
SelfReplay: Adapting Self-Supervised
Sensory Models via Adaptive Meta-Task Replay

Hyungjun Yoon
KAIST

hyungjun.yoon@kaist.ac.kr

Jaehyun Kwak
KAIST

jaehyun98@kaist.ac.kr

Biniyam Aschalew Tolera
KAIST

binasc@kaist.ac.kr

Gaole Dai
Nanyang Technological University

gaole001@e.ntu.edu.sg

Mo Li
HKUST

lim@cse.ust.hk

Taesik Gong
UNIST

taesik.gong@unist.ac.kr

Kimin Lee
KAIST

kiminlee@kaist.ac.kr

Sung-Ju Lee
KAIST

profsj@kaist.ac.kr

Abstract
Self-supervised learning enables effective model pre-training on
large-scale unlabeled data, which is crucial for user-specific fine-
tuning in mobile sensing applications. However, pre-trained mod-
els often face significant domain shifts during fine-tuning due to
user diversity, leading to performance degradation. To address this,
we propose SelfReplay, an adaptive approach designed to align
self-supervised models to different domains. SelfReplay consists
of two stages: MetaSSL, which leverages meta-learning with self-
supervised learning to pre-train domain-adaptive weights, and Re-
playSSL, which further adapts the pre-trained model to each user’s
domain by replaying the meta-learned self-supervised task with
a few user-specific samples. This produces a personalized model
tailored to each user. Evaluations on mobile sensing benchmarks
demonstrate that SelfReplay outperforms existing baselines, improv-
ing the F1-score by 9.4%p on average. On-device analyses on a com-
modity smartphone show the efficiency of SelfReplay’s adaptation
step, required just once after deployment, with SimCLR completing
in only 10 seconds while using less than 100MB of memory.

CCS Concepts
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools; • Computing methodologies →
Machine learning.
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1 Introduction
Large-scale pre-training has become fundamental in developing
models that generalize across diverse applications. Self-supervised
learning [24], in particular, enables models to leverage vast amounts
of unlabeled data, making it a powerful approach for building foun-
dationmodels. Inmobile sensing applications such as contactless au-
thentication [34, 64], sign language translation [20, 43], and mobile
health monitoring [55, 70], labeled data is often scarce and costly
to acquire, which makes self-supervised methods especially valu-
able. Self-supervised techniques such as predictive coding [16, 18],
contrastive learning [57], and multi-task learning [52] have demon-
strated effectiveness in sensory applications by reducing reliance
on labeled data in pre-training.

However, challenges arise once pre-trained models are deployed
for fine-tuning across different environments. In mobile sensing,
data collected in diverse environments varies widely due to differ-
ences in users and device settings (e.g., sensor placement and sam-
pling rate) [58]. These variations introduce a domain shift, where
models trained in one domain underperform when applied to oth-
ers [56]. To highlight this challenge in the self-supervised setting,
we conducted an empirical analysis using a self-supervised pre-
training method [18] for human activity recognition [14] (details in
Section 4.6.9). Figure 1 compares the performance of a pre-trained
model when fine-tuned within the same source domain versus on a
different target domain. The results show that performance declines
substantially when fine-tuning is conducted on a different domain.
This underscores the challenge of deploying self-supervised models
across diverse mobile sensing environments.

Training a domain-specific model using target domain data is
straightforward but infeasible due to the cost of gathering sufficient
data from each user. Existing research includes domain generaliza-
tion [36, 45, 47] that trains models with domain-invariant features,
and domain adaptation [4, 14, 60, 73] that leverages a small amount
of target domain data to achieve domain-specific performance. How-
ever, they primarily focus on supervised learning scenarios, making
applying to domain shifts arising from self-supervised pre-training
difficult.

https://doi.org/10.1145/3715014.3722066
https://doi.org/10.1145/3715014.3722066
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Figure 1: Illustration of domain shift on a self-supervised
model pre-trained in one domain and fine-tuned in another
for human activity recognition. Fine-tuning on the target
domain results in a 19.6% F1-score drop (87% vs. 67.4%).

To address the problem, we propose SelfReplay, an adaptive meta-
task replay approach for adapting self-supervised models to differ-
ent domains. Figure 2 illustrates SelfReplay alongside a standard pre-
training and fine-tuning setting. We design SelfReplay with two key
components: (i) MetaSSL generates domain-adaptive pre-trained
models and (ii) ReplaySSL adapts the pre-trained model to the tar-
get domain. MetaSSL leverages meta-learning over self-supervised
objectives, structuring pre-training into multiple few-shot tasks by
domain. This enables models to “learn to self-supervise” on only
a few domain-specific data, following meta-learning’s concept of
“learning to learn.” After pre-training, ReplaySSL adapts the model
to the target domain by replaying the meta-learned self-supervised
task with a few samples, creating a personalized model. The adapted
model is then fine-tuned for the final application task.

We evaluate SelfReplay on mobile sensing datasets [1, 14, 50, 56]
by simulating domain shifts across different users and devices. Our
experiments show that when self-supervised models are fine-tuned
on heterogeneous domains, SelfReplay consistently outperforms
domain generalization and adaptation baselines [30, 71], achiev-
ing an average F1-score improvement of 9.4%p. Importantly, Self-
Replay is agnostic to self-supervised learning objectives, making
it compatible with various approaches. We apply SelfReplay to
contrastive learning [57], predictive coding [18], and multi-task
learning [52], demonstrating its effectiveness across different self-
supervised methods. To assess practical feasibility, we also measure
SelfReplay’s computational overhead on three edge devices. On a
standard smartphone, ReplaySSL with SimCLR completes in just
10 seconds while using less than 100MB of memory. As the adapta-
tion step runs only once after obtaining the pre-trained model, it
introduces minimal computational load for the user.

We summarize our main contributions as follows:
• We investigate the domain shift issue when diverse users de-
ploy and fine-tune self-supervised models. We reveal that the
domain shift leads to performance degradation.
• We propose SelfReplay, a method for adapting self-supervised
models to different domains via adaptive meta-task replay.
• We perform evaluations using mobile sensing datasets, show-
ing that SelfReplay outperforms domain generalization and

SSL Supervised
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Standard pre-training and fine-tuning

SelfReplay (ours)

Self-Supervised
Learning (SSL)

Source domain Target domain

Source domain

Tasks by
domains

SSL

ReplaySSL
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Supervised
Fine-Tuning
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Figure 2: A comparison between the standard pre-training
and fine-tuning (top) and SelfReplay (bottom). Components
in the grey box are performed in the source domain, while
those in the blue box are performed in the target domain.

adaptation baselines, achieving an average F1-score improve-
ment of 9.4%p.
• We assess the computational overhead of deploying SelfReplay
on mobile devices, demonstrating that the adaptation step
completes in 10 seconds with less than 100MB of memory
usage for SimCLR on an off-the-shelf smartphone.

