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Abstract
The rapid growth of wearable devices has opened exciting opportu-
nities for context-aware multi-device collaboration, where multiple
devices can provide enhanced user experience tailored to user needs
and conditions. However, it also presents a unique challenge of re-
liably determining whether a set of wearables is being used by the
same individual. In real-world scenarios, device sharing, exchang-
ing, or unintended use can cause privacy risks and degraded func-
tionality. Existing solutions primarily rely on accelerometer data to
match movement patterns across devices, but they perform poorly
during stationary or varied non-repetitive activities. In this paper,
we introduce BioQ, a method that unobtrusively detects wearable
co-location by generating and matching bio-cues. These bio-cues
are generated from on-body wearable sensor data and embedded
into a common latent space. Furthermore, when devices share the
same sensor types, BioQ can effectively integrate multiple sensor
sources to improve cue generation and matching. Experimental
results show that BioQ outperforms baselines in bio-cue generation
and matching and is resource-effective in model training, inference,
and energy use. Our code is available at https://github.com/Nokia-
Bell-Labs/contextual-biological-cues.

CCS Concepts
•Human-centered computing→Ubiquitous andmobile com-
puting; • Computing methodologies→Machine learning.
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1 Introduction
Recent advances in wearable technology have driven the rise of
multi-device environments, where users simultaneously wear var-
ious smart devices [7, 15]. These wearables, ranging from smart-
watches to smart earables, rings, and patches, offer exciting opportu-
nities to enhance user experience through seamless and intelligent
inter-device collaboration, adapting dynamically to user contexts
and real-time conditions. Such context-aware multi-device collabo-
ration goes beyond traditional sensor fusion [13, 19] by enabling
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personalized interactions and responses across devices in real-time.
This approach improves context monitoring [1, 30], notification
management [50], privacy [39], and energy efficiency [38].

However, realizing context-aware multi-device collaboration
introduces a unique challenge: determining on the fly if a set of
wearable devices is being used by the same individual. Although
wearables are typically personal devices, real-world scenarios of-
ten involve sharing, exchanging, or unintended use of devices by
others, leading to privacy risks and inconsistent device behavior.
For example, teenagers may share earbuds to listen to music [21],
family members may unknowingly use each other’s wearables, and
in social or public settings, devices can be easily passed between
users [46]. Such scenarios can disrupt the user experience from
multi-device collaboration: sensitive information may be uninten-
tionally shared, the audio quality of stereo music may degrade when
earbuds are shared, and health applications can produce inaccurate
predictions by combining health data from different users.

Existing solutions to identify whether devices are worn by the
same individual have largely relied on accelerometer [14, 32, 45, 53]
to compare movement patterns across wearables. These approaches
applied the coherence function [5, 6] to match periodic on-body
device movement patterns such as walking [14, 32]. While effec-
tive in distinguishing movement patterns of different users, these
methods have limited applicability, especially during varied daily
activities that do not involve repetitive motion. Also, relying on
periodic movements of the body is often error-prone, even when
devices are worn by the same user, in scenarios such as stationary
tasks or activities that involve isolated body movements, like typing
or nodding. This limitation highlights the need for more adaptable
methods for wearable device matching.

To address these challenges, we introduce BioQ (illustrated in
Fig. 1), a method that unobtrusively verifies if multiple devices
are worn by the same user by generating and matching bio-cues,
sensor data embeddings in a shared latent space. These bio-cues
are universal for an individual at a given time, regardless of device
placement (provided the same sensor set is used), but distinct for
different users or times. This facilitates an efficient and effective
approach without requiring all devices to be placed at the same
body location [32] or customized for each device pair [14]. A key
reason this is possible is that vital signs such as heart rate and
respiration, remain universal to an individual, irrespective of device
placement. Modern wearables continuously monitor these vital
signs, providing a natural source of bio-cues that fluctuate over
time but remain distinctive to the same person [4, 8]. Leveraging
these characteristics, BioQ generates bio-cues from physiological
and motion sensing data by adopting contrastive representation
learning [9]. Contrastive learning is a machine learning technique
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Figure 1: BioQ – Bio-cue generation and matching with use cases in context-aware multi-device collaboration.

that extracts meaningful representations by contrasting positive
(similar) and negative (dissimilar) pairs of instances. In BioQ, syn-
chronized sensor data frommultiple wearables on the same user are
treated as positive pairs, encouraging similarity. In contrast, data
from different users or times serve as negative pairs, promoting
distinction. Finally, a co-location decision is made by matching the
generated bio-cues from wearable devices. While BioQ can effec-
tively handle multiple sensor modalities (given that the devices
share overlapping sensors), exploring cross-modal synergy holds
great promise in future research, as we discuss in §6.

Extensive experimental results on real-world datasets show that
BioQ outperforms baseline methods, achieving an average Fisher’s
discriminant ratio (FDR), a measure of distribution separability for
device co-location detection on the same body, improvement of
1.586 in bio-cue generation, along with a 0.188 F1 score increase and
a 0.151 reduction in equal error rate in bio-cuematching. In addition,
BioQ exhibits low system overhead on user devices, with average
inference latencies of 5.05 ms and 3.30 ms for bio-cue generation
and matching, respectively, on Raspberry Pi devices. In summary,
our work makes the following contributions:

• We introduce the concept of bio-cues, sensor embeddings gener-
ated through contrastive representation learning, which exhibit
high similarity when devices are worn on the same body at a
given time and clear differences when worn by different users or
at different time intervals.
• We develop BioQ, a system that unobtrusively detects co-located
on-bodywearable devices using bio-cues. It operates without user
intervention and is adaptable to leverage various physiological
sensors beyond motion data.
• We show the BioQ’s effectiveness through extensive experiments
on real-world datasets, showcasing its superior performance over
existing methods in bio-cue generation and matching.

2 Motivation
2.1 Design Rationale
Why vital signs? Mobile and wearable devices come with a wide
range of sensors, including Inertial Measurement Unit (IMU), pho-
toplethysmography (PPG), and electrodermal activity (EDA) sen-
sors, capable of monitoring human physiology and behavior in
real-time [16]. Key metrics such as heart rate, oxygen saturation,
respiration rate, and blood pressure, which these sensors capture,

remain consistent in the body for a particular person at a particular
time, but change dynamically depending on contextual factors and
activity [4, 8]. This offers a unique opportunity to generate bio-cues
without complex user interactions or specialized hardware.

Why temporal dynamics? Vital signs do not remain static
for the same user throughout the day due to activity or stress. To
accurately determine if devices are worn by the same person, mod-
eling the user’s evolving physiological and physical conditions is
essential. BioQmodels temporal dynamics of vital signs to generate
reliable and contextually relevant bio-cues.

Multimodal bio-cue generation: Since many wearable de-
vices share multiple sensing modalities, BioQ can generate bio-cues
by combining multiple vital signs from multimodal sensing sources
(e.g., IMU + PPG) instead of relying on a single modality (e.g., PPG)
in such cases. Our experimental results in §4.2.3 also show that
utilizing various combinations of sensors enhances bio-cue perfor-
mance. Another direction to expand BioQ’s capability is to handle
a potential cross-modal setting, where distinct sensor data, such as
PPG from one device and motion from another, can be harmonized.
We leave this as future work and will discuss its feasibility in §6.

2.2 Use Cases
With the unprecedented rise of wearable devices—earbuds, watches,
rings, wristbands, headbands, patches—it is evident that we will
be surrounded by more wearable devices. In such environments,
we envision that these devices will increasingly collaborate with
each other to enhance the multi-wearable user experience. For
instance, this collaboration can recognize more diverse and com-
plex contexts [10, 52], achieve better recognition accuracy [37, 38],
and improve resource efficiency [18, 25, 31]. We believe BioQ’s ca-
pability to verify device co-location unobtrusively will be a core
functionality and offer new opportunities, as we showcase below.

Robust health monitoring.Many users rely on multiple wear-
ables—a smartwatch, a fitness tracker, or a heart rate monitor—to
track their health and activity throughout the day. For example, a
user might wear a smartwatch to monitor daily steps and heart rate
while occasionally using a chest strap or a ring sensor for more
precise tracking during workouts or sleep. BioQ can enable reliable
multi-device sensor fusion by ensuring that all data streams origi-
nate from the same person. This capability helps reduce errors that
could arise if a device was mistakenly worn by someone else. Fur-
thermore, when inconsistencies between devices are detected, such
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as deviations from the user’s baseline health metrics, the system
can alert the user, pause logging, or trigger predefined responses.

