑
b=1

H(yb|xb). (7)

The posterior distribution of model parameters depends on the prior distribution q and the average
of entropy H of benign samples with a multiplier λ. Here, we incorporate the additional noisy data
stream N into Equation 7 and introduce a new posterior distribution considering noisy streams:

log p(θ|D,B,N) = log q(θ)− λB

|B|

|B|∑
b=1

H(yb|xb)−
λN

|N |

|N |∑
n=1

H(yn|xn). (8)
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Table 10: Average classification accuracy (%) and their corresponding standard deviations on ablation
study of the effect of high-confidence uniform-class continual memory of SoTTA on CIFAR10-C.
Bold numbers are the highest accuracy. Averaged over three different random seeds.

Benign Near Far Attack Noise Avg
SoTTA (w/o High-confidence) 82.2 ± 0.2 78.0 ± 0.4 75.9 ± 0.5 84.3 ± 0.1 77.7 ± 0.7 79.6 ± 0.2
SoTTA (w/o Uniform-class) 82.3 ± 0.2 80.9 ± 0.6 74.9 ± 2.4 83.5 ± 0.2 68.7 ± 7.0 78.0 ± 2.0
SoTTA (w/o Continual) 81.0 ± 0.5 79.5 ± 0.3 75.5 ± 1.8 84.4 ± 0.2 65.7 ± 7.0 77.2 ± 1.8
SoTTA 82.2 ± 0.3 81.4 ± 0.5 81.6 ± 0.6 84.5 ± 0.2 80.0 ± 1.4 81.9 ± 0.5

With Equation 7 and Equation 8, we can now derive model parameter variations caused by noisy test
samples:

log p(θ|D,B)− log p(θ|D,B,N) =
λN

|N |

M∑
n=1

H(yn|xn). (9)

Equation 9 implies that the (1) model adapted only from benign data and (2) model adapted with
both benign and noisy data differ by the amount of the average entropy of noisy samples. This also
suggests that a high entropy from severe noisy samples would result in a significant model drift in
adaptation (i.e., model corruption).

D.2 Comparison with previous TTA methods

D.2.1 EATA and SAR

While SoTTA, EATA [28], and SAR [29] all leverage sample filtering strategy, the key distinction
of input-wise robustness of SoTTA and EATA/SAR lies in three aspects: (1) Our high-confidence
sampling strategy in SoTTA aims to filter noisy samples by utilizing only the samples with high
confidence, while both EATA and SAR use a different approach that excludes a few high-entropy
samples, particularly during the early adaptation stage. In our preliminary study, we found that our
method excludes 99.98% of the noisy samples, whereas EATA and SAR exclude 33.55% of such
samples. (2) While EATA and SAR adapt to every incoming low-entropy sample, SoTTA leverages a
uniform-class memory management approach to prevent overfitting. As shown in Figure 5b, noisy
samples often lead to imbalanced class predictions, and these skewed distributions could lead to
an undesirable bias in p(y) and thus might negatively impact TTA objectives, such as entropy
minimization. The ablation study in Table 10 shows the effectiveness of uniform sampling with a
3.9%p accuracy improvement. (3) EATA and SAR reset the memory buffer and restart the sample
collection process for each adaptation. This strategy is susceptible to overfitting due to a smaller
number of samples used for adaptation and the temporal distribution drift of the samples. In contrast,
our continual memory management approach effectively mitigates this issue by retaining high-
confidence uniform-class samples in the memory, as shown in Table 10.

We acknowledge that both SoTTA and SAR utilize sharpness-aware minimization proposed by Foret
et al. [4]. However, we clarify that the motivation behind using SAM is different. While SAR intends
to avoid model collapse when exposed to samples with large gradients, we aim to enhance the model’s
robustness to noisy samples with high confidence scores. As illustrated in Figure 6, we observed that
entropy-sharpness minimization effectively prevents the model from overfitting to noisy samples. As
a result, while our algorithm led to marginal performance degradation in noisy settings (82.2%→
80.0% for Noise), EATA and SAR showed significant degradation (EATA 82.4%→ 36.0% for Noise;
SAR 78.3%→ 58.3% for Noise).