2 Related Work
2.1 Self-Supervised Learning
Self-supervised learning trains models using an auxiliary task that
can be defined without labels, which enables learning generalized
features of the data. Among numerous approaches, we focus on the
methods applied for mobile sensing [17]. multi-task Learning [52]
utilized multiple types of synthetic augmentations on the data and
trained task prediction networks to infer the occurrence of the aug-
mentation. Sensor-specific augmentations were selected to make
the model learn sensory properties. Recent work focuses on using
contrastive learning [23], which generates augmented views of data
and trains the model intending to maximize the similarity between
the augmented views. Existing methods such as MoCo [19] and
SimCLR [6] were applied to mobile sensing [57, 62] by using sen-
sory augmentations to generate views. The temporal property of
time-series data is utilized for generating views in a recent work [9].
Taking into account the multi-modality, Cosmo [42], COCOA [8],
and ColloSSL [22] utilized contrastive learning to maximize the
similarity between the embeddings driven from different modalities
in the same context. Contrastive predictive coding (CPC) [16, 18]
defined another type of task, predicting the embedding of future
segments within the data based on the previously aggregated em-
beddings. In a similar context, masked-reconstruction-based meth-
ods [15, 66] have been explored for mobile sensing, using the task of
reconstructing the synthetically masked segment within the data.
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Figure 3: Overview of SelfReplay. The model is first pre-trained through MetaSSL in the source domain to develop domain
adaptability, followed by ReplaySSL to adapt the model to the target domain.

While self-supervised models are known to be generalizable
across diverse tasks, the potential performance decline when ap-
plied to different domains (shown in Section 4.6.9) is overlooked.
Our work differs from the prior research in exploring the domain
shift problem between self-supervised pre-training and fine-tuning.

2.2 Domain Generalization and Domain
Adaptation

Domain generalization (DG) [61] mitigates domain shifts by learn-
ing domain-invariant features via adjusted objectives [32, 38], ad-
versarial discrimination [33], and domain-information minimiza-
tion [63, 72]. Recent work incorporated meta-learning [31, 46]
and self-supervised learning [29, 67] to define domain-invariant
training objectives. In mobile sensing, GILE [45] disentangled
domain-specific information, while SDMix [36] employed semantic-
aware augmentations to achieve DG tailored to activity recogni-
tion. For placement shifts, position- and orientation-agnostic meth-
ods [59, 69] rely on data preprocessing and feature transformations
but remain limited to a single domain factor and are less adaptable
to user differences or other domain variations. Domain adaptation
(DA) [65] is more suitable for our scenario, as it allows fine-tuning
with user-collected data. Common approaches rely on unlabeled or
limited-labeled target data [11, 49] and employ strategies such as
feature matching, confusion maximization [4], and transfer learn-
ing for activity recognition [26, 35, 60]. MetaSense [14] introduced
a meta-learning approach followed by few-shot adaptation to create
domain-specific models. DAPPER [13] is another line of research
for estimating the expected performance of DA in mobile sensing.

However, these approaches assume the availability of source-
domain labels and thus are incompatible with our unsupervised
pre-training. DARLING [71] addresses domain shift without source
labels by integrating conditional optimization that modifies the
contrastive loss per domain. Likewise, ContrastSense [7] targets
unsupervised pre-training by introducing a contrastive loss that
minimizes inter-domain discrepancies. While these methods effec-
tively generalize across domains, our approach differs by training

domain-adaptive pre-trained models (MetaSSL), and then leverag-
ing available target-domain data (i.e., fine-tuning data) to train
domain-specific models, thereby achieving superior performance
through an additional adaptation step (ReplaySSL).

2.3 Unsupervised Meta-Learning
We consider unsupervised meta-learning (UML) [27, 28, 30] meth-
ods due to their effectiveness in few-shot adaptation, which is
also applicable to our unsupervised pre-training scenario. Tradi-
tional methods employ pseudo-labeling data through augmenta-
tion [27] or generative methods [28], followed by supervised meta-
learning [2] using the generated labels. Set-SimCLR [30], during
pre-training, trains a set encoder by creating sets of augmented
samples from the same data, employing contrastive learning to
maximize agreement between set embeddings. In fine-tuning, it
composes sets of data by classes, generating class prototypes using
the set encoder to initialize the classifier’s parameters. These pro-
totypes enable rapid adaptation for further few-shot fine-tuning.
However, our approach differs in that we perform the adaptation to
refine the encoder for the target domain, while Set-SimCLR primar-
ily focuses on making the following classifier adaptable to few-shot
fine-tuning. Our evaluation (Section 4.6.1) demonstrates the supe-
rior performance of our approach in mobile sensing scenarios.

3 Method
We present SelfReplay, an approach for adapting self-supervised
models to diverse domains via adaptive meta-task replay. In Sec-
tion 3.1, we formulate the domain shift problem that arises when
self-supervised models are deployed to different target domains.
Our solution, illustrated in Figure 3, incorporates two key strategies:
(i) Meta-Self-Supervised Learning (MetaSSL) to pre-train domain-
adaptive weights, and (ii) Replayed Self-Supervised Learning (Re-
playSSL) to adapt pre-trained models to the target domain with
only few samples. We detail the design of MetaSSL in Section 3.2
and ReplaySSL in Section 3.3.
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3.1 Problem Formulation
Domain Shift from Pre-Training. Pre-training generates repre-
sentation models using large-scale data, but obtaining correspond-
ing labels is often expensive or restricted. For example, in activity
recognition, asking users to report their activity every hour is costly.
In health applications, labels often contain sensitive personal in-
formation (e.g., medical diagnoses and mental health assessments),
sometimes making label acquisition infeasible. To address this, mod-
els are pre-trained on unlabeled data before being adapted to specific
tasks. Existing large-scale efforts have produced models trained
solely on unlabeled datasets, such as Google’s 40 million hours of
physiological data [39] and UK-Biobank’s 700,000 person-days of
accelerometer data [68].

We target scenarios where users utilize the pre-trained models
for their own applications. Pre-trained models provide rich feature
representations, enabling users to train models with only a small
amount of data. For example, when setting up a fitness app, a
smartphone might prompt the user to stay, walk, or run for 30
seconds, allowing themodel to fine-tune running detectionwith just
a few labeled samples. Similarly, for gesture recognition, leveraging
pre-trained models trained on UK-Biobank, a user might define and
repeat a custom hand gesture a few times for fine-tuning.

To summarize, our scenario consists of three steps: (i) a model is
pre-trained on a large amount of unlabeled data, (ii) it is fine-tuned
with only a few labeled samples, and (iii) it is evaluated on test data.
Pre-training occurs on a source domain 𝐷𝑠 , which is distinct from
the target domain 𝐷𝑡 used for fine-tuning and testing.
Availability of Domain Labels. During pre-training, we assume
access to domain labels within 𝐷𝑠 . Domain labels (e.g., device type,
or anonymized user identifiers) are generally available as meta-
data, allowing us to distinguish data from different sources without
exposing sensitive information.
Few-Shot Fine-Tuning. After deployment, users fine-tune the
pre-trained model using their own data from the target domain 𝐷𝑡 .
We target scenarios where users can easily collect a small amount
of labeled data, such as by repeating a few representative actions
per class, to customize the model for their specific needs. Therefore,
we assume that only a few labeled samples (e.g., 10 per class) are
available for fine-tuning.

3.2 Meta-Self-Supervised Learning
We propose an approach to adapt self-supervised models to a target
domain, even when only a few data samples are available. To enable
this, we enhance self-supervised pre-training to produce domain-
adaptive weights, allowing themodel to alignwith a specific domain
using minimal data.

Our approach, Meta-Self-Supervised Learning (MetaSSL), pre-
pares models for adaptation by combining meta-learning with
self-supervised objectives. Meta-learning [2], often referred to as
“learning to learn,” trains models to be fine-tuned effectively in new
conditions with a few data. Inspired by its efficacy in traditional
supervised settings, we design MetaSSL as a method for “learning
to self-supervise.” MetaSSL produces a model that is adaptive to
few-shot self-supervised learning. To further adapt the model, we
introduce an additional step that replays self-supervised training
using data from the target domain (Section 3.3).