Adaptive notification management. People rely on receiv-
ing notifications across multiple devices, including smartphones,
smartwatches, and earables. BioQ can help applications determine
when the same individual wears multiple devices, allowing more
intelligent notification management. For instance, smart earbuds
that automatically read out incoming messages can use BioQ to ver-
ify that they are still worn by their original user. If the earbuds are
shared with someone else—for example, during a commute—this
verification can enable applications to immediately mute confiden-
tial notifications, preventing unintended exposure. Similarly, in
professional settings, such as shared workspaces, BioQ can sup-
port applications that temporarily pause or redirect sensitive alerts
when a device is borrowed by someone else, ensuring privacy and
contextual awareness.

Privacy and data management. As wearable devices become
more capable, they collect and store increasingly sensitive data,
from daily step counts to detailed health recordings. BioQ can en-
able applications that require strong identity verification to ensure
data integrity and privacy. For example, when a health insurance
platform integrates data from multiple personal devices for activity-
based premium adjustments, BioQ can help prevent incorrect data
attribution by detecting mismatches in bio-cues that indicate de-
vice swaps or unintended sharing. When such discrepancies are
identified, applications can choose to halt new data aggregation or
trigger re-verification mechanisms, ensuring that health sensing
insights remain accurate and trustworthy.

Energy efficiency and resource optimization. Many users
wear multiple wearables with overlapping sensors (e.g., multiple
accelerometers, microphones, and heart rate monitors). BioQ can
enable more effective coordination among these devices by confirm-
ing that they are worn by the same individual. With this capability,
applications can make smarter decisions, such as adjusting sensor
sampling rates or offloading tasks to the most power-efficient de-
vice. For instance, a smartwatch could delegate GPS tracking to
a phone if bio-cues verify they are co-located on the same body,
reducing overall power draw and balancing battery usage across
connected devices. This capability can support more sustainable
operations and extend the longevity of wearable systems.

2.3 Challenges in Generating Bio-cues
To present challenges in a bio-cue generation, we conducted ex-
periments on physiological sensor data using two conventional
methods: direct comparison of clean, filtered data (§2.3.1) and anal-
ysis of engineered sensor features (§2.3.2).

2.3.1 Bio-cues from Filtered Sensor Data. A simple and intuitive
approach to generate bio-cues is using clean, filtered data from phys-
iological sensors. To assess its feasibility, we analyzed EDA and
PPG data from WESAD [44] and FatigueSet [24] datasets, respec-
tively. Details about datasets, pre-processing, and filtering methods
used to clean the data are provided in §4.1. We use Spearman’s
rank correlation [54] to measure how similar or different the clean
sensor data are from devices worn by the same user. The coefficient,
𝜌 , ranges from -1 to 1, where 1 indicates perfect positive correlation,

(a) EDA: Matching. (b) PPG: Matching.

(c) EDA: Mismatching. (d) PPG: Mismatching.
Figure 2: EDA on chestband and wristband in (a) and (c), and
PPG on left and right earbuds in (b) and (d).

-1 indicates perfect negative correlation, and values near 0 suggest
no correlation.

Our analysis, shown in Fig. 2, reveals intriguing patterns. For
example, a high correlation of 𝜌=0.86 between EDA data from a
chestband and wristband (Fig. 2a) and a correlation of 𝜌=0.68 be-
tween PPG data from left and right earbuds (Fig. 2b) on the same
user can be observed. However, these correlations are not always
consistent; in Fig. 2 (c) and (d), raw sensor data from the same user
at the same time exhibit discrepancies, with low correlations of 𝜌=
-0.02 and 𝜌=-0.08. These findings suggest that relying solely on sen-
sor values, even after filtering, presents challenges for generating
reliable and consistent bio-cues.

2.3.2 Bio-cues fromHand-crafted Features. The inherent issue with
raw or even filtered data is its vulnerability to device placement,
which can significantly degrade the quality of generated cues. As
an improved strategy, hand-crafted, sensor-specific features can
be considered. These features are designed to represent vital signs,
which should remain consistent across different device placements
for the same individual during similar time frames. We conducted
experiments using EDA data from chestbands and wristbands in
the WESAD dataset to explore this. Specifically, we computed hand-
crafted features after separating the filtered EDA signal into Skin
Conductance Level (SCL) and Skin Conductance Response (SCR)
components, a common feature engineering approach [44]. Follow-
ing prior work [44], we extracted the mean and standard deviation
(std) from SCR and computed the mean, std, number of peaks, and
mean peak amplitude from SCL using a 30-second window with no
overlap. We calculated the correlation between extracted features,
similar to the experiments in §2.3.1.

Table 1 presents the results for different subjects across three
emotional contexts: neutral, stress, and amusement. The highest
and second-highest correlation coefficient (𝜌) values are bolded
and underlined, respectively. The correlation values show high
variability in feature effectiveness across individuals and emotional
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Table 1: Correlation coefficient (𝜌) of bio-cues from hand-crafted EDA features on subjects’ chestband and wristband across
three emotional states: neutral, stress, and amusement. SCR: Skin Conductance Response, SCL: Skin Conductance Level.

Subject ID S-02 S-03 S-04

Feature / State Neutral Stress Amusement Neutral Stress Amusement Neutral Stress Amusement
SCR Mean -0.038 0.639 -0.189 0.066 0.321 -0.063 0.051 0.481 0.035
SCR Std 0.398 0.598 0.490 0.612 0.896 0.664 0.438 0.683 0.490
SCL Mean 0.898 0.908 -0.343 0.803 0.481 0.552 -0.825 -0.066 0.245
SCL Std 0.801 0.362 -0.147 0.860 0.657 0.378 0.270 0.200 -0.007
SCR Num Peaks 0.197 0.801 0.319 0.407 0.761 0.419 0.116 0.597 0.373
SCR Mean Peak Amp. -0.019 0.624 0.000 0.650 0.661 0.545 0.225 0.712 0.245

contexts. No singular feature or combination consistently correlated
across all users and emotional states, highlighting the challenge of
generating reliable bio-cues even with hand-crafted features.

2.3.3 Bio-cues from Motion Data. A range of studies [14, 32] lever-
age human gait patterns to detect device co-location on the same
body by analyzing the coherence [5, 6] between accelerometer
signals collected during walking. However, relying solely on ac-
celerometer data can be noisy, especially when devices are posi-
tioned at different body locations (e.g., wrist vs. head) [32]. Addi-
tionally, these methods are limited to walking activities and fail
when the user is stationary or engaged in non-walking activities,
which is more common in real life. Thus, there is a need for a more
robust approach that can integrate various sensing modalities and
support diverse activities beyond motion.

3 Method
We explain the overall operational flow of the system and outline
the key designs of our bio-cue modeling framework (§3.1), with
formal definitions and implementation details given in (§3.2) and
(§3.3), respectively. Before detailing the algorithm, we present an
overview of the operational flow of BioQ, illustrating how the
system functions in a real-world setting. As depicted in Fig. 3, the
process is divided into three stages:

• Pre-deployment 1○: Global bio-cue generation and matching
models are trained before deployment. The bio-cue generation
model learns to extract accurate bio-cues by analyzing vital sign
data from various devices and users, building a strong foundation
model. The matching model is then trained to predict whether
two bio-cues originated simultaneously from the same user.
• Upon deployment 2○: When a new user is added, both bio-cue
generation and matching models can be retrained. Positive and
negative non-aligned pairs are gathered from the new user, while
negative pairs from existing users in the global dataset further
enrich the candidate pool.
• At runtime 3○: Finally, BioQ generates and matches bio-cues as
needed, either upon request or as required, to support context-
aware multi-device collaboration (§2.2) in real-time.

At runtime, when a matching request is made, bio-cues are gener-
ated on the device where the sensor data is collected, and delivered
to a device in which the matching operation is executed, e.g., a
smartphone or one of the matching devices depending on the ser-
vice scenarios. However, when the processing capability of the
wearables is not sufficient, bio-cue generation can be offloaded to a
more powerful and trusted device, such as the user’s smartphone.
Failure scenarios—such as mismatched bio-cues—could further be

mitigated through periodic recalibration to maintain robust perfor-
mance in dynamic settings.

3.1 Key Designs of BioQ
Following the discussion in §2.3, we highlight the key designs in our
bio-cue generation and matching framework aimed at addressing
different challenges.

