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Abstract

Federated Learning (FL) is a distributed machine learning framework that trains
accurate global models while preserving clients’ privacy-sensitive data. However,
most FL approaches assume that clients possess labeled data, which is often not the
case in practice. Federated Semi-Supervised Learning (FSSL) addresses this label
deficiency problem, targeting situations where only the server has a small amount
of labeled data while clients do not. However, a significant performance gap exists
between Centralized Semi-Supervised Learning (SSL) and FSSL. This gap arises
from confirmation bias, which is more pronounced in FSSL due to multiple local
training epochs and the separation of labeled and unlabeled data. We propose (FL)2,
a robust training method for unlabeled clients using sharpness-aware consistency
regularization. We show that regularizing the original pseudo-labeling loss is
suboptimal, and hence we carefully select unlabeled samples for regularization.
We further introduce client-specific adaptive thresholding and learning status-
aware aggregation to adjust the training process based on the learning progress
of each client. Our experiments on three benchmark datasets demonstrate that
our approach significantly improves performance and bridges the gap with SSL,
particularly in scenarios with scarce labeled data. The source code is available at
https://github.com/seungjoo-ai/FLFL-NeurIPS24

1 Introduction

Federated learning (FL) [1] is a distributed machine learning system that trains accurate global models
while preserving clients’ privacy-sensitive data. Each FL client trains its local model on their device
using only their data, and the server aggregates these local models into a global model. As a result,
clients’ private data is protected as only the local models’ weights are shared with the server.

Because of its privacy-preserving nature, FL has garnered recent attention, with efforts to make it
reliable and efficient [2, 3, 4]. However, most previous FL studies assumed that clients have labeled
data, which is unrealistic in practical settings for two reasons. First, clients are often reluctant or lack
the motivation to label data. Second, certain data types require domain expertise during the labeling
process [5, 6]. For example, labeling medical data demands specialized knowledge and expertise.
Similarly, sensory data, which can have multiple dimensions, is difficult for most clients to interpret
accurately. Therefore, we envision a labels-at-server [7] scenario as more realistic for FL, where a
small amount of labeled data is available only at the server while the clients’ data remains unlabeled.

Various Federated Semi-Supervised Learning (FSSL) approaches [8, 7, 9, 10, 11] have been developed
for the labels-at-server scenario. However, there is a substantial performance gap between FSSL
and centralized Semi-Supervised Learning (SSL), particularly when labeled data is limited. Fig. 1
illustrates this issue across varying amounts of labeled data on the CIFAR10 dataset [12]. When a
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Figure 1: Comparison of SSL and FSSL algorithms on CIFAR-10 with varying numbers of labeled
samples, where FreeMatch [19] represents SSL, and SemiFL [8], FedCon [9], and FedMatch [7]
represent FSSL.

sufficient amount of labeled data is available, the performance difference between SSL and FSSL is
minimal. However, this gap widens considerably as the quantity of labeled data decreases.

We point out confirmation bias as the primary cause, where the model tends to overfit to easy-to-learn
samples or incorrectly pseudo-labeled data [13]. This issue is particularly pronounced in FSSL as
the training process involves multiple local epochs on clients [8, 14, 15]. This extended training on
localized data accelerates the overfitting process, making the model more susceptible to confirmation
bias. Moreover, labeled and unlabeled data are kept separate in a labels-at-server setting. Unlike in
centralized SSL where labeled and unlabeled objectives could be jointly optimized, this separation in
FSSL prevents effective co-optimization, further contributing to the performance gap.

We propose Few-Labels Federated semi-supervised Learning, abbreviated as (FL)2, to mitigate
confirmation bias in FSSL using (1) client-specific adaptive thresholding, (2) sharpness-aware
consistency regularization, and (3) learning status-aware aggregation. Previous FSSL approaches [7,
8] use a fixed threshold to obtain high-confidence pseudo-labels but are prone to confirmation bias as
only a small portion of data is utilized in the early stages of training. Instead, we adaptively change
the threshold according to the clients’ learning status. In the early stages, we use a low threshold to
include more data for training. As training progresses and the model becomes more confident, we
increase the threshold to obtain more accurate pseudo-labels. We profile the learning status of each
client and determine client-specific adaptive thresholds.

Recently, Sharpness-Aware Minimization (SAM) has demonstrated strong generalization capabilities
across various tasks [16, 17, 18]. Inspired by this, we hypothesized that applying SAM could
effectively mitigate confirmation bias among clients. However, our findings revealed that naïvely
applying SAM degrades performance. This issue occurs as SAM generalizes not only correctly
pseudo-labeled samples, but also incorrectly pseudo-labeled ones. Generalization of incorrect data
samples leads to the propagation of errors, thereby degrading the model’s performance. Therefore,
we apply consistency regularization to carefully selected data samples that are highly likely correct.
We also uncover that the standard SAM objective (i.e., achieving flatter local minima) does not work
well in FSSL. We thus propose a novel consistency regularization between the model outputs of
adversarially perturbed and original weight parameters.