Algorithm 1 Domain-Specific Task Generation
Inputs: Pre-train dataset 𝑋 , number of tasks𝑀 , and number of
domain-specific tasks𝑀dom < 𝑀

1: Initialize empty task set T
2: for 𝑖 ∈ {1, 2, ..., 𝑀} do
3: if 𝑖 ≤ 𝑀dom then
4: Select domain 𝑑𝑖 from 𝐷𝑠 uniformly at random
5: Select 𝐾 samples with domain 𝑑𝑖 randomly:

S𝑖 = {𝑥 ∈ 𝑋 | dom(𝑥) = 𝑑𝑖 } such that |S𝑖 | = 𝐾
6: Select another set of 𝐾 samples with 𝑑𝑖 randomly:

Q𝑖 = {𝑥 ∈ 𝑋 | dom(𝑥) = 𝑑𝑖 } such that |Q𝑖 | = 𝐾
7: else
8: Select 𝐾 samples randomly:

S𝑖 = {𝑥 ∈ 𝑋 } such that |S𝑖 | = 𝐾
9: Select another set of 𝐾 samples randomly:

Q𝑖 = {𝑥 ∈ 𝑋 } such that |Q𝑖 | = 𝐾
10: end if
11: T𝑖 ← (S𝑖 ,Q𝑖 )
12: Update a set of task T ← T ∪ T𝑖
13: end for
14: return Task set T

Our implementation of MetaSSL builds on Model-Agnostic Meta-
Learning (MAML) [10], which optimizes a model’s initial weights
for further updates with minimal data, making it well-suited to our
approach. Additionally, MAML’s flexibility allows MetaSSL to be
applied across various self-supervised learning objectives [6, 41, 52]
(Section 4.6.3). We detail theMetaSSL procedure in the next sections.
Domain-Specific Task Generation. MetaSSL simulates few-shot
self-supervised learning through a set of tasks, T , that emulate
training and testing on a limited data. By default, each task T𝑖
involves optimizing domain-specific weights 𝜃𝑖 on a small dataset,
the support set S𝑖 . The optimized weights are then evaluated on
a separate query set Q𝑖 . The evaluation results from all tasks are
combined to compute a single loss, which guides the optimization
of the model’s global weights 𝜃 and reinforces its ability to adapt
effectively across tasks.

Each task T𝑖 is configured to operate within a single domain 𝑑𝑖 ,
selected randomly from the source domain 𝐷𝑠 using domain labels.
This setup enables each task to simulate few-shot self-supervised
learning and test within a specific domain, thus facilitating domain-
specific weight optimization. We refer to these as domain-specific
tasks. Following prior work [12], we introduce a small proportion
(e.g., 30%) of multi-conditioned tasks—tasks generated from ran-
dom, domain-agnostic samples—to reduce the risk of overfitting to
particular domains. These multi-conditioned tasks, formed from
mixed-domain samples, act as synthetic domains that add diversity
to the training. Algorithm 1 summarizes our domain-specific task
generation process.
MetaSSL Optimization. MetaSSL pre-trains domain-adaptive
weights by simulating few-shot self-supervised learning tasks
within domains. Each domain-specific task T𝑖 , generated from a
single domain, trains domain-specific weights 𝜃𝑖 on a support set
S𝑖 and evaluates performance on a corresponding query set Q𝑖 .
Both training and evaluation use a self-supervised loss function
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Algorithm 2Meta-Self-Supervised Learning (MetaSSL)
Inputs: Pre-train dataset 𝑋 , number of tasks𝑀 , number of
domain-specific tasks𝑀dom, model weights 𝜃 , and self-supervised
loss function LSSL

1: for epochs do
2: T = TaskGeneration(𝑋,𝑀,𝑀dom) ⊲ Algorithm (1)
3: for T𝑖 = (S𝑖 ,Q𝑖 ) ∈ T do
4: Optimize task-specific weights using S𝑖 :

𝜃𝑖 ← 𝜃 − 𝛼∇𝜃LSSL (𝜃 ;S𝑖 )
5: Evaluate loss of updated model on Q𝑖 :

Compute LSSL (𝜃𝑖 ;Q𝑖 )
6: end for
7: Update weights 𝜃 ← 𝜃 − 𝛽∇𝜃

∑
𝑖 LSSL (𝜃𝑖 ;Q𝑖 )

8: end for

LSSL to optimize task-specific weights to the domain. For example,
when contrastive learning [6] is used, the loss function applied to
S𝑖 in a domain-specific task (same for Q𝑖 ) is:
LSSL (𝜃𝑖 ;S𝑖 = {𝑥 | dom(𝑥) = 𝑑𝑖 }) =

−
∑︁

𝑥 𝑗 ∈S𝑖
log

(
𝑒
sim(𝑓𝜃𝑖 (𝑥

′
𝑗 ),𝑓𝜃𝑖 (𝑥

′′
𝑗 ) )

𝑒
sim(𝑓𝜃𝑖 (𝑥

′
𝑗
),𝑓𝜃𝑖 (𝑥

′′
𝑗
) ) +∑

𝑘≠𝑗 𝑒
sim(𝑓𝜃𝑖 (𝑥

′
𝑗
),𝑓𝜃𝑖 (𝑥𝑘 ) )

)
,

(1)

where the parameterized encoder 𝑓𝜃𝑖 is optimized to maximize the
similarity between two augmented views of the same data point
(𝑥 ′
𝑖
and 𝑥 ′′

𝑖
) while minimizing similarity with other samples 𝑥𝑘 ,

i.e., negative samples. Here, S𝑖 contains samples from a specific
domain 𝑑𝑖 when it is from a domain-specific task, ensuring that the
contrastive loss is computed within a single domain. Note that our
framework is agnostic to specific self-supervised methods, allow-
ing LSSL to be replaced with various objectives (e.g., contrastive
predictive coding [41] and multi-task learning [52]).

After evaluating the domain-specific weights on each Q𝑖 , results
are aggregated across tasks to optimize the global model weights 𝜃 .
This iterative process results in global model weights that are highly
adaptable for few-shot self-supervised learning across different
domains. Algorithm 2 outlines the full procedure of MetaSSL. 𝛼 and
𝛽 denote the learning rates for domain-specific training of 𝜃𝑖 and
global model weights 𝜃 update.
Domain-Invariant Negative Queue. In MetaSSL, self-supervised
learning is performed within domain-specific tasks, which results
in small batch sizes. This poses a challenge when using contrastive
learning [6], a popular self-supervised learning approach, as the
objective. In contrastive learning, model performance depends on
sufficient negative samples. Thus, it relies on large batch sizes
(e.g., 1024) to ensure effective training [19]. However, our MetaSSL
involves very small batches (e.g., 128), limiting the available negative
samples.

To address this, we propose a Domain-Invariant Negative Queue
to supplement the small batch sizes across domain-specific tasks.
We implement a shared negative queueN = {𝑛1, 𝑛2, ..., 𝑛𝑘 } accessi-
ble to each task, where 𝑘 is defined as a size sufficient for effective
contrastive learning (e.g., 1024). When contrastive learning is ap-
plied within a task, it draws negatives not only from the current
task batch but also from the shared queue N , enriching the pool of

negatives for training. Building on Equation 1, we define the up-
dated contrastive loss function with the Domain-Invariant Negative
Queue as follows:

LSSL (𝜃𝑖 ;S𝑖 = {𝑥 | dom(𝑥) = 𝑑𝑖 },N) =

−
∑︁

𝑥 𝑗 ∈S𝑖
log

(
𝑒
sim(𝑓𝜃𝑖 (𝑥

′
𝑗 ),𝑓𝜃𝑖 (𝑥

′′
𝑗 ) )

𝑒
sim(𝑓𝜃𝑖 (𝑥

′
𝑗
),𝑓𝜃𝑖 (𝑥

′′
𝑗
) ) + 𝑍 𝑗

)
,

where 𝑍 𝑗 =
∑︁
𝑘≠𝑗

𝑒
sim(𝑓𝜃𝑖 (𝑥

′
𝑗 ),𝑓𝜃𝑖 (𝑥𝑘 ) ) +

∑︁
𝑛∈N

𝑒
sim(𝑓𝜃𝑖 (𝑥

′
𝑗 ),𝑓𝜃𝑖 (𝑛) ) .