D.2.2 RoTTA

Regarding our high-confidence uniform sampling technique, RoTTA [44] could be compared. First
of all, RoTTA’s objective is different from ours; RoTTA focused on temporal distribution changes of
test streams without considering noisy samples. Similar to SoTTA, RoTTA’s memory bank maintains
recent high-confidence samples. However, RoTTA has no filtering mechanism for low-confidence
samples, which makes RoTTA fail to avoid noisy samples, especially in the early stage of TTA. In
contrast, our confidence-based memory management scheme effectively rejects noisy samples, and

22



Table 11: Average classification accuracy (%) of ODIN+TTA on CIFAR10-C. Bold numbers are the
accuracy with improvement from normal TTAs. Averaged over three different random seeds.

Benign Near Far Attack Noise

Method w/o ODIN w/ ODIN w/o ODIN w/ ODIN w/o ODIN w/ ODIN w/o ODIN w/ ODIN w/o ODIN w/ ODIN
Source 57.7 ± 1.0 57.7 ± 1.0 57.7 ± 1.0 57.7 ± 1.0 57.7 ± 1.0 57.7 ± 1.0 57.7 ± 1.0 57.7 ± 1.0 57.7 ± 1.0 57.7 ± 1.0

BN stats [27] 78.2 ± 0.3 78.2 ± 0.3 76.5 ± 0.4 76.5 ± 0.4 75.4 ± 0.3 75.9 ± 0.4 55.8 ± 1.4 55.8 ± 1.4 55.9 ± 0.8 56.7 ± 0.9

PL [17] 78.4 ± 0.3 78.8 ± 0.5 73.1 ± 0.3 74.3 ± 0.6 71.3 ± 1.0 71.6 ± 0.8 66.5 ± 1.1 66.5 ± 1.1 52.1 ± 0.4 52.1 ± 0.4

TENT [38] 81.5 ± 1.0 81.5 ± 1.0 74.5 ± 0.8 76.1 ± 0.6 73.5 ± 1.1 74.7 ± 1.3 69.0 ± 0.9 69.1 ± 1.0 54.4 ± 0.3 56.2 ± 0.6

LAME [1] 56.1 ± 0.3 56.1 ± 0.3 56.7 ± 0.5 56.7 ± 0.5 55.7 ± 0.4 55.7 ± 0.4 56.2 ± 0.5 56.2 ± 0.5 54.9 ± 0.5 55.2 ± 0.7

CoTTA [39] 82.2 ± 0.3 82.2 ± 0.3 78.2 ± 0.3 78.2 ± 0.4 73.6 ± 0.9 73.6 ± 0.9 69.6 ± 1.3 69.6 ± 1.3 57.8 ± 0.8 62.0 ± 1.3

EATA [28] 82.4 ± 0.3 82.4 ± 0.3 63.9 ± 0.4 69.2 ± 0.4 56.3 ± 0.5 59.9 ± 0.6 70.9 ± 0.7 70.9 ± 0.7 36.0 ± 0.8 50.8 ± 1.1

SAR [29] 78.4 ± 0.7 78.4 ± 0.7 72.8 ± 8.2 72.8 ± 8.2 75.7 ± 3.1 76.0 ± 3.1 56.2 ± 1.8 56.2 ± 1.8 58.7 ± 0.3 58.7 ± 0.3

RoTTA [44] 75.3 ± 0.7 75.3 ± 0.7 77.5 ± 0.5 77.5 ± 0.5 77.0 ± 0.9 77.0 ± 0.9 78.4 ± 0.8 78.4 ± 0.8 73.5 ± 0.5 73.5 ± 0.5

SoTTA 82.1 ± 0.4 82.1 ± 0.4 81.6 ± 0.4 81.6 ± 0.4 81.7 ± 0.5 82.0 ± 0.8 84.5 ± 0.3 84.5 ± 0.3 81.5 ± 1.2 81.5 ± 1.2
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Figure 9: Effect of OOD threshold δ on classification accuracy (%) of ODIN+TENT on CIFAR10-C.
Averaged over three different random seeds.

thus it prevents potential model drift from the beginning of TTA scenarios. As a result, our approach
outperforms RoTTA in noisy test streams (e.g., 5.4%p better than RoTTA on CIFAR10-C).