Key objectives. With bio-cue modeling, our key objective is to
develop a model that identifies if pairs of data samples are matching
(i.e., from the same user at the same time) or non-matching (i.e.,
from different users or different times). To achieve this, we need an
effective feature extractor (bio-cue generator) that outputs distinct
features from different data samples and a matching algorithm
(bio-cue matching) to perform the actual matching. It is important
to note that the BioQ’s matching is a binary classification, i.e., it
verifies whether devices are co-located on the same user or not.
User identification can be achieved by collaborating with capable
devices, e.g., FaceID on a smartphone or passcode on a smartwatch.

Contrastive learning for bio-cue generation. Among rep-
resentation learning techniques from sensor data, including au-
toencoders [28, 33], Siamese networks [11], and contrastive learn-
ing [9, 20, 22, 40, 49], we choose contrastive representation learning
as it naturally aligns with our objective: extracting similar represen-
tations for positive pairs (time-aligned samples from devices worn
by the same user), and dissimilar ones for negative pairs (samples
from devices on different users or different time intervals).

Unlike conventional contrastive representation learning (e.g.,
SimCLR [9], MoCo [20]) that relies on manually designed data aug-
mentations of an anchor sample (e.g., random cropping or color
jitter for images), BioQ leveragesmulti-wearable settings to generate
positive and negative samples. Since each device provides a genuine
real-time view of the user’s physiological or physical status for pos-
itive samples, BioQ uses naturally aligned sensor signals from dif-
ferent on-body devices as positive pairs. It does not need synthetic
transformations and makes the positive pairs more organically rep-
resentative of the target task. We also define negative pairs more
strategically by incorporating signals not only from different users
but also from different time windows of the same user, ensuring
that BioQ learns to separate subtle but important fluctuations—such
as normal shifts in heart rate or respiration—occurring over the
day. Furthermore, we implement an informative negative sampling
strategy, discarding those negatives that are trivially close or far
in embedding space and instead focusing on “moderately close”
negatives that provide richer training signals. These design choices
move beyond merely adopting an existing contrastive framework:
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Figure 3: Operational flow of BioQ.

BioQ adapts contrastive principles to the unique demands of multi-
device physiological data, enabling robust co-location detection
even under varied user conditions and activities.

Naturally-occurring positive pairs. Defining positive and
negative samples is central to any contrastive learning framework
since it directly encodes the learning objective. Different from con-
ventional contrastive representation learning frameworks where
positive pairs are formed of augmented data pairs [9], which require
carefully selected augmentation functions, we leverage the unique
observation that multiple devices capture the physiological and
physical status of the user from different viewpoints and form posi-
tive pairs that are effective for our target task. This allows models
to generate effective bio-cues without substantial training data.

Informative negative pairs. Negative samples are often easier
to define as virtually any samples that are not used in forming
positive pairs with the anchor can be used, e.g., by varying the user
set, device set, and time window. However, selecting all possible
negative pairs for learning is often not feasible because the majority
do not contribute significantly to the learning process, in which the
model can distinguish the easy negatives. Therefore, a sampling
strategy prioritizing quality over quantity is needed, ensuring that
negative samples contribute effectively to the contrastive learning
process. To achieve this, we introduce an informative negative sam-
pling strategy that selects negatives based on their relative distance
from the anchor sample so that the samples in the ‘Goldilocks zone’
are selected, forming a balanced set of positive and negative sam-
ples that contributes to effective training. This approach aligns with
established principles in negative mining for optimizing contrastive
learning outcomes [43, 55, 56].

Cue matching. Although contrastive learning can train our
models to extract effective features as bio-cues, the final match-
ing task is not fully encoded in the learning objective: contrastive
learning is analogous to the clustering task [48], where there might
exist multiple clusters for one particular class (a user in our case).
This is one of the reasons why contrastive learning is a powerful
self-supervised learning framework, but further modeling would be
beneficial for the final task of user matching. Therefore, instead of
using a simple similarity measure, we propose including a dedicated
cue-matching model trained on pairs of aligned bio-cues from pairs
of data samples to boost the performance in classifying if pairs are
matching or non-matching, achieving our key objectives.

Both bio-cue generation and matching are device-agnostic and
do not require any customization for each unique pair of devices as
long as they contain the same set of sensors. This design facilitates
an efficient and effective approach without the need for all devices
to be located at a similar position on the body [14, 32] or requiring
customization for each device pair [14].

3.2 Formal Definitions
In our proposal, we present the exact definitions of different com-
ponents. Complete pseudocode is provided in Algorithm 1.

3.2.1 Problem Statement. We define the problem of bio-cue gener-
ation as follows. Given training data, let U represent a set of users,
D a set of devices, C a set of sensor channels or vital signs, T a set
of time windows, and X = {𝑥𝑢,𝑑,𝑐𝑡 |𝑢 ∈ U, 𝑑 ∈ D, 𝑐 ∈ C, 𝑡 ∈ T} the
dataset. Each sample 𝑥𝑢,𝑑,𝑐𝑡 in X is a sensor time series with length
𝑙𝑑 and 𝑠𝑑 channels, specific to device 𝑑 , i.e. 𝑥𝑢,𝑑,𝑐𝑡 ∈ R𝑙𝑑×𝑠𝑑 . For
each user 𝑢 ∈ U, we assume that time-aligned data from multiple
devices are available for the same sensor channels. Specifically,

𝑥
𝑢,𝑑,𝑐
𝑡 ∈ X ∧ 𝑥𝑢,𝑑

′,𝑐
𝑡 ∈ X ∧ 𝑑 ≠ 𝑑′ .

We aim to define a bio-cue generation model, 𝑓 , that projects raw
sensor streams from the same user close together in the embedding
space while positioning data from different users or times farther
apart. We formalize this with the following constraint:

𝛿 (𝑓 (𝑥𝑢,𝑑,𝑐𝑡 ), 𝑓 (𝑥𝑢,𝑑
′,𝑐

𝑡 )) +𝑚 < 𝛿 (𝑓 (𝑥𝑢,𝑑,𝑐𝑡 ), 𝑓 (𝑥𝑢
′,𝑑 ′,𝑐

𝑡 ′ )), (1)

where 𝑑 ≠ 𝑑′ and (𝑢 ≠ 𝑢′ or 𝑡 ≠ 𝑡 ′). Here, 𝛿 (𝑎, 𝑏) = |𝑎 −𝑏 | denotes
the 𝐿1 norm, used as the distance metric between two bio-cues, and
𝑚 is the margin between positive (similar) and negative (distinct)
pairs. Additionally, to detect whether the devices are worn on the
same body at a given time, we train a bio-cue matching model 𝑔:

𝑔(𝑓 (𝑥𝑢,𝑑,𝑐𝑡 ), 𝑓 (𝑥𝑢
′,𝑑 ′,𝑐

𝑡 ′ )) =
{
1 if 𝑢 = 𝑢′ ∧ 𝑡 = 𝑡 ′

0 otherwise.
(2)

3.2.2 Bio-cue Generation. Figure 4 provides an overview of the
bio-cue generation process using contrastive learning. Formally,
we define the set of positive pairs P as P = {(𝑥𝑢,𝑑,𝑐𝑡 , 𝑥

𝑢,𝑑 ′,𝑐
𝑡 ) |𝑑 ≠ 𝑑′}

(i.e., samples collected simultaneously across different devices worn
on the same body). For negative pairs, we select samples that either
originate from different users or differ in time if from the same user.
In contrast, negative pairs are selected based on two key criteria: A
sample qualifies as a negative candidate if it (a) either originates
from a different user (𝑢 ≠ 𝑢′), or (b) if from the same user (𝑢 = 𝑢′),
corresponds to a different timestamp (𝑡 ≠ 𝑡 ′). While the device
origin must differ from that of the anchor sample (𝑑 ≠ 𝑑′), the
channel 𝑐 remains consistent, ensuring the comparison involves
the same sensor type. To select informative negative candidates
Ninform for each anchor sample 𝑥𝑢,𝑑,𝑐𝑡 that are effective for learning,
we define the following constraint:

Ninform =

{
𝑥
𝑢′,𝑑 ′,𝑐
𝑡 ′

��� 𝛿min ≤ 𝛿 (𝑥𝑢,𝑑,𝑐 , 𝑥𝑢
′,𝑑 ′,𝑐

𝑡 ′ ) < 𝛿max
}
,

where 𝛿 represents the 𝐿1 distance between the anchor and can-
didate negative samples. To ensure a balanced selection, 𝛿min and
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Figure 4: Bio-cue generation: positive and negative pairs establishment (left), informative negative sampling (right).