(2)

The queue N must provide effective negative samples across
different domain-specific tasks. Hard negatives improve contrastive
learning [19], introducing challenging examples that strengthen
model robustness. Thus, we design the elements in N to function
as domain-invariant hard negatives. This introduces a challenge, as
randomly sampling negatives from the source domain 𝐷𝑠 fails to
consistently yield hard negatives for different domains, and identify-
ing hard negatives for each domain-specific task is computationally
costly.

To overcome this, we define the negative samples in N as train-
able variables [21] and propose an adversarial training approach to
optimize them as domain-invariant hard negatives. In this setup,
the elements of N are updated adversarially during each iteration
of MetaSSL to maximize domain-specific losses, effectively serving
as general challenging examples across different domains. The el-
ements in N are updated when the global weights 𝜃 are updated,
following the aggregation of evaluation results from each query set
Q⟩ . The optimization of N follows a min-max problem:

argmax
N

min
𝜃

∑︁
𝑖

LSSL (𝜃𝑖 ;Q𝑖 = {𝑥 | dom(𝑥) = 𝑑𝑖 },N). (3)

Our Domain-Invariant Negative Queue enables contrastive learn-
ing within each domain-specific task by using an enriched pool of
negative samples, even with small batch sizes. Later, in the target-
side adaptation step, where target domain data is limited, the trained
queue N is deployed alongside the model to serve as additional
negative samples for the adaptation.

3.3 Replayed Self-Supervised Learning
The models pre-trained with MetaSSL are deployed to users, where
each user’s domain is considered a target domain 𝐷𝑡 . Although
these models are designed to be domain-adaptive, standard fine-
tuning alone fails to adapt them to target domains. Standard fine-
tuning relies on few-shot supervised learning, whereas MetaSSL
pre-trains models specifically for few-shot self-supervised learning,
which does not align with the supervised objective. Consequently,
an additional adaptation step is needed to align the pre-trained
model with the target domain.

We propose Replayed Self-Supervised Learning (ReplaySSL) as
the adaptation method for aligning models to target domains. Re-
playSSL replays the meta-learned self-supervised task as an adapta-
tion step before supervised fine-tuning using the few-shot data set
aside for fine-tuning. This procedure aligns the model more closely
with the target domain, creating a personalized model.
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ReplaySSL adapts the pre-trained weights 𝜃 using the few-shot
fine-tuning data 𝑆 from the target domain 𝐷𝑡 with the same self-
supervised learning objective used during MetaSSL, LSSL. This
adaptation is completed in a few steps (e.g., 10) with a fixed learning
rate 𝛼 , as formulated in the following equation:

𝜃 ← 𝜃 − 𝛼∇𝜃LSSL (𝜃 ; 𝑆 = {𝑥 | dom(𝑥) = 𝐷𝑡 }) . (4)

If LSSL is defined as a contrastive learning loss, using the nega-
tive queue N trained from MetaSSL, the following optimization is
applied:

𝜃 ← 𝜃 − 𝛼∇𝜃LSSL (𝜃 ; 𝑆 = {𝑥 | dom(𝑥) = 𝐷𝑡 },N) . (5)

Importantly, ReplaySSL is effective only when coupled with
MetaSSL. Replaying self-supervised learning without MetaSSL risks
damaging the pre-trained model, as training on few-shot data of-
ten leads to an overfitted representation and fails to produce a
generalizable model. MetaSSL addresses this by making the model
adaptive to few-shot self-supervised settings, mitigating overfit-
ting through domain-specific tasks structured within meta-learning.
This synergy between MetaSSL and ReplaySSL is the key aspect of
SelfReplay, and we validate their combined effectiveness through
detailed ablation studies in Section 4.6.7.

After ReplaySSL, supervised learning fine-tunes themodel on the
downstream task. We apply linear evaluation protocol for this fine-
tuning: only the classification head is trained, while the encoder
remains frozen. This final, fine-tuned model is ready for use in the
user application.

4 Experiments
4.1 Datasets
We evaluate SelfReplay on mobile sensing benchmarks across hu-
man activity recognition, gesture recognition, and stress level de-
tection tasks. Each dataset has different domains of users or device
positions. Our experiments assess performance under domain shift
when self-supervised models are fine-tuned on different target do-
mains. The following datasets are used:
ICHAR [14] comprises inertial measurement unit (IMU) data for
classifying nine types of daily activities, such as walking, running,
and stair climbing. Data was collected from ten participants using
various mobile devices (seven smartphones and three watches).
Each participant is treated as a unique domain.
HHAR [56] is designed for classifying six human activities col-
lected from nine users with a combination of four smartwatches
and eight smartphones. We define domains based on distinct user-
device pairs.
PAMAP2 [50] classifies 12 different activity types using data col-
lected from IMUs placed on three body locations: the wrist, chest,
and ankle. Domains are divided by device positions.
DSA [1] encompasses a wide array of 19 daily and sports activities
data, gathered from eight participants wearing five IMUs on the
torso, arms, and legs. We define domains based on device positions.
NinaproDB5 [44] classifies hand gestures using 16-channel Sur-
face Electromyographic (sEMG) signals. We use twelve gestures
from Exercise A, focusing on basic finger movements as in prior
work [5]. Domains are defined based on individual users (Ses-
sion 4.6.1) and session variations (Session 4.6.4), where sessions
represent different recordings that introduce temporal variability.

WESAD [53] classifies stress levels across neutral, stress, and
amusement states. Physiological and motion data were collected
from fifteen participants using wrist- and chest-worn devices. We
used only the chest Electrocardiogram (ECG) signals, the most reli-
able modality for stress detection [53]. Domains are defined based
on individual users.
Opportunity [51] captures motion sensor recordings of users per-
forming daily activities. We use accelerometer data from the right
wrist to classify four primitive activities: standing, walking, sitting,
and lying. To evaluate temporal domain shift, we define domains
based on session variations, where each session corresponds to a
distinct recording instance.

4.2 Data Preprocessing
For the human activity recognition datasets, we segmented data
using a fixed window size of 256 with an overlap of 128. We stan-
dardized each dataset to a range of -1 to 1, following data processing
settings from prior work [14]. We focused exclusively on 3-channel
accelerometer data from all sources to reproduce existing base-
lines [17] and excluded domains with fewer than 500 samples to
ensure sufficient training data. As a result, we used 20 domains for
HHAR, representing combinations of five users and four devices.
For WESAD, we applied a window size of 10 seconds with a sliding
interval of 0.25 seconds, creating approximately 7,000 windows
to reduce the computational cost, following a prior study [3]. For
NinaproDB5, we used a window size of 60 (0.3 seconds) with a 50%
overlap, following the common practice of using small windows
for sEMG data [25, 48].