Finally, we propose a novel learning status-aware aggregation. In FSSL, the learning difficulty
can vary across clients. Since the server can access only a small labeled dataset, clients whose data
closely resembles the server’s data will face lower learning difficulty. In comparison, those with more
distinct data will encounter higher difficulty. Additionally, due to the non-iid data distribution of
clients, the learning difficulty naturally differs among them. To account for different client learning
difficulties, we assign higher aggregation weights to clients with higher learning difficulty, enabling
the global model to learn more effectively from these clients. In contrast, previous FSSL approaches
did not consider these variations in learning difficulty and relied on fixed aggregation weights.

Our main contributions are summarized as follows:

• We propose a client-specific adaptive threshold that adjusts the pseudo-labeling threshold accord-
ing to each client’s learning status. By using a low threshold at the early stage of training, we
effectively reduce confirmation bias by utilizing more data.
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• We demonstrate that applying the SAM objective in FSSL is non-trivial and requires careful
considerations. Minimizing the sharpness of incorrectly pseudo-labeled samples reduces the
model performance. We also identify that the original SAM objective is ineffective in FSSL and
propose a novel sharpness-aware consistency regularization that regularizes consistency between
original and perturbed model outputs.

• We propose learning status-aware aggregation that adjusts the weight based on the client’s
learning status. Clients with lower learning status receive higher aggregation weights, ensuring
their updates are well reflected in the global model.

• Our evaluation shows that our approach significantly outperforms existing methods across differ-
ent settings, particularly when labeled data is scarce. (FL)2 improves the classification accuracy
of up to 23.0% compared with existing FSSL methods.

2 Related work

Semi-supervised learning (SSL) Recent SSL methods primarily stem from two key ideas: pseudo-
labeling [20] and consistency regularization [21]. Pseudo-labeling artificially creates pseudo-labels
and uses them as hard labels for supervised training. On the other hand, consistency regularization
trains models by minimizing the variance between stochastic outputs, typically achieved through
various weak or strong augmentations. FixMatch [22] generates high-quality pseudo labels via
static probability thresholding and trains models to predict these labels from strongly augmented
inputs. FlexMatch [23] enhances this approach by incorporating class-specific local thresholds
alongside a fixed global threshold, adjusting based on the model’s learning status. FreeMatch [19]
dynamically adjusts the confidence threshold according to the model’s learning status and introduces
a self-adaptive class fairness regularization penalty to encourage diverse predictions during early
training. FlatMatch [24] increases generalization by adopting sharpness-awareness minimization [25]
into a cross-sharpness measure in SSL settings to ensure consistent learning performance between
the labeled and unlabeled data.

Federated semi-supervised learning (FSSL) Federated Learning (FL) enables collaborative
training of a global model while ensuring data remains on the client side, thereby preserving data
privacy (further discussed in Appendix D). FSSL leverages FL in scenarios where labeled data is
limited. FSSL research addresses two primary settings: labels-at-clients [26, 27, 7, 28, 29] and
labels-at-server [9, 7, 8]. In the labels-at-server scenario, FedMatch [7] encourages similar outputs
from similar clients using inter-client consistency loss. It employs disjoint training between the
server and clients to mitigate forgetting issues. FedCon [9] utilizes contrastive learning to assist
clients’ networks in learning embedding projections. SemiFL [8] achieves state-of-the-art results in
the label-at-server setting by introducing alternate training, which finetunes the global model with
labeled data after each communication round. It generates pseudo-labels with the global model at the
start of every communication round, rather than the common per-batch generation.

Real-world labels-at-server FL scenarios to have extremely limited labeled data as labeling data
requires domain expertise and could be costly [5, 6]. However, existing FSSL approaches target
scenarios with hundreds of labeled data points (> 250) on the server, and their accuracy significantly
deteriorates when only tens of labeled data points are available (Section 5.2). In contrast, (FL)2
achieves high accuracy even in extremely label-scarce settings, such as when only 10 labeled data
points are available on the server, demonstrating increased usability and practicality for real-world
applications.

3 Preliminaries

3.1 Federated learning

Federated Learning (FL) collaboratively trains a global model via coordinated communication with
multiple clients. In communication round t, the server selects K clients among available clients.
The server transmits the current global model weights W t

g to selected clients. The selected clients
update the model weight W t

k with the local dataset for E epochs, where k indicates the client index.
Formally, W k

t = W k
t − η∇WLclient, where Lclient denotes the objective function of clients, e.g.,
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cross-entropy loss for the classification task. After local training, the server aggregates the trained
model weights with βk as aggregation weight of each client, which is

W g
t+1 =

K∑
k=1

βkW k
t . (1)

3.2 Federated semi-supervised learning

In Federated Semi-Supervised Learning (FSSL), especially in the labels-at-server scenario, labeled
dataset DS

L = {(xb, yb) : b ∈ [NL]} is only available at the server, while clients have only unlabeled
dataset Dk