𝛿max exclude a percentage of the closest and farthest negatives,
retaining only the middle portion of the distance distribution for
sampling. We empirically define this percentage as 10% for both
𝛿𝑚𝑖𝑛 and 𝛿𝑚𝑎𝑥 . To further promote diversity in negative sampling,
we introduce a probability parameter that increases the likelihood
of selecting negatives from different users. This parameter is set
to 0.8, ensuring that negatives are drawn from different users in
80% of cases. Finally, the bio-cue generation process is guided by a
contrastive loss function to encourage separation between positive
and negative pairs as follows:

L𝑐𝑜𝑛 =
1
𝑁

𝑁∑︁
𝑖=1

max
(
0, 𝛿 (𝑓 (𝑥𝑢𝑖 ,𝑑𝑖 ,𝑐𝑡𝑖

), 𝑓 (𝑥𝑢𝑖 ,𝑑
′
𝑖 ,𝑐

𝑡𝑖
))

− 𝛿 (𝑓 (𝑥𝑢𝑖 ,𝑑𝑖 ,𝑐𝑡𝑖
), 𝑓 (𝑥𝑢

′
𝑖 ,𝑑
′
𝑖 ,𝑐

𝑡 ′
𝑖

)) +𝑚
)
, (3)

where 𝛿 (𝑓 (𝑥𝑢,𝑑,𝑐𝑡 ), 𝑓 (𝑥𝑢,𝑑
′,𝑐

𝑡 )) is the distance between the anchor
and positive cues, 𝛿 (𝑓 (𝑥𝑢,𝑑,𝑐𝑡 ), 𝑓 (𝑥𝑢

′,𝑑 ′,𝑐
𝑡 ′ )) is the distance between

the anchor and negative cues, and𝑚 is the margin, a hyperparame-
ter that defines the minimum desired separation between positive
and negative pairs. By minimizing this loss, the model learns to
cluster similar bio-cues while ensuring sufficient separation from
dissimilar ones, thereby enhancing the robustness of the learned
representations.

3.2.3 Bio-cue Matching. To train the bio-cue matching model, we
leverage the bio-cue generation model, 𝑓 , that extracts bio-cues
for anchor, positive, and negative samples, following the definition
given above. The cue-matching model is trained to classify bio-cue
pairs as matching or non-matching. To achieve this, we construct
matching pairs [𝑓 (𝑥𝑢,𝑑,𝑐𝑡 ), 𝑓 (𝑥𝑢,𝑑

′,𝑐
𝑡 ) | 𝑑 ≠ 𝑑′] along with non-

matching pairs [𝑓 (𝑥𝑢,𝑑,𝑐𝑡 ), 𝑓 (𝑥𝑢
′,𝑑 ′,𝑐

𝑡 ′ )] | 𝑑 ≠ 𝑑′ and (𝑢 ≠ 𝑢′ or 𝑡 ≠
𝑡 ′), which are then fed to the matching model as concatenated
vectors. Given a batch of such pairs, we define

Xmatch = {[𝑓 (𝑥𝑖 ), 𝑓 (𝑥 𝑗 )] | (𝑥𝑖 , 𝑥 𝑗 ) ∈ M ∪N},
where M is the set of matching pairs, and N is the set of non-
matching pairs. Their corresponding labels are given by Ymatch =

{1, 0}, where 1 indicates a matching pair and 0 indicates a non-
matching pair. The training objective for the matching model is to

minimize the binary cross-entropy loss:

Lmatch = − 1
𝑁

𝑁∑︁
𝑖=1

(
𝑌
(𝑖 )
match log(𝑝

(𝑖 ) ) + (1 − 𝑌 (𝑖 )match ) log(1 − 𝑝
(𝑖 ) )

)
, (4)

where 𝑝 (𝑖 ) denotes the model’s predicted probability that the 𝑖-th
pair matches, and 𝑌 (𝑖 )match is the true label for the pair. By minimiz-
ing this loss, the model learns to distinguish between similar and
dissimilar bio-cues, refining its ability to classify whether two given
samples are from the same contexts.

3.3 Implementation
We train the bio-cue generation model using an encoder with three
linear layers and a projection head with two linear layers. Each
linear layer, except the last, is followed by a ReLU activation. We
also incorporate a 10% dropout to enhance generalizability. The
matching model consists of four linear layers, each followed by
ReLU activations except the last one. Similar to the bio-cue gen-
eration model, the matching model also uses a dropout layer. The
bio-cue generation and matching models are trained for 400 and
200 epochs, respectively. Training hyperparameters are consistent
across bio-cue generation and matching models and are set to a
batch size of 64, a learning rate of 0.001, a weight decay of 0.001,
and trained using the Adam optimizer. The bio-cue embedding
dimension is set to 16. All experiments are conducted in Python 3.9
using the PyTorch [41] framework.

4 Evaluation
We compare the performance of BioQ and baselines in bio-cue gen-
eration (§4.2-§4.4) and matching (§4.3-§4.4) across various settings.
Additionally, we analyze the system costs of BioQ in training and
inference latency, CPU usage, and energy consumption (§4.6).

4.1 Experimental Setup
We conducted experiments using two publicly available multimodal,
multi-device datasets (§4.1.1), comparing the performance of BioQ
against four baselines (§4.1.2). A within-subject train-test split was
applied, with 70% of the data used for training and the remain-
ing 30% for testing. In both datasets, we only consider valid users
with at least 15 samples per label (i.e., the original category for
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Algorithm 1 BioQ Algorithm

1: Input: Dataset X = {𝑥𝑢,𝑑,𝑐𝑡 } with samples indexed by user 𝑢,
device 𝑑 , channel 𝑐 , and time 𝑡 , training epochs 𝐸,𝑀 for bio-cue
generation and matching.

2: Bio-cue Generation:
3: Initialize bio-cue generation model 𝑓
4: for epoch 𝑒 = 1, . . . , 𝐸 do
5: 𝐵 ← split X into batches of size |𝐵 |
6: for batch 𝑏 ∈ 𝐵 do
7: 𝑏𝑎𝑛𝑐 , 𝑏𝑝𝑜𝑠 ← Get anchor and positive pairs
8: 𝑏𝑛𝑒𝑔 ← Sample informative negatives
9: L𝑐𝑜𝑛 ← Compute contrastive loss
10: 𝑓 ← Update using SGD(𝑓 ,L𝑐𝑜𝑛)
11: end for
12: end for

13: Bio-cue Matching:
14: Initialize bio-cue matching model 𝑔
15: for epoch𝑚 = 1, . . . , 𝑀 do
16: 𝐵 ← split X into batches of size |𝐵 |
17: for batch 𝑏 ∈ 𝐵 do
18: 𝑏𝑎𝑛𝑐 , 𝑏𝑝𝑜𝑠 , 𝑏𝑛𝑒𝑔 ← Sample data for matching
19: 𝑏𝑒𝑎𝑛𝑐 , 𝑏

𝑒
𝑝𝑜𝑠 , 𝑏

𝑒
𝑛𝑒𝑔 ← Generate cues using 𝑓

20: 𝑌𝑚𝑎𝑡𝑐ℎ ← Assign matching labels
21: L𝑚𝑎𝑡𝑐ℎ ← Compute binary cross-entropy
22: 𝑔← Update using SGD(𝑔,L𝑚𝑎𝑡𝑐ℎ)
23: end for
24: end for

datasets, such as stress, amusement for WESAD and activity, fa-
tigue for FatigueSet). We ran each experiment with five different
seeds, reporting the mean and standard deviation in the results (§4).

4.1.1 Datasets. FatigueSet [24] is a dataset for exploring the im-
pact of physical activity on mental fatigue. Data was gathered from
12 users wearing earbuds, a headband, a chestband, and a wristband,
capturing physiological and motion data. We focus on accelerom-
eter (ACC), gyroscope (GYR), and photoplethysmography (PPG)
data, which are shared by at least two devices. We employed estab-
lished noise-filtering techniques to mitigate the inherent noise in
the physiological and motion-sensing data. For ACC, a low-pass
filter with a 15 Hz cutoff frequency is applied, as 99% of human body
motion is contained below 15 Hz [26], and magnitude from three
axes was used. Similarly, for GYR, we applied a low-pass filter with
a 20 Hz cutoff frequency to reduce high-frequency noise. The PPG is
processed using a 3rd order Butterworth filter with a 0.5 Hz low-cut
and 8 Hz high-cut. Noise filtering is implemented leveraging an
open-source Python package library, Neurokit2 [34, 35].