To split data for self-supervised pre-training, fine-tuning, and
testing, we followed the approach of previous studies on self-
supervised learning for sensing [17]. Specifically, we allocated 70%
of the data for pre-training—7% for validation and 63% for training—
and used the remaining 30% for few-shot fine-tuning. In the few-
shot setting, we sampled a few instances per class (e.g., 1, 2, 5, or
10 samples). The remaining data was split evenly for validation
and testing. We ensured no temporal overlap between samples in
different splits, preserving data independence.

For our evaluation, we composed pre-training in domains sep-
arate from fine-tuning and testing. We prepared fine-tuning and
testing sets for each target domain and composed a pre-training
dataset by sampling exclusively from other domains. This process
was repeated across all target domains to ensure a consistent setup.

4.3 Baselines
We benchmark SelfReplay against baselines chosen for their efficacy
in mitigating domain shift between the unsupervised pre-training
and the following fine-tuning. Note that most existing domain
generalization [36, 45, 47] and adaptation [4, 14, 60, 73] methods
assume labeled data for pre-training and thus they do not apply to
our scenario. We found two approaches that fit our scenario.
DARLING [71] is a domain generalization approach tailored for
contrastive learning. DARLING optimizes the loss by using intra-
domain negative samples, encouraging discrimination within each
domain. This process enables the model to learn domain-invariant
features that can be fine-tuned across different domains.
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Table 1: F1-scores of SelfReplay and baseline methods for 10-shot fine-tuning across six datasets, with the highest scores in bold
and the second-highest underlined.

Domain: User Domain: Position

Pre-train Fine-tune ICHAR HHAR NinaproDB5 WESAD PAMAP2 DSA Avg.

SimCLR [57] Linear eval. 0.745 ± 0.024 0.866 ± 0.008 0.446 ± 0.012 0.848 ± 0.024 0.549 ± 0.016 0.391 ± 0.006 0.641 ± 0.015

End-to-end 0.663 ± 0.028 0.836 ± 0.029 0.405 ± 0.032 0.869 ± 0.023 0.589 ± 0.046 0.253 ± 0.022 0.602 ± 0.030

Set-SimCLR [30] Linear eval. 0.758 ± 0.010 0.814 ± 0.004 0.154 ± 0.012 0.813 ± 0.012 0.487 ± 0.011 0.283 ± 0.007 0.552 ± 0.009

End-to-end 0.747 ± 0.029 0.848 ± 0.016 0.244 ± 0.034 0.882 ± 0.016 0.573 ± 0.015 0.165 ± 0.012 0.577 ± 0.020

DARLING [71] Linear eval. 0.749 ± 0.019 0.831 ± 0.003 0.303 ± 0.013 0.789 ± 0.051 0.551 ± 0.012 0.399 ± 0.008 0.604 ± 0.018

End-to-end 0.656 ± 0.019 0.844 ± 0.026 0.324 ± 0.028 0.860 ± 0.030 0.580 ± 0.042 0.258 ± 0.024 0.587 ± 0.028

SelfReplay (ours) 0.839 ± 0.023 0.912 ± 0.009 0.464 ± 0.021 0.883 ± 0.018 0.680 ± 0.027 0.632 ± 0.014 0.735 ± 0.019

Set-SimCLR [30] is an unsupervised meta-learning method that
employs a set encoder to enhance the agreement between aug-
mented sample sets originating from identical sources. Both an in-
stance encoder and the set encoder are trained through contrastive
learning. In fine-tuning, the set encoder generates class prototypes
from sample sets by class and is used to set the initial weights of
the classifier. The classifier, adjusted by the prototypes, facilitates
rapid adaptation to novel conditions with the initial weights.

4.4 Implementation
While SelfReplay serves as a model- and method-agnostic approach
applicable to various self-supervised learning methods, our pri-
mary implementation was based on SimCLR [6] to ensure a fair
comparison with baselines. This selection aligns with DARLING
and Set-SimCLR, which were also presented based on contrastive
learning. All baseline models use the same network architecture as
SelfReplay to maintain consistency.

Our backbone network is implemented with 1D convolutional
neural networks (CNNs), followed by a projection head consisting
of a fully connected layer. The architecture and hyperparameters
are based on SimCLR practices for sensing tasks as described in
a previous study [17]. We optimized hyperparameters through
a grid search: for pre-training, we explored learning rates from
{0.0001, 0.0005, 0.001, 0.005} and weight decays from {0, 0.0001}.
Baseline batch sizes were tested at {1024, 2048, 4096}, while SelfRe-
play batches were constructed within each domain-specific task,
resulting in smaller batch sizes. During fine-tuning, we used a fixed
learning rate of 0.005 for linear evaluation and 0.001 for end-to-end
fine-tuning. Our main evaluation used {1, 2, 5, 10}-shot samples per
class, with additional tests on smaller sample sizes. Using the Adam
optimizer, we trained models for 100 epochs in pre-training and 20
epochs in fine-tuning.

For MetaSSL, we optimized the meta-learning rate (𝛽) and weight
decay within the same range as the baselines, with additional tun-
ing for task-specific learning rates (𝛼) from {0.001, 0.005, 0.01} and
inner iteration steps from {10, 20, 30}. ReplaySSL followed the same
parameter setup as MetaSSL. We fixed the number of domain-
specific tasks at eight, multi-conditioned tasks at four, and task size
at 128. Since meta-learning requires extended training for conver-
gence, we ran MetaSSL for 5,000 epochs. For the Domain-Invariant
Negative Queue, we tested sizes of {1024, 2048, 4096}, selecting the

optimal size to align with the SimCLR baseline batch size. Nega-
tive queue elements were optimized using an adversarial objective
(Equation 3) with the Adam optimizer and a learning rate of 1. We
implemented all methods in PyTorch and conducted training on
eight NVIDIA TITAN Xp GPUs.

4.5 Evaluation Protocols and Metric
We employed a leave-one-domain-out setting [45]. For each domain
in the dataset, we designated it as the target domain for fine-tuning
and testing, while all other domains were used for pre-training. This
evaluation was conducted across all domains, with each domain
rotated as the target, and the results were averaged. We selected
a few samples per class (e.g.,1, 2, 5, and 10) for fine-tuning and
evaluated performance within the same target domain.

We applied two fine-tuning protocols: linear and end-to-end
fine-tuning. Linear evaluation served as the primary protocol for
SelfReplay, treating the pre-trained encoder as a frozen feature
extractor and training only a linear classification layer. Since SelfRe-
play’s ReplaySSL refines the encoder parameters, we also conducted
end-to-end fine-tuning for baseline methods, updating the entire
network without freezing the encoder. This ensured a fair compari-
son by enabling encoder parameter updates in both cases.

All evaluations were performed using five random seeds, and
the results are reported as the mean and standard deviation. To
assess performance, we used the macro-averaged F1-score, which
is well-suited for handling class imbalances in the data.

4.6 Results
4.6.1 Main Evaluation. Table 1 shows the performance of SelfRe-
play compared with domain generalization and domain adaptation
baselines, using 10-shot fine-tuning. Bolded values indicate the
highest scores in each column. SelfReplay consistently achieves
the highest F1 scores across all datasets. The results indicate that
baseline models struggle to capture domain-specific features as
they rely on weights pre-trained in the source domain. While end-
to-end fine-tuning occasionally improves performance, its impact
varies widely depending on the dataset, likely due to few-shot fine-
tuning’s sensitivity. Baselines do not fully benefit from end-to-end
fine-tuning without an adaptive pre-training design. In contrast,
SelfReplay achieves an average F1-score improvement of 9.4%p,
establishing it as a robust domain adaptation method.
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Figure 4: Average F1-scores of SelfReplay and the baselines across different shot numbers (1, 2, 5, and 10).