U = {ub : b ∈ [Nk
U ]}, where NL and NU =

∑K
k=1 N

k
U are the total number of labeled data

and unlabeled data, respectively. In general, NL ≪ NU . At each communication round t, the server
updates its model weight WS

t with supervised loss Lserver for E local epochs with

Lserver =
1

B

B∑
b=1

H(yb, pWS
t
(y|w(xb))), WS

t = WS
t − η∇WLserver, (2)

where data batch (xb, yb) is randomly drawn from DS
L with batch size B. H(·, ·) refers to the cross-

entropy loss, ω(·) is the weak data augmentation (e.g., random horizontal flip and crop), and pW (·) is
the output probability from model W . Clients update their model weight W k

t using cross-entropy
loss with pseudo-labeling, which can be expressed as

Lclient =
1

µB

µB∑
b=1

1(max(qb) > τ) · H(q̂b, Qb), W k
t = W k

t − η∇WLclient, (3)

where qb and Qb are the abbreviations of pWk
t
(y|ω(ub)) and pWk

t
(y|Ω(ub)), respectively. Data batch

ub is randomly selected from Dk
U with a batch size of B. The one-hot label form of qb is denoted as

q̂b, and the ratio of data with confidence above τ is represented by µ. The indicator function 1(· > τ)
is used for confidence-based thresholding. Ω(·) represents strong augmentation (e.g., RandAugment
[30]).

We adopt “fine-tune global model with labeled data” and “generate pseudo-labels with global model”
strategies from SemiFL [8]. In communication round t, the server distributes the current global model
W g

t to K selected clients. Before training, clients generate pseudo-labels for a local dataset with a
fixed global model W g

t . The changed local objective function is

Lclient =
1

µB

µB∑
b=1

1(max(qgb ) > τ) · H(q̂gb , Qb), (4)

where qgb stands for pW g
t
(y|ω(ub)). Subsequently, the server aggregates trained local models with

Eq 1. The server fine-tunes the aggregated model with Lserver, yielding a new global model W g
t+1.

3.3 Sharpness-aware minimization

Sharpness-Aware Minimization (SAM) [25, 31] has been increasingly applied to various tasks [16,
17, 18] due to its ability to enhance generalization. SAM improves generalization by minimizing the
sharpness of the loss landscape, which helps in finding flatter minima that generalize better across
different tasks and datasets. Traditional optimization methods could lead to sharp minima, resulting in
poor generalization to unseen data. SAM addresses this issue by incorporating weight perturbations
into the optimization objective to find flatter minima. The core objective of SAM is defined as:

min
w

max
∥ϵ∥2<ρ

Lw+ϵ, (5)

where ϵ is a perturbation vector constrained within a ρ-ball around the model weight w. The inner
maximization seeks to find the perturbation ϵ that maximizes the loss L within the specified ρ-ball.

To make this optimization feasible, SAM approximates the perturbation ϵ as:

ϵ∗ = ρ
∇wLw

∥∇wLw∥2
. (6)
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Figure 2: Overview of (FL)2: (1) client-specific adaptive thresholding adjusts the pseudo-labeling
threshold according to each client’s learning status, (2) sharpness-aware consistency regularization
ensures consistency between the original model and the adversarially perturbed model with carefully
selected high-confident pseudo labels, and (3) learning status-aware aggregation aggregates client
models considering each client’s learning progress.

This approximation simplifies the inner maximization by scaling the gradient direction to have a
norm of ρ. The outer minimization updates the weights using the gradient evaluated at the perturbed
weights w + ϵ∗. Specifically, the gradient used for the weight update is∇wLw+ϵ∗ .

4 Method

Few-Labels Federated semi-supervised Learning, abbreviated as (FL)2, has three key components:
(1) client-specific adaptive thresholding, which leverages more unlabeled data by dynamically
adjusting thresholds for pseudo-labeling, (2) sharpness-aware consistency regularization, which
minimizes sharpness for carefully selected data to ensure better generalization, and (3) learning
status-aware aggregation, which aggregates local models from clients while considering their learning
progress. Fig. 2 overviews (FL)2 and Appendix A details the algorithm.

4.1 Client-specific adaptive thresholding

We use an adaptive thresholding mechanism rather than a fixed threshold to incorporate more
unlabeled data from the beginning of training. This approach is inspired by FreeMatch [19] that
gradually increases the threshold according to the model learning status. At round t, each client
profiles its learning status during the pseudo-label generation stage using local unlabeled dataset Dk

U

with global model W g
t . Adaptive threshold τkt of client k at round t is

τkt =
1

|Dk
U |

|Dk
U |∑

b=1

max(qgb ), (7)

5



where qgb is qb calculated with global model W g
t . This approach sets a low initial threshold value, as

the model exhibits lower confidence in the data at the beginning of training. The threshold gradually
increases as training progresses, allowing the model to focus on high-confidence data. Additionally,
we estimate the learning status specific to each class and apply different thresholds for each class.
This is achieved by utilizing the output probabilities of the global model’s predictions for each class,
which can be expressed as

p̃kt (c) =
1

|Dk
U |

|Dk
U |∑

b=1

qgb (c). (8)

We calculate client-specific adaptive thresholds for each class using τkt and p̃kt (c) as

τkt (c) = MaxNorm(p̃kt (c)) · τkt =
p̃kt (c)

max{p̃kt (c) : c ∈ [C]}
· τkt . (9)

The unsupervised training objective La of client k with adaptive thresholding at each iteration is:

Lk
a =

1

µB

µB∑
b=1

1(max(qgb ) > τkt (argmax(qgb )) · H(q̂
g
b , Qb). (10)