WESAD [44] dataset is created for detecting stress and effects
using wearable sensors. Collected from 15 participants wearing a
chestband and a wristband, it includes physiological and motion
data such as Electrodermal Activity (EDA), Skin Temperature (TEM),
Blood Volume Pressure (BVP), and Accelerometer (ACC). Our anal-
ysis targets the shared sensors on the wrist and chest: ACC, EDA,
and TEM. Following the authors of the WESAD dataset [44], we

Table 2: List of sensor-specific features.
Sensor Features

PPG

min, max, mean, std, range, beats per minute,
interbeat interval, std of normal-to-normal intervals,
std of successive differences, area of Poincare plot,
proportion of NN50 and NN20, breathing rate,
heart rate median absolute deviation, root mean square of SDD
std 1 and 2 from Poincare plot analysis, their ratio

EDA

min, max, mean, std, range, slope,
SCL (skin conductance level) mean, SCL std,
SCR (skin conductance response) mean, SCR std,
SCR num peaks, SCR num peak amplitude

TEM min, max, median, std, range, slope
ACC, GYR min, max, mean, std, median

opted not to apply filtering to the temperature data. For EDA, a low-
pass filter with a 5 Hz cutoff frequency and a 4th-order Butterworth
filter was applied. For ACC, we applied the same preprocessing
technique we used in the FatigueSet dataset.

Following prior work [14, 32], we use an 8-second window for
ACC data. Similarly, we apply an 8-secondwindow for GYR data and
a 20-second window for physiological sensing data (such as EDA or
PPG, and multimodal combinations involving these sensors), as a
window size of 20∼60 seconds is effective for feature extraction [29].

4.1.2 Baselines. We consider the following as baselines:

• Raw treats clean, noise-filtered sensor data as bio-cues. We com-
pute the L1 distance between bio-cues to assess the similarity for
synchronized samples. For multimodal sensor streams, we aver-
age distance values from all sensor types. Note that the values
are normalized to a 0∼1 range for consistency. This represents a
naïve baseline and acts as a lower bound for comparison.
• Feature uses the most representative hand-crafted features for
each sensor type [34, 44, 51] as bio-cues. A full list of features
used for each sensor type is provided in Table 2. Similar to Raw,
the Feature method uses L1 distance and normalizes values before
averaging distances across multimodal data streams.
• Lester et al. [32] applies the coherence [5, 6] function to noise-
filtered accelerometer data to determine whether devices are
worn on the same body. In this approach, coherence values serve
as a measure of bio-cue similarity specifically for accelerometer
data. We evaluated it solely for the accelerometer data. As this
method is exclusively designed for accelerometer signals, we
implemented and evaluated it solely for this data type.
• Cornelius et al. [14] use a feature-based method, extracting
hand-crafted features from accelerometer data and computing
coherence between the features. The method was developed for
matching, so we use averaged coherence similarity values to de-
rive a single metric to compare bio-cue generation performance.

Of the four baselines, Cornelius et al. [14] use Support Vector
Machines (SVM) [3] trained on coherence features to determine
if devices are worn on the same body. They also extend Lester et
al. [32] by incorporating SVMs to dynamically estimate a threshold.
Based on these approaches, we implemented matching baselines.
We trained SVMs on the calculated distance values for both the
Raw and Feature methods.

4.1.3 EvaluationMetrics. To assess bio-cue generation performance,
we evaluate how consistently cues align within the same user and
how distinctly they separate across different users or time intervals.
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For this purpose, we use the Fisher Discriminant Ratio (FDR), a met-
ric that quantifies the separability of two distributions by comparing
their means and variances [17]. A higher FDR indicates better dis-
tinguishability, with more significant mean differences and smaller
variances leading to improved bio-cue separability. Generally, FDR
values above 1 indicate strong separation, while values over 0.5
suggest moderate separation. We use the macro F1 score and Equal
Error Rate (EER) for bio-cue matching performance. The F1 score
balances precision and recall, while EER indicates the threshold
where false acceptance and rejection rates are equal. Together, they
provide a comprehensive evaluation of matching performance.

4.2 Bio-cue Generation
An ideal system should generate similar bio-cues only when sensor
data originates from the same user simultaneously. In all other
cases, such as data from different users or from the same user
at different times, the generated bio-cues should be distinct and
separable (§3.2.1). To evaluate this, we conduct evaluations under
two scenarios: (i) distinguishing between data from the same user
at the same time versus different users (§4.2.1); and (ii) between the
same user at the same time versus at different times (§4.2.2).

Overall, when comparing to state-of-the-art methods in bio-cue
generation using accelerometer data (unimodal), the FDR of BioQ
is on average 3.60× (in geometric mean, minimum 2.01×, maximum
13.12×, geometric std 2.39×) of the best-performing baseline across
different settings. In multimodal settings (using all available data
modalities), an average FDR of 9.30× of other baselines can be
observed (minimum 8.42×, maximum 9.71×, geometric std 1.07×).

4.2.1 Bio-cue Generation Across Users. Table 3 presents the per-
formance of bio-cue generation across different users, using the
FDR (mean±std) metric. FDR quantifies the separability of bio-cue
distributions between the same user and different users, referred
to as ‘across users’ for brevity. The best results are highlighted in
bold. Since the baselines by Lester et al.[32] and Cornelius et al.[14]
are compatible only with ACC data, we limit comparisons for these
models to ACC data in both datasets. BioQ consistently outperforms
baselines on both datasets, achieving mean FDR scores of 0.445 and
3.185, highlighting the effectiveness of its contrastive-based bio-cue
generation. By contrast, Lester et al. [32] and Cornelius et al. [14],
which only support ACC data, perform variably but remain lower
overall, with Raw showing the weakest performance, indicating
that noise-filtered data alone lacks sufficient bio-cue quality. More-
over, BioQ maintains top performance across all other sensor types
and in the multimodal setting, underscoring its robust and reliable
bio-cue generation across diverse sensor sources.

4.2.2 Bio-cue Generation for the Same User Across Time. We evalu-
ate the performance of BioQ and baselines in bio-cue generation for
the same user across time, a critical requirement for data integrity
and reliable health service provision. Table 4 shows the results
that follow a similar trend to those in Table 3. In both the WESAD
and FatigueSet datasets, BioQ achieves higher FDR values across
all settings, demonstrating reliable bio-cue distribution separation
between data collected simultaneously and data collected at differ-
ent times. For instance, in the WESAD dataset, BioQ achieves an
FDR of 0.458 in EDA and 0.965 in the combined All modality. The

Figure 5: Bio-cue matching results in WESAD.

Figure 6: Bio-cue matching results in FatigueSet.

relatively high FDR values in EDA and the multimodal configura-
tion suggest that these signals capture distinctive temporal features
that enhance separation over different time intervals. Similarly, in
the FatigueSet dataset, BioQ outperforms the baselines across all
modalities, achieving FDR values of 1.906 in PPG and 4.093 in the
All modality. The high FDR in the combined All modality setting
underscores the advantage of integrating multiple modalities for
enhanced temporal bio-cue generation, highlighting BioQ’s effec-
tiveness in maintaining user-specific data integrity over time.

4.2.3 Bio-cue Generation with Various Sensor Combinations. We
also evaluate scenarios where devices utilize various combinations
of available sensors to generate bio-cues. Tables 5 and 6 show
results for bio-cue generation across users. Since Lester et al. [32]
and Cornelius et al. [14] are limited to accelerometer data, we
consider Raw and Feature baselines in this analysis. The results
consistently show that BioQ outperforms all baselines across every
sensor combination.

Our findings indicate that multimodal (i.e., ACC+GYR+PPG in
FatigueSet and ACC+EDA+TEM in WESAD) approaches generally
outperform unimodal ones. However, in unimodal settings, no sin-
gle modality consistently excels across all scenarios. This variability
is likely due to specific conditions under which each dataset was
collected, such as mental/physical fatigue levels, or physiological
states. For example, in the WESAD dataset—where participants
remained mostly stationary while their affective states were mea-
sured—EDA showed the highest performance in both across-user
and across-time evaluations. In contrast, in the FatigueSet dataset,
which involves both physical and mental fatigue, ACC was most
effective for distinguishing across users, while PPG was better in
capturing temporal variations within individuals.