Table 2: F1-scores of SelfReplay based on different self-supervised learning methods (SimCLR, CPC, and Multi-Task Learning).
The highest scores are in bold.

Domain: User Domain: Position

Pre-train Fine-tune ICHAR HHAR PAMAP2 DSA Avg.

SimCLR [57] Linear eval. 0.745 ± 0.024 0.866 ± 0.008 0.549 ± 0.016 0.391 ± 0.006 0.638 ± 0.014

End-to-end 0.663 ± 0.028 0.836 ± 0.029 0.589 ± 0.046 0.253 ± 0.022 0.585 ± 0.031

SelfReplaySimCLR (ours) 0.839 ± 0.023 0.912 ± 0.009 0.680 ± 0.027 0.632 ± 0.014 0.735 ± 0.019

CPC [18] Linear eval. 0.765 ± 0.016 0.846 ± 0.005 0.379 ± 0.017 0.371 ± 0.005 0.590 ± 0.011

End-to-end 0.816 ± 0.013 0.849 ± 0.021 0.484 ± 0.026 0.352 ± 0.017 0.625 ± 0.019

SelfReplayCPC (ours) 0.826 ± 0.008 0.871 ± 0.005 0.527 ± 0.017 0.419 ± 0.008 0.661 ± 0.009

Multi-Task [52] Linear eval. 0.716 ± 0.010 0.877 ± 0.003 0.630 ± 0.003 0.456 ± 0.004 0.670 ± 0.005

End-to-end 0.718 ± 0.019 0.865 ± 0.030 0.636 ± 0.015 0.378 ± 0.021 0.649 ± 0.021

SelfReplayMultiTask (ours) 0.794 ± 0.015 0.891 ± 0.005 0.659 ± 0.016 0.578 ± 0.011 0.731 ± 0.012

4.6.2 Performance across Different Shots. We evaluated the perfor-
mance of SelfReplay compared with the baselines by fine-tuning
with a smaller number of samples (e.g., 1, 2, and 5 shots per class).
Figure 4 shows the results. For all datasets and shot settings, Self-
Replay consistently achieves the best performance, with improve-
ments of 5.9%, 14.3%, 12.1%, and 9.4% over the second-best method,
respectively. These results demonstrate the robustness of our ap-
proach across varying few-shot scenarios, indicating that SelfReplay
remains effective in data-scarce mobile sensing applications.

4.6.3 Integration with Self-Supervised Learning Methods. We de-
signed SelfReplay to be agnostic to specific self-supervised learning
methods. For evaluation, we implemented SelfReplay with two
additional self-supervised objectives: contrastive predictive cod-
ing (CPC) [41] (SelfReplayCPC) and multi-task learning [52] (Sel-
fReplayMultiTask). Each version replaces the self-supervised loss
function LSSL (from Equation 1) with the objective corresponding
to its respective method, CPC or multi-task learning. CPC defines
an objective for predicting the embedding of a future window based
on past embeddings, contrasting the true future window against
other candidates. Multi-task learning assigns the model several

tasks focused on identifying data transformations and promoting
shared feature learning across tasks.

In implementing SelfReplayCPC and SelfReplayMultiTask along
with their baselines, we followed the same architecture and param-
eter tuning settings from prior assessments [17]. For parameter
tuning, we used the same search settings as outlined in Section 4.4.
The only adjustment was in batch size, which was reduced for CPC
and multi-task learning, searching across {64, 128, 256} for optimal
results. Since CPC and multi-task learning were primarily designed
for human activity recognition [17], we focused our evaluations on
four relevant datasets.

Table 2 presents the results across different self-supervised learn-
ing methods. SelfReplay consistently improved performance with
average gains of 4.4%p and 6.1%p for CPC and multi-task learn-
ing, respectively. Performance gains varied depending on the self-
supervised method used on the same dataset, which we analyze
further in Section 4.6.9. Additionally, Figure 5 illustrates SelfReplay’s
effectiveness across 𝑘-shot settings, underscoring its robustness.
These results demonstrate that SelfReplay can be applied flexibly
across different applications, adapting to the most effective self-
supervised learning method for each setting.
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Figure 5: Average F1-scores of SelfReplay based on different self-supervised learning methods (SimCLR, CPC, and multi-task
learning) across different shot numbers (1, 2, 5, and 10).

Table 3: F1-scores of SelfReplay and baseline methods for 10-
shot fine-tuning on two datasets, where domains are defined
by sessions to evaluate temporal domain shift. The highest
scores are in bold and the second-highest are underlined.

Domain: Session

Pre-train Fine-tune Opportunity NinaproDB5

SimCLR [57] Linear eval. 0.427 ± 0.007 0.676 ± 0.006

End-to-end 0.458 ± 0.001 0.693 ± 0.004

Set-SimCLR [30] Linear eval. 0.438 ± 0.009 0.206 ± 0.003

End-to-end 0.445 ± 0.009 0.287 ± 0.007

DARLING [71] Linear eval. 0.424 ± 0.004 0.657 ± 0.005

End-to-end 0.456 ± 0.010 0.686 ± 0.003

SelfReplay (ours) 0.476 ± 0.008 0.724 ± 0.003

4.6.4 Robustness to Temporal Domain Shift. We evaluate an ex-
tended domain scope by testing SelfReplay on temporal shifts within
the same user and device. In this setting, sessions serve as temporal
domains, capturing changes in user behavior and environmental
conditions over time [54].

We used two datasets, Opportunity and NinaproDB5, provid-
ing session separation with distinct measurement times. Since we
focus on sessions within a single user, the available pre-training
data was limited. To address this, we reduced the window gener-
ation step size to 12.5% and expanded the batch size search space
to {64, 128, 256, 1024, 2048, 4096} to find an optimal configuration.
Experiments were conducted on a randomly selected user.

Table 3 shows SelfReplay outperformed all baselines on both
datasets. In NinaproDB5, using sessions as domains yielded higher
performance than using users as domains (Section 4.6.1). Still, tem-
poral shifts persisted, and SelfReplay demonstrated the highest
robustness. Our findings indicate that SelfReplay can be effectively
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Figure 6: Average F1-scores of SelfReplay and baselines with
and without noisy domain labels (50%) during pre-training.

deployed in continuous sensing systems, dynamically adapting to
temporal changes through fine-tuning with recent data.

4.6.5 Robustness to Noisy Domain Labels. We assume that MetaSSL
has access to domain labels during pre-training. To assess the impact
of domain labels, we introduced noise into 50% of the domain labels
by assigning incorrect values and evaluated MetaSSL on the ICHAR
dataset with SimCLR as the base self-supervised method.

Figure 6 shows that with noisy domain labels, SelfReplay’s F1
score decreased modestly from 0.839 to 0.819, indicating that label
quality does influence performance. Nonetheless, SelfReplay still
outperformed baseline methods, whose highest score was 0.758.
These findings suggest that while accurate domain labels are prefer-
able, the meta-learning framework based on small meta-tasks keeps
SelfReplay robust even under noisy conditions.

4.6.6 Robustness to Model Size. To assess how larger models be-
have under domain shift, we evaluated the effect of model size in
our setting by increasing the number of layers in our model, which
expanded the parameter count from 148.6K to 1.4M. Figure 7 illus-
trates how larger models affect fine-tuning performance in a new
domain compared with smaller models on the ICHAR dataset.
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Table 4: F1-score comparison of SelfReplay against 1) the baseline self-supervised learning method, 2) SelfReplay without
meta-learning, and 3) SelfReplay without replay. 10-shot fine-tuning is performed.