4.2 Sharpness-aware consistency regularization

While Sharpness-Aware Minimization (SAM) generalizes well in many tasks [16, 17, 18], it is
not trivial to apply it to FSSL, as SAM generalizes not only correctly pseudo-labeled samples
but also incorrect samples. This indiscriminate generalization results in the propagation of errors,
thereby degrading the model’s performance (Section 5.4). To tackle this issue, we apply consistency
regularization to a carefully curated subset of data samples with a high confidence of correctness.
While we use client-specific adaptive threshold (Section 4.1), we use a high fixed threshold to get
high-confidence data samples. (FL)2 adversarially perturbs the weight parameters that maximize loss
calculated with high-confidence data samples and regularizes consistency using the perturbed weight.

Adversarial weight perturbation When a client k trains its local model W k with mini-batch, the
model weight is perturbed with ϵ∗ that increases Lk

p the most, where ϵ∗ and Lk
p are defined as

Lk
p =

1

µB

µB∑
b=1

1(max(qgb ) > τf ) · H(q̂gb , Qb), (11)

ϵ∗p = argmax
∥ϵ∥2≤ρ

Lk
p ≈ ρ

∇WkLk
p

∥∇WkLk
p∥2

, W k∗ = W k + ϵ∗p. (12)

where ρ stands for perturbation strength. We use a large fixed threshold τf to get a high-confidence
pseudo-label.

Consistency regulation With the perturbed weight W k∗, we calculate Q∗
b , which is the output

probability of a strongly augmented sample for W k∗. Unlike traditional SAM objective that takes
∇Wk∗Lp, we measure the difference of model outputs between the original and the perturbed
models (Section 5.5). Formally,

Lk
cs = ℓd(Q

∗
b , Qb),where Q∗

b = pWk∗(y|Ω(ub)), (13)

in which ℓd(·, ·) measures the distance (e.g., L2 distance or KL divergence). Finally, local training
objective of client k with client-specific adaptive thresholding (Section 4.1) and sharpness-aware
consistency regularization is

Lk
client = waLk

a + wcsLk
cs (14)

with wa and wcs being the loss weights. (FL)2 effectively leverages both low-confidence data
with client-specific adaptive threshold and high-confidence data with sharpness-aware consistency
regularization to minimize the confirmation bias of clients.
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4.3 Learning status-aware aggregation

After the local training of the selected K clients, the server aggregates the trained local models using
weights βk, as shown in Eq. 1. While existing FSSL approaches use uniform weights (βk = 1/K),
we propose a learning status-aware aggregation that adjusts the aggregation weight based on the
client’s learning status. For a client with a low learning status, indicated by a low adaptive threshold
τkt , we increase the aggregation weight so that the local learning is better reflected in the global
model. We calculate the aggregation weight as

βk
t =

1− τkt∑K
k=1(1− τkt )

. (15)

Our aggregation method complements the client-specific adaptive thresholds (Section 4.1). In this
scheme, we use lower thresholds for clients with a lower learning status to enable more extensive
learning from their data. By extending this notion to the client level, clients with lower thresholds,
which indicate more valuable learning updates, are given a greater influence on the global model.
This ensures that the most informative updates are prioritized.

5 Experiments

5.1 Setup

Data setup We evaluate (FL)2 in three public datasets: CIFAR10, CIFAR100 [12], and SVHN [32].
We test our method under balanced IID and unbalanced non-IID data distribution settings. Each
client receives an equal amount of unlabeled data in the balanced IID setting. We sample data using
a Dirichlet distribution Dir(α) for the unbalanced non-IID setting. Each client receives a different
number of data samples and samples per class. As α→∞, the distribution approaches IID. We set
α = {0.1, 0.3} in our experiments. The number of labeled data samples at the server (NL) is set to
{10, 40} for CIFAR10, {100, 400} for CIFAR100, and {40, 250} for SVHN, following widely-used
evaluation settings for SSL [19, 24].

Learning setup In our experiments, we use 100 clients, with a participation ratio of 0.1 per
communication round (K = 10). We adopt the WideResNet [33] as our backbone, employing
WideResNet28x2 for the CIFAR10 and SVHN datasets, and WideResNet28x8 for the CIFAR100
dataset. Both the server and clients optimize their local datasets for five local epochs, with 800
communication rounds. We employ the momentum SGD optimizer with a learning rate of 0.03,
momentum of 0.9, and weight decay of 5e-4, following previous work [8]. For sharpness-aware
consistency regularization (Section 4.2), we use the KL-divergence loss function for ℓd(·, ·). For
adversarial weight perturbation (Eq. 12), we use ASAM [31], which implements scale invariance
on standard SAM [25]. Based on a grid search, the perturbation strength ρ is set to 0.1 for the
CIFAR10 and SVHN datasets and 1.0 for the CIFAR100 dataset. For strong data augmentation, we
use RandAugment [30]. We also adopt the static Batch Normalization (sBN) [34] strategy, as utilized
in SemiFL. Further details on sBN are in Appendix E. We used RTX3090 GPUs throughout the
experiment. Additional details are in Appendix C.