4.3 Bio-cue Matching Performance
Next, we present the bio-cue matching results. Fig. 5 and 6 display
the results for all sensor types, including various sensor combina-
tions. In the figures, the left y-axis represents the macro F1 score,
shown as bar graphs, while the right y-axis represents the Equal
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Table 3: Bio-cue generation results (FDR) across users. ‘All’ includes all available sensor types. Relative performance is calculated
as a ratio between BioQ and the best-performing baseline.

Dataset WESAD FatigueSet

Method / Modal ACC EDA TEM All ACC GYR PPG All
Raw 0.000±0.00 0.184±0.09 0.015±0.02 0.027±0.03 0.001±0.00 0.023±0.02 0.001±0.00 0.001±0.00
Feature 0.014±0.01 0.201±0.04 0.013±0.01 0.117±0.03 0.243±0.03 0.152±0.02 0.300±0.04 0.495±0.07
Lester et al. [32] 0.189±0.00 - - - 0.077±0.01 - - -
Cornelius et al. [14] 0.196±0.01 - - - 0.052±0.01 - - -
BioQ 0.445±0.02 0.652±0.10 0.048±0.03 1.133±0.07 3.185±0.22 2.699±0.21 2.242±0.20 4.793±0.14
Relative Performance 2.27× 3.25× 3.16× 9.71× 13.12× 17.80× 7.48× 9.67×

Table 4: Bio-cue generation results (FDR) for the same user across time. ‘All’ includes all available sensor types. Relative
performance is calculated as a ratio between BioQ and the best-performing baseline.

Dataset WESAD FatigueSet

Method / Modal ACC EDA TEM All ACC GYR PPG All
Raw 0.000±0.00 0.178±0.09 0.016±0.02 0.028±0.02 0.001±0.00 0.025±0.02 0.001±0.00 0.002±0.00
Feature 0.016±0.02 0.198±0.04 0.015±0.01 0.115±0.02 0.229±0.02 0.146±0.02 0.235±0.06 0.432±0.05
Lester et al. [32] 0.157±0.02 - - - 0.075±0.01 - - -
Cornelius et al. [14] 0.165±0.01 - - - 0.051±0.01 - - -
BioQ 0.332±0.04 0.458±0.04 0.039±0.02 0.965±0.05 0.641±0.02 1.069±0.07 1.906±0.23 4.093±0.38
Relative Performance 2.01× 2.31× 2.42× 8.42× 2.80× 7.30× 8.11× 9.48×

Table 5: Bio-cue generation results (FDR) across users with
various sensor combinations.

Dataset Modalities Raw Feature BioQ

WESAD
ACC + EDA 0.088±0.04 0.175±0.03 0.850±0.11
ACC + TEM 0.011±0.01 0.001±0.00 0.423±0.08
EDA + TEM 0.036±0.03 0.124±0.05 0.713±0.05

FatigueSet
ACC + GYR 0.003±0.00 0.263±0.03 4.297±0.27
ACC + PPG 0.001±0.00 0.457±0.06 3.142±0.52
GYR + PPG 0.003±0.00 0.435±0.06 4.400±0.28

Table 6: Bio-cue generation results (FDR) for the same user
across time with various sensor combinations.

Dataset Modalities Raw Feature BioQ

WESAD
ACC + EDA 0.090±0.04 0.182±0.02 0.666±0.07
ACC + TEM 0.010±0.01 0.001±0.00 0.382±0.06
EDA + TEM 0.034±0.02 0.116±0.04 0.666±0.10

FatigueSet
ACC + GYR 0.003±0.00 0.252±0.02 1.178±0.06
ACC + PPG 0.002±0.00 0.382±0.06 2.673±0.28
GYR + PPG 0.003±0.00 0.371±0.05 3.608±0.36

Error Rate (EER), depicted as line graphs. The matching results
highlight the performance of BioQ against Raw and Feature base-
lines across different sensor types. Overall, average improvements
of .097 and .132 in F1 scores are observed across all different choices
of sensor types and their combinations in WESAD and FatigueSet,
respectively. Similarly, average reductions of .068 and .079 in EER
are observed in WESAD and FatigueSet, respectively.

Table 7 presents the matching performance for accelerometer
data, including the baselines by Lester et al.[32] and Cornelius[14].
BioQ significantly outperforms all baseline methods, with improved
F1 scores of .661 and .759 and reduced EER of .323 and .203 in WE-
SAD and FatigueSet, respectively. Interestingly, BioQ also outper-
forms Lester et al.[32] and Cornelius et al.[14], which are specially
designed for device co-location detection using accelerometer data,
with F1 score higher by 0.069 and 0.180 in WESAD and Fatigue-
Set. This is because their methods are limited to walking activity,
making them less effective in diverse settings that include static
and other non-walking activities. In contrast, BioQ is designed to

Table 7: Bio-cue matching results with ACC. (Higher F1 and
lower EER are better)

Dataset WESAD FatigueSet

Metric F1 ↑ EER ↓ F1 ↑ EER ↓
Raw .464±.05 .498±.00 .510±.04 .471±.02
Feature .508±.03 .450±.02 .554±.01 .363±.01
Lester et al. [32] .585±.01 .399±.01 .590±.00 .412±.00
Cornelius et al. [14] .592±.01 .397±.01 .574±.00 .427±.00
BioQ .661±.01 .323±.01 .759±.00 .203±.00
Difference +0.069 -0.074 +0.170 -0.160

handle both static and dynamic activities, enabling it to consistently
surpass these specialized approaches.

4.4 Device-specific Analysis
The previous evaluation focused on scenarios where all devices
participate in bio-cue generation. In real-world use cases, a wide
range of device combinations is possible, therefore we also conduct
a device-specific analysis to assess the impact of each device on per-
formance. We focus our analysis on FatigueSet as WESAD only has
data from two devices (wristband and chestband). The bio-cue gen-
eration results are presented in Tables 8 and 9, along with matching
results provided in Tables 10 and 11. The results show that BioQ
outperforms all baselines across various device combinations. In
Tables 8 and 10 we observe that Lester et al. [32] and Cornelius et
al. [14] perform quite well when the devices are located close to
each other (left and right earbuds). However, they fail to perform
effectively for devices that are not located in a similar position
on the body. On the other hand, BioQ works consistently better
than baselines, showing its generalizability across various body
positions. In terms of the impact of device placement on BioQ’s
performance, BioQ performs better with devices located close to
each other or on the same side of the body compared to other device
combinations. For instance, an FDR of 6.922 is achieved with left
and right earbuds, and similarly strong performance is observed
with earbuds or a headband (FDR over 4). In contrast, incorporating
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Table 8: Device-specific analysis of bio-cue generation performance (FDR) from ACC across users.
left earbud right earbud wristband headband Raw Feature Lester et al. [32] Cornelius et al. [14] BioQ

✓ ✓ × × 0.000±0.00 0.381±0.01 0.915±0.04 0.778±0.05 6.922±0.95
✓ × ✓ × 0.002±0.00 0.156±0.02 0.008±0.00 0.002±0.00 2.701±0.13
✓ × × ✓ 0.002±0.00 0.340±0.02 0.024±0.00 0.017±0.01 4.329±0.32
× ✓ ✓ × 0.001±0.00 0.154±0.02 0.007±0.00 0.003±0.00 2.527±0.28
× ✓ × ✓ 0.003±0.00 0.331±0.03 0.019±0.00 0.014±0.00 4.057±0.28
× × ✓ ✓ 0.000±0.00 0.179±0.02 0.122±0.02 0.090±0.02 2.438±0.19
✓ ✓ ✓ × 0.001±0.00 0.234±0.01 0.115±0.01 0.080±0.01 3.332±0.18
✓ ✓ × ✓ 0.005±0.00 0.346±0.03 0.148±0.00 0.113±0.01 4.838±0.29
✓ × ✓ ✓ 0.001±0.00 0.215±0.03 0.042±0.00 0.026±0.00 2.636±0.16
× ✓ ✓ ✓ 0.006±0.01 0.210±0.03 0.038±0.00 0.024±0.00 2.672±0.22
✓ ✓ ✓ ✓ 0.001±0.00 0.243±0.03 0.077±0.01 0.052±0.01 3.185±0.22

Table 9: Device-specific analysis of bio-cue generation performance (FDR) from GYR.

left earbud right earbud headband Across users Same user across time
Raw Feature BioQ Raw Feature BioQ