Components Domain: User Domain: Position

MetaSSL ReplaySSL ICHAR HHAR NinaproDB5 WESAD PAMAP2 DSA Avg.
✗ ✗ 0.745 ± 0.024 0.866 ± 0.008 0.446 ± 0.012 0.848 ± 0.024 0.549 ± 0.016 0.391 ± 0.006 0.641 ± 0.014

✗ ! 0.731 ± 0.029 0.638 ± 0.044 0.436 ± 0.018 0.853 ± 0.021 0.464 ± 0.063 0.294 ± 0.011 0.569 ± 0.037

! ✗ 0.792 ± 0.047 0.880 ± 0.022 0.464 ± 0.021 0.882 ± 0.018 0.677 ± 0.021 0.620 ± 0.012 0.719 ± 0.026

! ! 0.839 ± 0.023 0.912 ± 0.009 0.464 ± 0.021 0.883 ± 0.018 0.680 ± 0.027 0.632 ± 0.014 0.735 ± 0.019

Table 5: F1-score comparison of SelfReplay (w/ Negative Queue) against the baseline self-supervised learning method and
SelfReplay without the Domain-Invariant Negative Queue (w/o Negative Queue). Results are based on 10-shot fine-tuning.

Domain: User Domain: Position

ICHAR HHAR NinaproDB5 WESAD PAMAP2 DSA Avg.
Baseline 0.745 ± 0.024 0.866 ± 0.008 0.446 ± 0.012 0.848 ± 0.024 0.549 ± 0.016 0.391 ± 0.006 0.641 ± 0.014

w/o Negative Queue 0.836 ± 0.011 0.903 ± 0.004 0.449 ± 0.018 0.879 ± 0.020 0.639 ± 0.030 0.526 ± 0.019 0.705 ± 0.017

w/ Negative Queue 0.839 ± 0.023 0.912 ± 0.009 0.464 ± 0.021 0.883 ± 0.018 0.680 ± 0.027 0.632 ± 0.014 0.735 ± 0.019
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Figure 7: Average F1-scores of SelfReplay and baselines for a
small (148.6K) model versus a large (1.4M) model.

Our findings reveal a notable trend: larger models exhibited
increased overfitting to the source domain for all baselines, leading
to worse fine-tuning performance on the target domain. In contrast,
SelfReplay maintained the performance, demonstrating robustness
to domain shift even in a large model.

These results suggest that SelfReplay effectively mitigates do-
main shift regardless of model size. In particular, as foundation
models for sensing applications are expected to be large, our find-
ings indicate that SelfReplay can enhance their generalizability
across domains.

4.6.7 Ablation Study: MetaSSL and ReplaySSL. We conducted an
ablation study to examine the contributions of the key components
of SelfReplay: MetaSSL and ReplaySSL. We assessed their individual
and combined impact by comparing SelfReplay’s performance with
and without these components.

Table 4 shows the results. A key observation is that using Re-
playSSL alone, without MetaSSL, leads to a significant performance
drop, even falling below the baseline. This suggests that applying
self-supervised learning on a limited target domain dataset can
lead to overfitting, distorting the pre-trained model weights. This
finding underscores MetaSSL’s role as the essential component that
enables effective adaptation through ReplaySSL.

With MetaSSL, SelfReplay outperforms the baseline, even with-
out ReplaySSL. This result indicates that self-supervised meta-
learning promotes meaningful feature learning, which we attribute
to meta-learning’s capacity to capture transferable features that sup-
port effective adaptation. By effectively “learning to learn,” MetaSSL
enhances the model’s ability to leverage generalizable features
across domains, which provides a foundation for rapid adaptation
with limited data.

Combining MetaSSL and ReplaySSL ultimately achieves the best
performance, showing that the adaptation step further enhances
the model. This highlights the synergistic value of using MetaSSL
and ReplaySSL together.

4.6.8 Ablation Study: Domain-Invariant Negative Queue. We con-
ducted an ablation study to assess the impact of Domain-Invariant
Negative Queue in SelfReplaySimCLR. Without the domain-invariant
negative queue, negative samples are drawn exclusively from each
domain-specific task, resulting in a limited set of negatives. By con-
trast, using the negative queue allows access to over 1024 diverse
negative samples.

Table 5 shows the results. Although performance improves
without the negative queue relative to the baseline (SimCLR), the
Domain-Invariant Negative Queue further enhances performance,
with an average improvement of 3%p. This result indicates the ef-
fectiveness of the negative queue, as it mitigates the limitations of
small batch sizes within SelfReplay.

4.6.9 Domain Effect of Self-Supervised Learning Methods. Our eval-
uation of SelfReplay across different self-supervised learning meth-
ods (Section 4.6.3) revealed varying impacts depending on the
method. To investigate this difference, we examined how domain
shifts affect each method. We pre-trained models using SimCLR,
CPC, and multi-task learning in a leave-one-domain-out setup and
fine-tuned them in a novel domain (out-of-domain) setting. For
comparison, we created an in-domain baseline, where pre-training
and fine-tuning occur within the same domain. We measure each
method’s sensitivity to domain shifts by comparing performance
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Figure 8: Fine-tuning performance comparison between models pre-trained in-domain and out-of-domain settings. 10-shot
fine-tuning is performed for all settings. Performance drops between the settings are shown in red.

drops from in-domain with out-of-domain. We equalized data sizes
across both settings to ensure fair comparisons.

Figure 8 illustrates the results. Each self-supervised method ex-
periences a drop in performance when fine-tuned and tested on
out-of-domain data, highlighting the challenge of domain shifts.
However, the level of decline differs by method: CPC shows the
largest drop, with an average F1-score reduction of 19.15%p, while
SimCLR and multi-task learning have moderate decreases of 6.7%p
and 4.95%p, respectively.

These results indicate that the self-supervised learning method
influences a model’s sensitivity to domain shifts. CPC, which trains
the model to predict future segments, often learns patterns spe-
cific to the source domain. For example, a model pre-trained from
younger and active users might focus on a pattern of increasing
activity over time. When transferred to a domain with older users,
whose activity decreases over time, the CPC model struggles be-
cause its predictive patterns do not align with the new domain’s
temporal dynamics. In contrast, multi-task learning’s objective of
identifying data augmentations is less domain-specific. This knowl-
edge transfers more effectively between user groups, as recognizing
augmented characteristics (e.g., rotation) is independent of specific
user trends.

In summary, domain shifts generally lead to performance drops
during fine-tuning, with the degree of decline varying by a self-
supervised method. Our findings underscore the importance of
selecting suitable self-supervised methods for effective deployment
in heterogeneous mobile environments. We also stress that self-
supervised learning methods consider the effects of domain shift
across different settings.

4.6.10 MetaSSL Overhead. Unlike standard self-supervised learn-
ing methods that process the entire dataset in each epoch, MetaSSL
trains on small meta-tasks per epoch (e.g., 12 tasks with a size of
128). As a result, the model observes only a limited portion of the
dataset at a time. Therefore, we increased the number of epochs to
5000, which is higher than the standard SSL setting of 100 epochs,
to ensure MetaSSL observes enough data and converges. In this set-
ting, we measured the execution time and VRAM usage for MetaSSL
and standard SSL methods using a single NVIDIA TITAN XP GPU.
Experiments were conducted using the ICHAR dataset.