5.2 Performance comparison with FSSL algorithms

We evaluate (FL)2 against existing FSSL methods: FedMatch [7], FedCon [9], and SemiFL [8].
Table 1 shows that (FL)2 consistently delivers the best or nearly the best performance across all
settings. For instance, although SemiFL performs the best in the non-IID-0.3 setting of CIFAR100
with 100 labels, it struggles to generalize to other scenarios. SemiFL achieves only around 10%
accuracy in CIFAR10 with 10 labels and about 43% accuracy in SVHN with 250 labels. In contrast,
(FL)2 consistently maintains high accuracy across all tasks. The performance gap compared with the
best-performing algorithm (SemiFL) in non-IID-0.3/CIFAR100/100-labels is only 0.3%. Except for
that, (FL)2 consistently outperforms the baseline methods across all other settings. Additionally, (FL)2
demonstrates a substantial improvement over existing methods, achieving 20.3% higher performance
in non-IID-0.3/SVHN/250-labels and 23.0% higher performance in IID/SVHN/250-labels. These
findings indicate that (FL)2 effectively mitigates confirmation bias among clients, leading to robust
generalization even with limited data across different settings.
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Table 1: Evaluation of (FL)2 compared with existing FSSL methods. We report the average accu-
racy(%) and standard deviation across three runs with different random seeds. (FL)2 shows significant
performance improvements over existing methods across different settings. Bold indicates the best
result and underline indicates the second-best result.

Dataset CIFAR10 SVHN CIFAR100

# of labeled data samples (NL) 10 40 40 250 100 400

Unbalanced Non-IID,
Dir(0.1)

FedMatch 16.0(2.3) 25.6(2.2) 20.7(2.7) 70.1(2.2) 6.3(0.3) 10.0(1.8)
FedCon 16.6(2.1) 25.4(2.3) 20.5(1.4) 73.1(2.0) 4.0(0.4) 8.2(0.6)
SemiFL 10.0(0.0) 19.9(7.5) 18.0(2.6) 82.3(1.8) 9.8(2.4) 13.5(5.0)
(FL)2 19.2(5.7) 36.4(1.4) 21.5(3.3) 88.0(1.0) 10.4(1.3) 23.5(1.2)

Unbalanced Non-IID,
Dir(0.3)

FedMatch 15.3(1.3) 25.2(3.5) 22.3(0.7) 72.3(3.0) 5.5(1.5) 9.8(1.1)
FedCon 16.9(2.4) 26.5(2.1) 21.6(1.7) 68.7(2.7) 5.8(0.6) 13.3(0.9)
SemiFL 10.0(0.0) 38.0(2.7) 26.3(2.5) 42.7(40.1) 12.4(1.2) 18.9(9.7)
(FL)2 24.3(4.5) 43.5(7.5) 31.0(4.2) 92.6(0.5) 12.1(1.1) 25.4(1.0)

Balanced IID

FedMatch 16.2(1.9) 25.4(2.8) 18.4(4.7) 66.2(0.8) 6.4(0.6) 10.0(1.7)
FedCon 16.7(2.0) 23.3(6.2) 20.3(1.0) 71.6(1.5) 5.7(0.6) 12.4(1.6)
SemiFL 10.0(0.0) 75.3(2.8) 53.4(13.3) 43.3(41.0) 13.9(3.3) 27.9(6.1)
(FL)2 38.9(11.1) 81.5(7.4) 75.3(2.4) 94.6(1.1) 14.4(2.3) 28.1(2.2)

We emphasize that (FL)2 significantly outperforms other methods when labeled data is extremely
limited: by 22.2% on the IID setting of CIFAR10 with 10 labels and by 21.9% on the IID setting
of SVHN with 40 labels. This substantial margin highlights (FL)2’s exceptional ability to leverage
scarce labeled data, making it practical for real-world federated learning applications. Additional
experiments are provided in Appendix B.

Table 2: Contribution of each component of (FL)2 on the SVHN dataset (NL = 40, balanced IID). By
applying Client-specific Adaptive Thresholding (CAT) and Sharpness-Aware Consistency Regulariza-
tion (SACR) to the baseline (FixMatch + FedAvg), performance is boosted. The combination of CAT
and SACR further improves the accuracy. Incorporating Learning Status-Aware Aggregation (LSAA)
leads to the best performance, finally achieving (FL)2. The result demonstrates the importance of
each component in (FL)2.

Algorithm Accuracy

FixMatch + FedAvg 50.2

SACR + FixMatch + FedAvg 60.9
CAT + FedAvg 68.2
CAT + SACR + FedAvg 71.7
(FL)2: CAT + SACR + LSAA 73.2

Significance of each component of (FL)2 We assess the contribution of each component of (FL)2:
Client-specific Adaptive Thresholding (CAT), Sharpness-Aware Consistency Regularization (SACR),
and Learning Status-Aware Aggregation (LSAA) in Table 2. The accuracy improvements provided
by each component are evaluated using the SVHN dataset with 40 labeled data points and a balanced
IID setting. We use FixMatch + FedAvg as the baseline, where FixMatch [22] employs a fixed
threshold for pseudo-labeling. Our results indicate that both SACR and CAT significantly enhance
the performance over the baseline. Combining SACR and CAT yields further accuracy improvements.
Finally, integrating LSAA for model aggregation, equivalent to (FL)2, achieves the highest accuracy.
These findings demonstrate that each component of (FL)2 contributes uniquely and complementarily
to the overall performance.