✓ ✓ × 0.001±0.00 0.171±0.03 5.743±0.61 0.001±0.00 0.168±0.03 2.293±0.20
✓ × ✓ 0.001±0.00 0.174±0.01 2.055±0.22 0.001±0.00 0.175±0.02 0.728±0.06
× ✓ ✓ 0.002±0.00 0.135±0.02 2.030±0.30 0.002±0.00 0.136±0.02 0.770±0.08
✓ ✓ ✓ 0.023±0.02 0.152±0.02 2.699±0.21 0.025±0.02 0.146±0.02 1.069±0.07

Table 10: Matching performance (F1) from ACC-based bio-cues with various device combinations.
left earbud right earbud wristband headband Raw Feature Lester et al. [32] Cornelius et al. [14] BioQ

✓ ✓ × × 0.567±0.03 0.627±0.02 0.765±0.01 0.737±0.01 0.863±0.01
✓ × ✓ × 0.527±0.02 0.500±0.03 0.531±0.00 0.512±0.01 0.751±0.01
✓ × × ✓ 0.514±0.01 0.545±0.01 0.562±0.01 0.546±0.01 0.784±0.01
× ✓ ✓ × 0.503±0.01 0.491±0.01 0.529±0.01 0.512±0.01 0.751±0.00
× ✓ × ✓ 0.478±0.03 0.546±0.01 0.559±0.01 0.548±0.01 0.788±0.01
× × ✓ ✓ 0.459±0.05 0.528±0.03 0.587±0.00 0.564±0.01 0.754±0.01
✓ ✓ ✓ × 0.571±0.01 0.543±0.04 0.610±0.00 0.589±0.00 0.767±0.01
✓ ✓ × ✓ 0.518±0.03 0.575±0.02 0.629±0.00 0.615±0.00 0.803±0.00
✓ × ✓ ✓ 0.492±0.04 0.537±0.01 0.557±0.00 0.539±0.00 0.756±0.00
× ✓ ✓ ✓ 0.508±0.04 0.534±0.01 0.556±0.00 0.536±0.00 0.754±0.01
✓ ✓ ✓ ✓ 0.510±0.04 0.554±0.01 0.590±0.00 0.574±0.00 0.759±0.00

Table 11: Matching performance from GYR-based bio-cues with various device combinations.

left earbud right earbud headband F1 Macro EER
Raw Feature BioQ Raw Feature BioQ

✓ ✓ × 0.256±0.01 0.565±0.05 0.882±0.01 0.501±0.00 0.360±0.04 0.100±0.01
✓ × ✓ 0.293±0.10 0.519±0.05 0.762±0.01 0.498±0.01 0.370±0.03 0.226±0.00
× ✓ ✓ 0.253±0.01 0.504±0.05 0.764±0.01 0.500±0.00 0.401±0.04 0.226±0.01
✓ ✓ ✓ 0.363±0.10 0.523±0.04 0.798±0.01 0.509±0.03 0.384±0.02 0.183±0.01

a wristband yields lower results, likely due to the independent mo-
tion of the wrist or challenges in generating high-quality bio-cues
from isolated movements. Nonetheless, BioQ’s FDR for all device
combinations remains above 1, indicating clear distinguishability,
whereas baselines consistently produce FDR below 1.

Device-specific analysis for GYR (shown in Tables 9 and 11) also
show similar trends. Since GYR data is unavailable for wristbands,
they were excluded from the GYR experiments. Across both bio-
cue generation and matching, BioQ performs notably better when
earbuds are involved. For example, bio-cue generation achieves a
high FDR of 5.743 across users and 2.293 for the same user over
time, along with a matching F1 of 0.882 and an EER as low as 0.100.
Including more devices in the system further stabilizes results, as
training benefits from exposure to diverse device location com-
binations (e.g., both earbuds and headbands). This suggests that
device-agnostic training is not only efficient for training and testing
but also enhances accuracy stability in such scenarios.

4.5 Performance under Similar User Conditions

To assess BioQ’s effectiveness in real-world scenarios and its
robustness to subtle variations in user conditions, we conducted
experiments under diverse user states. For instance, FatigueSet
includes labels for baseline (seated at rest while baseline data is
collected), physical activity (walking, jogging), and mental fatigue
(dual letter and number task). Meanwhile, WESAD contains condi-
tions such as baseline (neutral state), amusement (watching humor-
ous video clips), and stress (public speaking and mental arithmetic
tasks). In WESAD, roughly half of the participants performed these
tasks while standing, and the remaining participants were seated,
resulting in relatively minor variability in physical movement.

We consider Raw and Feature baselines for comparison methods
since Lester et al. [32] and Cornelius et al. [14] are limited to only
accelerometer data. Table 12 shows the results for cue generation.
BioQ consistently outperforms these baselines across all user states
and activities—achieving improvements of 13.5× for WESAD and
4.5× for FatigueSet in the across-user evaluation, and 5.6× (WE-
SAD) and 5.4× (FatigueSet) in the same-user (across-time) setting
compared to the best-performing baseline. We also provide bio-cue
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Table 12: Bio-cue generation under similar user conditions.
Dataset User State Raw Feature BioQ

FDR (across users) ↑

WESAD
Baseline 0.025±0.02 0.059±0.01 0.465±0.14
Stress 0.002±0.00 0.047±0.03 0.337±0.05
Amusement 0.010±0.01 0.019±0.01 0.892±0.22

FatigueSet
Baseline 0.039±0.02 0.836±0.15 3.526±0.76
Activity 0.013±0.02 0.533±0.27 1.511±0.71
Fatigue 0.053±0.04 0.545±0.14 3.649±0.89

FDR (same user, across time) ↑

WESAD
Baseline 0.007±0.00 0.045±0.01 0.268±0.08
Stress 0.004±0.00 0.048±0.03 0.255±0.08
Amusement 0.000±0.00 0.004±0.00 0.016±0.01

FatigueSet
Baseline 0.042±0.02 0.352±0.10 2.073±0.95
Activity 0.016±0.02 0.266±0.07 1.247±0.29
Fatigue 0.104±0.05 0.312±0.11 1.717±0.28

Table 13: Bio-cue matching under similar user conditions.
Dataset User State Raw Feature BioQ

F1 ↑

WESAD
Baseline 0.490±0.02 0.509±0.03 0.636±0.01
Stress 0.413±0.02 0.549±0.03 0.618±0.02
Amusement 0.490±0.05 0.568±0.02 0.632±0.02

FatigueSet
Baseline 0.324±0.07 0.664±0.08 0.840±0.04
Activity 0.517±0.13 0.782±0.03 0.780±0.04
Fatigue 0.271±0.02 0.767±0.04 0.828±0.04

EER ↓

WESAD
Baseline 0.496±0.01 0.445±0.02 0.367±0.01
Stress 0.503±0.00 0.450±0.02 0.346±0.03
Amusement 0.477±0.02 0.419±0.03 0.356±0.01

FatigueSet
Baseline 0.501±0.04 0.304±0.08 0.160±0.04
Activity 0.424±0.08 0.196±0.03 0.180±0.03
Fatigue 0.490±0.01 0.200±0.01 0.179±0.04

Table 14: Runtime system cost.
Operation Feat. Ext. Emb. Gen. Data Trans. Matching

RPI4B
Latency (ms) 25.3 3.2 6.2 2.1
CPU (%) 6.5 70 0 0
Energy (mJ) 18.72 8.26 2.21 5.46

RPIZW
Latency (ms) 68.5 6.9 61.0 4.5
CPU (%) 13.6 18 0 0
Energy (mJ) 37.64 11.81 1.81 7.64

Pico W
Latency (ms) 108.0 260.0 61.3 341.0
Energy (mJ) 22.32 54.63 19.55 71.88

matching results in Table 13 where BioQ demonstrates similarly ro-
bust gains. BioQ improves the F1 score by 1.2× onWESAD and 1.1×
on FatigueSet while reducing the EER by 0.08 and 0.06, respectively,
compared to the best-performing baseline. Notably, the Feature
baseline is relatively effective in FatigueSet when users are engaged
in more dynamic activities like walking or jogging. However, its
performance drops in the less dynamic baseline and fatigue states,
suggesting it struggles to capture subtler physiological changes. In
contrast, BioQ remains robust across all conditions, highlighting its
ability to adapt to varying motion levels and psychological states.

4.6 System Cost
Runtime cost: As BioQ is designed for wearable devices, we focus
on three embedded platforms: Raspberry Pi 4B (RPI4B), Raspberry
Pi Zero W (RPIZW), and Raspberry Pi Pico W (Pico W). These

devices were chosen because commercial wearables do not yet
support the direct execution of custom code. They also represent
a range of computational capabilities, with the RPI4B modeling
high-performance devices like smart earbuds and the Pico W rep-
resenting ultra-low-power, compact wearables like smart rings or
patches. We measured latency, CPU usage, and energy (using Mon-
soon Power Monitor) for each operation in BioQ.