Although MetaSSL trains smaller data per iteration, its overall
training timewas longer due to the additional overhead ofmeta-task
construction, aggregation, and serial task-specific gradient updates
following the MAML implementation. As a result, the total runtime
increased from 3.7 minutes to 3.3 hours. VRAM usage increased

Figure 9: Testbed setups for on-device execution of SelfReplay
on three devices: Samsung Galaxy S20 Ultra (12GBRAM, left),
Raspberry Pi 4 (4GB RAM, middle), and Raspberry Pi Zero 2
W (512MB RAM, right).

slightly from 1.5GB to 1.6GB, asMetaSSLmaintains gradients across
multiple meta-tasks rather than just within mini-batches. The over-
head was more pronounced for CPC, where the runtime increased
from 23 minutes to 23 hours, and VRAM usage grew from 0.94GB
to 7.7GB. This was due to CPC’s reliance on large embedding vari-
ables, which MetaSSL maintains across meta-tasks. For multi-task
learning, the total runtime increased from 10.9 minutes to 4.3 hours,
and VRAM usage grew from 0.4GB to 1GB.

The source of overhead is our current MAML-based implementa-
tion, which is straightforward but processes meta-tasks sequentially.
It is important to note that MetaSSL is conducted on servers where
pre-training benefits from abundant resources. Meanwhile, to fur-
ther optimize training costs, more efficient meta-learning methods
such as Reptile [40] or parallelized meta-task updates could im-
prove efficiency. Additionally, refining task generation strategies
may further reduce computational overhead.

4.6.11 ReplaySSL Overhead. We aim to enable the practical de-
ployment of pre-trained models to users, particularly those with
resource-constrained mobile environments. To this end, we assess
the computational feasibility of SelfReplay for mobile devices, fo-
cusing on its user-side operations, ReplaySSL, and fine-tuning. We
performed on-device training with three edge devices (Figure 9):
a Samsung Galaxy S20 Ultra, a Raspberry Pi 4, and a Raspberry
Pi Zero 2 W. The Samsung Galaxy S20 Ultra had 12GB of RAM,
and on-device training was implemented via Termux [37], a Linux
terminal emulator for Android, to execute PyTorch-based training
code. The Raspberry Pi 4 had 4GB of RAM and runs Ubuntu as its
operating system. To simulate a more constrained environment, we
used a Raspberry Pi Zero 2 W with only 512MB of RAM; lacking
internal storage, we used flash memory as swap space.

Table 6 presents the overhead of ReplaySSL and fine-tuning,
measured independently across different self-supervised learning
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Table 6: Computational overhead of ReplaySSL followed by
fine-tuning across different self-supervised learning meth-
ods on three edge devices: Samsung Galaxy S20 Ultra, Rasp-
berry Pi 4, and Raspberry Pi Zero 2 W.

SimCLR CPC Multi-Task

Metric
Replay
SSL

Fine-
Tune

Replay
SSL

Fine-
Tune

Replay
SSL

Fine-
Tune

Galaxy S20 Ultra
Time (sec) 9.66 16.31 73.54 21.46 6.06 25.18
CPU (%) 669.29 595.47 589.54 565.60 584.50 480.28
Mem (MB) 83.38 89.29 339.90 36.86 99.84 48.41
Raspberry Pi 4
Time (sec) 33.62 21.64 330.29 54.87 20.04 40.37
CPU (%) 65.50 62.88 89.39 76.82 53.99 56.41
Mem (MB) 62.31 71.01 714.63 712.62 47.45 57.53
Raspberry Pi Zero 2 W (using flash memory for swap space)
Time (sec) 88.45 46.43 4539.86 126.35 58.66 73.88
CPU (%) 61.32 66.57 32.48 79.83 57.78 61.49
Mem (MB) 81.69 102.06 762.55 674.00 112.87 73.39

methods. On Samsung Galaxy S20 Ultra, all operations were com-
pleted in tens of seconds under the few-shot setting. Notably, Re-
playSSL with SimCLR or multi-task learning took under 10 seconds,
consuming under 100MB of memory—requiring even less time than
fine-tuning. Consequently, all user-side operations of SelfReplay
could be performed in under 30 seconds on the smartphone. Al-
though CPC required more resources, it was completed within 1.5
minutes while using approximately 340MB of memory. On Rasp-
berry Pi 4, processing times increased by roughly three to four
times compared to the smartphone; SimCLR and multi-task learn-
ing finished within one minute, and CPC took about six minutes, all
while using under 1GB of memory. Even on the highly constrained
Raspberry Pi Zero 2 W, SimCLR and multi-task learning remain
feasible in under two minutes, whereas CPC’s higher memory re-
quirements trigger frequent swapping, prolonging execution to
about 1.26 hours. Importantly, the adaptation step (ReplaySSL) is
needed only once per user after obtaining the deployed model. Our
findings confirm that end-users can conduct all necessary opera-
tions of SelfReplay on the device with manageable computational
overhead.

5 Discussion
5.1 Adapting to Changing Environments
We designed SelfReplay with a single domain adaptation step once
self-supervised models are deployed to users. However, data char-
acteristics within a single domain can change over time due to
changing environments. This implies that the adapted model might
not perform optimally as domain characteristics change continu-
ously. We anticipate the potential for domain adaptation through
ReplaySSL in such scenarios, as our adaptation step does not require
user labels. This allows us to continuously adapt the model using
the ongoing data stream from the user. Enhancing the efficiency
and effectiveness of this approach in such dynamic scenarios is a
direction for future work.

5.2 Expanding Domain Coverage
Our domain-specific task generation in MetaSSL is designed to
reflect target-domain characteristics by composing tasks based on
the same user or device information. In this approach, MetaSSL
relies on sufficiently diverse domains during pre-training to learn
effective adaptation strategies. If the pre-training data lack variety,
the model may fail to generalize, highlighting the need for large-
scale, diverse domain coverage.

As a future direction, more advanced meta-task generation ap-
proaches could be designed to handle the complexity of real-world
applications. For instance, incorporating tasks involving a broader
range of domains (e.g., different modalities and user contexts) would
enable pre-trained models to adapt to varying deployment environ-
ments. Another promising approach involves reducing MetaSSL’s
reliance on domain diversity by devising methods that maintain
generalizability with limited pre-training data, thus enhancing scal-
ability. Ultimately, refining task generation to capture real-world
variability will be a priority to ensure that MetaSSL remains robust
across real-world applications.

5.3 Extending Self-Supervised Methods
Our findings underscore the impact of domain shift on different self-
supervised learning methods. We observed that the improvement
from our domain adaptation varies with the type of self-supervised
learning method applied. This suggests a need for a deeper un-
derstanding of how domain shifts affect various self-supervised
learning approaches. Although our results shed light on the do-
main shift effects for establishedmethods such as SimCLR, CPC, and
multi-task learning, the behavior of numerous other self-supervised
learning methods [8, 9, 15, 22, 42, 66] under domain shifts remains
unexplored. Addressing this as future work is an essential step in
the field.

6 Conclusion
We explored the domain shift challenge in mobile sensing, where
self-supervised models are fine-tuned to heterogeneous domains.
To address this, we proposed SelfReplay, an adaptive meta-task
replay approach for self-supervised learning. SelfReplay combines
MetaSSL, which uses meta-learning to produce self-supervised
models prepared for domain adaptation, with ReplaySSL, an adap-
tation step that replays the meta-learned self-supervised task on
target domain data. Our evaluation across different mobile sensing
tasks demonstrates that SelfReplay consistently outperforms exist-
ing self-supervised learning and domain generalization methods,
achieving an average F1-score improvement of 9.4%p. Additionally,
SelfReplay is computationally efficient, completing adaptation on a
smartphone in under a few minutes. These findings validate Self-
Replay as a practical framework for enhancing pre-trained models
for end-users with minimal overhead.
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