5.3 Effect of (FL)2 on confirmation bias

Since incorrect pseudo-labels usually lead to confirmation bias [35], we evaluated pseudo-label
accuracy, label ratio, correct label ratio, wrong label ratio, and C/W ratio in addition to test accuracy.
We compared (FL)2 against baseline methods using the SVHN dataset with 40 labels in a balanced
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(a) Test accuracy. (b) Pseudo label accuracy. (c) Pseudo label ratio.

(d) Correct label ratio. (e) Wrong label ratio. (f) C/W ratio.

Figure 3: Comparison of SemiFL, (FL)2, and its variants on the SVHN dataset (NL = 40, balanced
IID). Pseudo-label accuracy measures the percentage of correct pseudo-labels. The label ratio is
the proportion of pseudo-labeled samples among all unlabeled data. Correct and wrong label ratios
indicate the percentages of correctly and incorrectly labeled samples, respectively. The C/W ratio
shows the number of correct labels relative to wrong labels. All subgraphs share the legend of Fig. 3a.

IID setting, as reported in Fig. 3. A high pseudo-label accuracy indicates that the method produces
reliable pseudo-labels. A high correct label ratio suggests that the method supplies the model with
more accurate labels. Conversely, a low wrong label ratio indicates that the model encounters fewer
incorrect labels, which is crucial for minimizing confirmation bias [35]. Lastly, a high C/W ratio
signifies that the model is exposed to more correct labels than incorrect ones, further helping to
reduce confirmation bias.

We observed that (FL)2 consistently outperforms SemiFL across all metrics. While SemiFL generates
more incorrect labels (C/W ratio < 1), (FL)2 produces twice as many correct labels than incorrect
ones (Fig. 3f). Additionally, the wrong label ratio for (FL)2 is approximately 30%, significantly
lower than SemiFL’s 45% (Fig. 3e). These results suggest that (FL)2 effectively reduces incorrect
pseudo-labels while increasing correct ones, thereby mitigating confirmation bias. Furthermore, we
observe the effectiveness of each component of (FL)2, which are CAT, SACR, and LSAA. Using
CAT and SACR alone delivers better performance than the baseline for all metrics. If we use CAT +
SACR, pseudo label accuracy increases, correct label ratio increases, and wrong label ratio decreases,
which means we reduce the confirmation bias. When LSAA is added, which is (FL)2, it achieves
the best performance across all metrics. This suggests that the synergistic effect of CAT, SACR, and
LSAA effectively reduces confirmation bias.

5.4 Impact of incorrect pseudo-labels on sharpness-aware consistency regularization

We investigate the impact of incorrect pseudo-labeled data on Sharpness-Aware Consistency Reg-
ularization (SACR). We compare the performance of SACR in two scenarios: when applied only
to correctly pseudo-labeled data assuming that we know the ground truth labels to assess the upper
bound of SACR, and when applied to all pseudo-labeled data, including incorrectly pseudo-labeled
samples. We examine when Client-specific Adaptive Thresholding (CAT) is used in both scenarios.

Fig. 4 reports the test accuracy and pseudo-label accuracy for the following cases: CAT alone,
CAT+SACR (all data), and CAT+SACR (only correct pseudo-labels). CAT+SACR (only correct
pseudo-labels) achieves high pseudo-label accuracy, indicating that SACR can effectively reduce
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(a) Test accuracy. (b) Pseudo-label accuracy.

Figure 4: Test accuracy and pseudo-label accuracy on the CIFAR10 dataset with 40 labels, bal-
anced IID setting. Client-specific Adaptive Thresholding (CAT) is used as the baseline. Applying
Sharpness-aware Consistency Regularization (SACR) to all data, including wrongly pseudo-labeled
data, degrades performance than using only CAT, while applying SACR to correctly labeled data
improves performance. SACR also outperforms the standard SAM objective (CAT+SAM).

confirmation bias when applied to correctly pseudo-labeled data. Conversely, when SACR is applied
to all data, including wrongly pseudo-labeled samples, the performance significantly decreases and
shows worse performance than using only CAT. This emphasizes the importance of applying SACR
exclusively to carefully selected data samples that are highly likely to be correct.

5.5 Comparison with the standard SAM objective

We compare the proposed Sharpness-aware Consistency Regularization (SACR) to the standard
Sharpness-Aware Minimization (SAM) objective. Both SAM and SACR perturb the model to
maximize the given loss function. However, in SACR, the distance between the model outputs of
perturbed and original model weights is minimized, while SAM takes the gradient of the given loss
function at the perturbed weights.

Fig. 4 shows the test and pseudo-label accuracy using the standard SAM objective versus SACR. We
examine the effects of SAM and SACR when applied only to correctly labeled samples in conjunction
with Client-specific Adaptive Thresholding (CAT). Although SAM improves the performance over
standalone CAT, SACR outperforms the standard SAM in convergence speed and final accuracy. The
effectiveness of SACR can be attributed to the fundamental differences between SAM and SACR.
SAM explores the given loss landscape in search of a flat local minima. In contrast, SACR changes
the loss landscape by explicitly incorporating an additional consistency regularization term.