D.3 Comparison with out-of-distribution detection algorithms

We discussed the limitation of applying out-of-distribution detection to TTA in Section 5. Still, we
are curious about the effect of applying out-of-distribution algorithms to our scenario. To this end, we
conduct experiments using one of the out-of-distribution algorithms, ODIN [20], in our noisy data
streams. Specifically, we filtered OOD samples detected by ODIN and performed TTA algorithms on
the samples left.

Note that similar to prior studies on OOD, ODIN uses a thresholding approach to predict whether
a sample is OOD. It thus requires validation data with binary labels indicating whether it is in-
distribution or OOD to decide the best threshold δ. However, in TTA scenarios, validation data is not
provided, which makes it difficult to apply OOD algorithms directly in our scenario. We circumvented
this problem using the labeled test batches to get the best threshold. Following the original paper, we
searched for the best threshold from 0.1 to 0.12 with a step size of 0.000001, which took over 20,000
times longer than the original TTA algorithm.

Table 11 shows that the impact of discarding OOD samples with ODIN is negligible, yielding only a
0.3%p improvement in the average accuracy despite a huge computation cost. Also, Figure 9 shows
the high sensitivity of ODIN with respect to threshold hyperparameter δ, which implies that applying
OOD in TTA is impractical.

We conclude the practical limitations of OOD detection algorithms for TTA as follows: (1) OOD
methods assume that a model is fixed during test time, while a model changes continually in TTA.
(2) As previously noted, most OOD algorithms require labels for validation data unavailable in TTA
scenarios. Even using the same test dataset for selecting the threshold, the performance improvement
was marginal. (3) Low performance possibly results from the fact that OOD detection studies are
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built on the condition that training and test domains are the same, which differs from TTA’s scenario.
These collectively make it difficult to apply OOD detection studies directly to TTA scenarios.

D.4 Applying to other domains

While this study primarily focuses on classification tasks, there are other tasks where test-time
adaptation would be useful. Here we discuss the applicability of SoTTA to (1) image segmentation
and (2) object detection, which are crucial in autonomous driving scenarios.

For image segmentation, when noisy objects are present in the input, the model might produce noisy
predictions on those pixels, leading to detrimental results. Extending SoTTA to operate at the pixel
level would allow it to be compatible with the segmentation task while minimizing the negative
influences of those noisy pixels on model predictions in test-time adaptation scenarios.

Similarly, SoTTA could be tailored to object detection’s classification (recognition) task. For example,
in the context of the YOLO framework [32], SoTTA could filter and store grids with high confidence
for test-time adaptation, enhancing detection accuracy. However, our current approach must address
the localization task (bounding box regression) during test-time adaptation. Implementing this feature
is non-trivial and would require careful consideration and potential redesign of certain aspects of our
methodology. Accurately localizing bounding boxes during test-time adaptation presents an exciting
avenue for future research.

E License of assets

Datasets CIFAR10/CIFAR100 (MIT License), CIFAR10-C/CIFAR100-C (Creative Commons
Attribution 4.0 International), ImageNet-C (Apache 2.0), and MNIST (CC-BY-NC-SA 3.0).

Codes Torchvision for ResNet18 (Apache 2.0), the official repository of CoTTA (MIT License),
the official repository of TENT (MIT License), the official repository of LAME (CC BY-NC-SA
4.0), the official repository of EATA (MIT License), the official repository of SAR (BSD 3-Clause
License), and the official repository of RoTTA (MIT License).
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