The main runtime operations of BioQ are as follows: each wear-
able device generates (1) features and (2) bio-cues from available
sensors. When matching is required, the devices send the embed-
ding values to the host device, where (3) the host performs the
matching. Table 14 shows the results when PPG signals are pro-
cessed. We omit the CPU usage of Pico W because it executes
instructions sequentially on a single core in a bare-metal environ-
ment, making CPU usage inapplicable.

The core operations of embedding generation and matching in-
cur modest latencies and low energy demands on both the RPI4B
and RPIZW. For instance, embedding generation completes in 3.2
ms (8.26 mJ) on the RPI4B and 6.9 ms (11.81 mJ) on the RPIZW,
while matching requires only 2.1 ms (5.46 mJ) and 4.5 ms (7.64 mJ),
respectively. The Pico W, by contrast, exhibits substantially longer
latencies for these steps (e.g., 260 ms for embedding generation), pri-
marily because it lacks optimized libraries and runs bare-metal code.
Yet, this also indicates an opportunity: custom, hardware-specific
implementations on the Pico W could significantly lower both la-
tency and energy usage. Meanwhile, on the RPI4B and RPIZW,
feature extraction and bio-cue transmission emerge as the dom-
inant latency components, reflecting sensor- and device-specific
operations rather than overhead from BioQ itself. On the Pico W,
we limit feature extraction to simple statistical measures of PPG
due to restricted library support, thereby reducing complexity in
that particular stage. Finally, although the RPI4B draws more in-
stantaneous power than the RPIZW, its shorter execution times
lead to lower overall energy consumption for CPU-heavy tasks.
Altogether, these results underline that BioQ can operate efficiently
on resource-constrained devices, with headroom for further opti-
mizations on ultra-low-power MCUs like the Pico W.

Server-side cost: On the server side, model training is required
using a global dataset. To investigate its cost, we measured training
time and model size using a desktop-scale server equipped with
NVIDIAGeForce RTX 3090 GPUs. For the bio-cue generationmodel,
using all available sensor modalities with a pair of devices from
the FatigueSet (ACC, GYR, PPG) and WESAD (ACC, EDA, TEM)
datasets, the training process took 103 and 316.7 seconds for bio-
cue generation and 55.8 and 159.7 seconds for bio-cue matching,
correspondingly. The bio-cue generation model sizes were 13.31KB
and 18.50KB for the WESAD and FatigueSet datasets, respectively,
while the matching model size was the same at 18.50 KB. Note that
we do not generalize the training time as it depends on the amount
of the global dataset.

5 Related Work
Support for wearable collaboration. Extensive research efforts
have explored a variety of foundational technologies critical for en-
abling collaboration among wearable devices. Sensor fusion [13, 19]
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combines data from multiple sensors to better understand user con-
text. To overcome the constraint of a single device’s processing
capability, distributed inference techniques [2, 18] enable more effi-
cient data processing by distributing tasks across devices. Dynamic
device discovery protocols [27, 42] enhance the ability of devices
to identify and communicate with one another in ad hoc networks
without human intervention. Likewise, advancements in ad hoc
networking [12, 23] ensure that wearables can quickly form flexi-
ble networks, essential for dynamic environments. Despite these
advancements in wearable technology, less focus has been placed
on managing these devices, particularly in scenarios where they
are shared or used in public environments.

Detecting if devices are worn on the same body. Several
studies have explored methods to determine whether devices are
carried by the same person. Early works used accelerometers to
compare walking patterns using the coherence function, identifying
devices worn on the same individual when positioned closely to
each other (e.g., on the waist) [32]. However, accuracy diminished
when devices were farther apart. This was improved by training
a Support Vector Machine (SVM) using coherence features from
accelerometers [14], enhancing detection across varied body place-
ments. Another study [47] compared footstep signatures from ac-
celerometers to determine if devices were personally collocated,
offering robust performance but mainly during walking activities. A
common limitation of these approaches is their reliance on periodic
movements, such as walking, which reduces their effectiveness in
stationary scenarios or during non-walking activities.

There is extensive research on key establishment between de-
vices, focusing on scenarios when two devices can securely gen-
erate a shared key when worn by the same person. Shaking two
devices together can mutually authenticate the devices securely
based solely on the shaking motion [36]. While intuitive and effec-
tive, this method relies on close physical proximity between the
devices. For example, a user would need to remove their wearables
(such as smart earbuds) and shake them near each other to enable
pairing, which can be inconvenient. Alternatively, ongoing research
leverages users’ walking patterns (gait) detected via accelerometers
for secure device interactions [45, 53]. Gait-Key [53] generates a
shared key from synchronized gait data, while BANDANA [45]
authenticates devices by analyzing gait patterns. Although these
methods show strong results, they depend on user movements,
limiting their applicability in static or non-repetitive scenarios.

6 Discussions and limitations
Beyond co-location detection: BioQ’s unobtrusive and automatic
detection of device co-location is critical for the scenarios in §2.2,
especially for small form-factor wearables where even manual au-
thentication is not feasible. BioQ achieves this by leveraging vital
signs that can be monitored by wearable devices and their char-
acteristics of being consistent throughout the body. However, to
realize the scenarios in real-life situations, further operations such
as policy management and executions are needed. For example,
in case a user wants to mute confidential notifications when they
lend one earbud to a friend to listen to music together, a user (or a
system) needs to add a notification policy, which then must be coor-
dinated on the corresponding devices, e.g., changing the notification

message to be spoken on earbuds, based on the device co-location
status. This becomes more challenging when wearable devices lack
sufficient resource capabilities, which would necessitate a more
sophisticated resource orchestration scheme, e.g., offloading heavy
operations to a smartphone. We leave this as future work.

Limitation in data and generalizability.We acknowledge that
our current datasets were not originally collected to capture subtle,
real-world phenomena such as minimal-movement scenarios or
shared-device use. We thus may not fully encompass the breadth
of behaviors encountered outside controlled experimental settings.
Nevertheless, our analyses across various user states and activi-
ties demonstrate that the proposed method maintains robustness
despite these limitations, suggesting good potential for generaliza-
tion. In the future, larger-scale data collections could be conducted,
specifically targeting challenging conditions (e.g., shared earbuds or
minimal-movement activities) to more comprehensively evaluate
and enhance the system’s capacity to detect subtle yet meaning-
ful behavioral cues. By incorporating these tailored datasets, such
future investigations would be better positioned to extend the ap-
proach’s applicability to diverse, real-world deployment contexts.

Support for cross-modality. Currently, BioQ relies on devices
sharing the same sensor modalities (e.g., a PPG channel present
on all devices). In practice, however, a wristband might only have
an accelerometer, while an earbud might only sense heart rate.
Bridging these heterogeneous signals is nontrivial, as each sensor
type exhibits distinct noise profiles, sampling rates, and domain-
specific features. Future research could investigate cross-sensor
embeddings or domain adaptation pipelines, where each modality
is mapped into a common latent space. This would allow BioQ to
function even when devices have disjoint sensor sets—a highly
relevant scenario for real-world wearable ecosystems.

Model architectures and scalability. Finally, BioQ usesmargin-
based contrastive learning and a lightweight model for embedding
generation. With recent advances in self-supervised learning and
multimodal learning, other training pipelines might be effective
for bio-cue generation. Furthermore, bigger models tend to have
better capacity in extracting detailed features, and given that dif-
ferent mobile devices have different computing capabilities, we
might afford to deploy bigger models for more capable devices.
However, challenges in handling model heterogeneity would need
to be addressed.

7 Conclusion
We introduced BioQ, a system designed to unobtrusively detect
when multiple devices are co-located on the same body at a given
time. BioQ is a key enabler for context-awaremulti-device collabora-
tion, facilitating use cases such as reliable health tracking, adaptive
notifications, resource optimization, and enhanced privacy. BioQ
is both device- and activity-agnostic, functioning seamlessly with
various wearables positioned on different body parts and extending
beyond motion-sensing data. It flexibly integrates physiological
and inertial sensing data to generate and match bio-cues, which
are sensor embeddings derived through contrastive representation
learning. Experiment results confirm that BioQ consistently outper-
forms baseline methods in bio-cue generation and matching while
maintaining cost-effectiveness.
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