6 Discussion and conclusion

We introduced a novel federated learning algorithm, Few-Labels Federated semi-supervised Learning,
(FL)2, that addresses the challenge of few-labels settings in Federated Semi-Supervised Learn-
ing (FSSL) for unlabeled clients. (FL)2 effectively reduces the confirmation bias through three key
strategies: (1) client-specific adaptive thresholding, which adjusts the pseudo-labeling threshold
based on each client’s learning status; (2) sharpness-aware consistency regularization, which ensures
consistency between the original and the adversarially perturbed models with carefully selected
high-confidence pseudo labels; and (3) learning status-aware aggregation, which incorporates each
client’s learning progress into the aggregation of client models. (FL)2 closes the performance gap
between SSL and FSSL, making FSSL an effective solution for practical scenarios.

Limitations and future work Our approach introduces additional computational demands on
clients, as client-specific adaptive thresholding generates more pseudo-labels than traditional fixed
threshold methods. Furthermore, sharpness-aware consistency regularization adds an extra inference
step with a perturbed model, increasing the computational burden. While our study is grounded in
empirical findings, a promising future direction is to theoretically analyze the impact of the proposed
methods, particularly in understanding how the generalization of incorrectly pseudo-labeled data
affects overall performance.
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(FL)2: Overcoming Few Labels in Federated Semi-Supervised
Learning
Appendix

A Algorithm

Algorithm 1 (FL)2: Few-Labels Federated semi-supervised Learning

1: Input: Small labeled dataset DS
L = {(xb, yb) : b ∈ [NL]} at server. Unlabeled dataset

Dm
U = {ub : b ∈ [Nm

U ]},m ∈ [M ] distributed over M clients. τf is fixed threshold. Bc is client
batch size. ω(·) indicates weak data augmentation, and Ω(·) indicates strong data augmentation.
H(·, ·) indicates cross-entropy loss. ℓd(·, ·) is KL-divergence loss.

2: Initialize global model weight W g
0

3: for each communication round t do
4: W g

t ← ServerUpdate(W g
t ,DS

L) ▷ Supervised server update with DS
L

5: Update sBN statistics
6: Server samples clients K ∈ [M ]

7: Server broadcasts W g
t to selected K clients

8: for each client k ∈ [K] do parallel
9: τkt ← AdaptiveThreshold(W g

t ,Dk
U )

10: W k
t ←W g

t

11: for each local step do
12: Sample Bs sized batch ub from Dk

U

13: qgb ← pW g
t
(y|ω(ub))

14: q̂gb ← OneHot(qgb )
15: Qb ← pWk

t
(y|Ω(ub))

16: Lk
a ← 1

µBc

∑µBc

b=1 1(max(qgb ) > τkt (argmax(qgb )) · H(q̂
g
b , Qb)

17: Lk
p ← 1

µBc

∑µBc

b=1 1(max(qgb ) > τf ) · H(q̂gb , Qb)

18: W k∗
t ←W k

t +
∇

Wk
t
Lk

p

∥∇
Wk

t
Lk

p∥2

19: Q∗
b ← pWk∗

t
(y|Ω(ub))

20: Lk
cs ← ℓd(Q

∗
b , Qb)

21: W k
t ←W k

t − η∇Wk
t
(wcsLk

cs + waLk
a)

22: end for
23: end for
24: Clients uploads W k

t , τ
k
t to server

25: βk ← 1−τk
t∑K

k=1(1−τk
t )

26: W g
t+1 ←

∑K
k=1 βkW

k
t

27: end for

B More experiment results

We conducted additional experiments on the Fashion-MNIST [36] and AGNews [37] datasets, and the
result is shown in Table 3. For Fashion-MNIST, we used the WideResNet28x2 architecture, consistent
with the SVHN and CIFAR-10 experiments. We compared (FL)2 with the previous state-of-the-art,
SemiFL. When trained with only 40 labeled samples, SemiFL failed in all three runs under the
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Table 3: More evaluation results of (FL)2 compared with SemiFL on Fashion-MNIST and AGNews
dataset. We report the average accuracy(%) and standard deviation across three runs with different
random seeds.

Dataset Fashion-MNIST AGNews

# of labeled data samples (NL) 40 20

Unbalanced Non-IID,
Dir(0.3)

SemiFL 12.8(4.8) 59.1(13.7)
(FL)2 63.2(0.5) 73.6(3.7)

Balanced IID
SemiFL 10.0(0.0) 47.4(14.3)
(FL)2 49.8(34.5)1 87.0(0.6)

1 One run failed, resulting in only 10% accuracy, while the other two runs
achieved accuracies of 69.0% and 70.4%.

balanced IID setting and in two out of three runs under the non-IID-0.3 setting, resulting in accuracies
around 10%. In the single successful run under non-IID-0.3, SemiFL achieved an accuracy of 18.4%.
In contrast, (FL)2 successfully trained in all three runs under non-IID-0.3 and in two out of three runs
under balanced IID. In the one failed balanced IID run, the accuracy dropped to around 10%, while
in the successful runs, it reached 69% and 70.4%. On average, (FL)2 achieved 63.2% accuracy under
the non-IID-0.3 setting, demonstrating its robustness and effectiveness even with minimal labeled
data.

For the AGNews dataset, we randomly sampled 12,500 training samples per class from a total
of 50,000 samples and applied back-translation for strong data augmentation, following the Soft-
Match [38] approach. We used the bert-base-uncased [39] model as the backbone, freezing the BERT
parameters and training only the linear classifier for 20 epochs. Since the mixup loss cannot be
applied to NLP datasets, we compared (FL)2 to SemiFL without the mixup loss. (FL)2 significantly
outperformed the baseline, with a 39.6% accuracy improvement under the balanced IID setting
and a 14.5% improvement under the non-IID-0.3 setting. With only 20 labeled samples, SemiFL
showed substantial performance variability, with standard deviations of 14.3 and 13.7 for the IID and
non-IID-0.3 settings, respectively. In contrast, (FL)2 delivered more consistent results, achieving
standard deviations of 0.6 for IID and 3.7 for non-IID-0.3.

C Details of learning setup

All experimental results for FedMatch and FedCon were reproduced using the official PyTorch
implementation of FedCon (zewei-long/fedcon-pytorch), which is included in our repository. For
SemiFL and (FL)2 results, we implemented our own pipeline based on the GitHub repository
for SemiFL (diaoenmao/SemiFL-Semi-Supervised-Federated-Learning-for-Unlabeled-Clients-with-
Alternate-Training).

In Table 4, we list the hyperparameters used in the experiments. We utilized SGD as our optimizer
and a cosine learning rate decay as our scheduler. Additionally, we adapted the principles of adaptive
federated optimization [40] into our FedAvg algorithm by introducing a FedAvg optimizer. Instead of
simply aggregating the local models’ weights from clients and using this as the new global model’s
weights, as done in FedAvg, we calculated the difference between the aggregated local models’
weights and the global model’s weights. This difference was treated as the gradient of the global
model’s weights, which was then used to optimize the global model through the FedAvg optimizer.
We set βl = 0.9 for the local optimizer and βg = 0.5 for the FedAvg optimizer.

For training with labeled data at the server, we used the standard supervised loss. For local training at
unlabeled clients, our objective function was a weighted sum of the unsupervised loss, the fairness
loss (from client-specific adaptive thresholding), and the consistency loss (from sharpness-aware
regularization), with loss weights of wa = 1, and wcs = 1, respectively. For sharpness-aware
regularization, we used ρ = 0.5 and τf = 0.95. We also used an unlabeled batch size of 32, except
for SemiFL, where training became unstable with this batch size, so we opted for a batch size of 10
as in the original paper.
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Table 4: Hyperparameters in our experiments
Method FedMatch [7] FedCon [9] SemiFL [8] (FL)2

Server

Batch size 10
Epoch 5

Optimizer SGD
Learning rate 0.03
Weight decay 0.0005
Momentum 0.9

Nesterov ✓

Client

Epoch 5
Optimizer SGD

Learning rate 0.03
Weight decay 0.0005
Momentum 0.9

Nesterov ✓
Batch size 32 32 10 32

Unsupervised loss weight (wa) N/A N/A N/A 1.0
Consistency loss weight (wcs) N/A N/A N/A 1.0

ρ N/A N/A N/A 0.1, 1.0
τf N/A N/A N/A 0.95

Global
Communication round 800

FedAvg momentum 0.5
Scheduler Cosine Annealing

D Federated learning (FL)

FL enables collaborative learning by sharing model updates while maintaining data privacy and
distribution across clients. A widely used FL algorithm is FedAvg [1], which creates a global model
by weighted-aggregating parameters from randomly selected clients, achieving convergence after
multiple communication rounds. FedProx [41] enhances the stability of FedAvg in non-IID settings
by averaging local updates uniformly and incorporating proximal regularization against the global
weights. FedOpt [40] improves performance over FedAvg by introducing federated versions of
adaptive optimizers. FedSim [42] uses a similarity-guided approach, which clusters clients with
similar gradients to enable local aggregations. However, most FL methods assume that labeled data
is available to the client, which is impractical.

E Static batch normalization (sBN)

Following HeteroFL [34] and SemiFL [8], we adopt the Static Batch Normalization (sBN) into our
client-weight aggregation algorithm at the server. This approach is specifically designed for federated
learning (FL) settings and has been shown to accelerates convergence and improve the performance
of the trained model compared to naive adoption of other normalization method for centralized setting
such as Batch Normalization (BN) [43], InstanceNorm [44], GroupNorm [45], and LayerNorm [46].

In detail, unlike the normal training phase where each client tracks its own running statistics and
affine parameters of the BN layer to send to the server for aggregation, sBN disables the tracking of
running statistics during local training at clients. At the beginning of each communication round,
before local training begins, the server sequentially sends the model to all active clients. At each
client, running statistics tracking is temporarily enabled (without momentum), and all training data is
fed into the global model to cumulatively compute the mean and variance for the BN layers in the
model.
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