
Federated Learning Operations Made Simple with Flame

Harshit Daga∗
Georgia Institute of Technology

Jaemin Shin†
KAIST

Dhruv Garg
Georgia Institute of Technology

Ada Gavrilovska
Georgia Institute of Technology

Myungjin Lee∗‡
Cisco Research

Ramana Rao Kompella
Cisco Research

ABSTRACT
Distributed machine learning approaches, including a broad class of
federated learning techniques, present a number of benefits when
deploying machine learning applications over widely distributed
infrastructures. To realize the expected benefits, however, intro-
duces substantial operational challenges due to required applica-
tion and configuration-level changes related to deployment-specific
details. Such complexities can be greatly reduced by introducing
higher-level abstractions – role and channel – using which feder-
ated learning applications are described as Topology Abstraction
Graphs (TAGs). TAGs decouple the ML application logic from the
underlying deployment details, making it possible to specialize
the application deployment, thus reducing development effort and
paving the way for improved automation and tuning. We present
Flame, the first system that supports these abstractions, and demon-
strate its benefits for several use cases.

1 INTRODUCTION
The proliferation of sensors and connected devices such as mo-
bile devices, wearables, and vehicles has resulted in generation of
massive amounts of data. In order to quickly and accurately an-
alyze such extraordinarily large and complex data sets to make
data-driven decisions companies have started relying on machine
learning techniques. There exist a number of machine learning use
cases such as recommendation services [24]; cyber-security breach
detection [7]; predictive maintenance and condition monitoring
in manufacturing [52]; disease identification in healthcare and life
sciences [15] and risk analysis in financial services [28].

Traditional machine learning approaches require collecting all
data together in one place, such as a cloud data center. However,
with data sources spread geographically, the network becomes the
bottleneck. Additionally, user-privacy laws, such as GDPR [40],
have resulted in shift towards a federated learning (FL) approach
where many clients collectively train a shared model under the
orchestration of a central server, also called aggregator. Instead of
sending the raw data to a centralized server, each client uses the
data to train their local model, summarizes the changes as a model
update and shares it with the aggregator, where updates from all
the clients are combined to improve the shared model.

Despite FL’s increasing importance, operationalizing it in pro-
duction is still challenging. While significant focus has been on FL
algorithms and theories, less was given to holistic FL system de-
signs. Towards a holistic FL system, we focus on federated learning

∗Equal contribution
†Work done at Cisco Research
‡Corresponding author

operations (FLOps) that are essential to running FL jobs and man-
aging any FL system. FLOps involve support for geo-distributed,
heterogeneous environments such as mobile edge computing (MEC)
infrastructure, cloud and edge devices. Each environment’s charac-
teristics and constraints therefore entail different tasks in FLOps. In
many use cases, a data source is normally different from a compute
for training. Similarly, a data owner is unlikely to be a compute
cluster admin. These aspects make FLOps more challenging than
machine learning operations (MLOps) for centralized learning. Con-
solidating compute and data management into a centralized facility
such as cloud greatly reduces the overheads of MLOps with help of
managed services such as AWS Sagemaker, Azure ML and Vertex
AI. However, such consolidation is infeasible in FLOps.

At the core of the limitations of existing systems is their lack
of support for FL-specific deployment customizations or for the
inherent diversity and heterogeneity required for efficient operation
of distributed services across federated or disaggregated nodes.
In response, we present Flame, a new system that enables fine-
grained specialization of distributed FL services around the specifics
of a deployment context.

A number of challenges contribute to the need for a system
such as Flame. A classical FL approach adopts a rather simplis-
tic client-server architecture whereby an aggregator (parameter
server) builds a global model by combining model updates from
training workers (clients). However, not all scenarios fit into this
conventional architecture. Indeed, FL has been a fast-evolving tech-
nology and numerous variants [5, 17, 19, 22, 34, 35] have been
proposed. Besides accuracy, these are proposed for different perfor-
mance objectives such as scalability, convergence, training costs,
and so on. Moreover, the designs are also influenced by factors like
operation scales and use cases. Hence, the system architectures
are quite different. Some approaches introduce system components
like selectors and coordinators as separate runtime entities [5, 22];
and others introduce edge aggregators [34, 35], enable peer-to-peer
collaboration [9, 10], or take a hybrid approach of combining dis-
tributed learning and federated learning [17]. As a result, one size
(i.e., client-server architecture) doesn’t fit all.

Along with the choice among different architectures and their
corresponding deployment topologies, the deployment heterogene-
ity requires FL systems to support different communication back-
ends1. For instance, a globally visible message queue service is
necessary if all workers (aggregator and trainers) cannot easily
reach each other, have no fixed IP address or are behind firewall or
within private networks. In such a case, a communication backend

1They refer to software components that implement protocols for distributed ma-
chine learning. Calling a protocol a communication backend implies the backend
implementation with the protocol.

ar
X

iv
:2

30
5.

05
11

8v
1

 [
cs

.L
G

]
 9

 M
ay

 2
02

3

such as MQTT is needed. In a hybrid architecture [17], that com-
bines learning with a centralized aggregator among trainers within
a tightly coupled cluster, and distributed learning across clusters,
MPI or point-to-point (P2P) backends are more appropriate within
a cluster. However, MQTT can still be a viable option for sharing
model updates across clusters or with a top-level global aggregator.

Managing distributed data and compute is yet another key FLOps
task and the most neglected. In FL, datasets should be available
at compute nodes that comply with security and privacy policies.
Since a machine learning engineer who wishes to deploy an FL job
has neither visibility into participants’ compute infrastructures nor
control over them, it is typically up to participants to bring compute
and datasets together. This coupling can limit when and where
FL can be used; instead a system should allow that infrastructure
and datasets can be independently registered, and later used by
participants to created shared global models.

To support FLOps effectively, an FL system needs to be flexi-
ble and easily extensible; at the same time, it should be able to
decouple the management of learning logic, compute and data. The
flexibility is provided by many existing solutions, but the latter
requirements are not fully met. Current frameworks such as Fed-
Scale [25], Flower [4] and PySyft [48] provide low level APIs which
make them flexible. However, they cannot be easily extended to
support different deployment scenarios such as hierarchical and
hybrid FL, as they lack abstraction suitable for expressing those
scenarios.

A recent effort, FedML [21], offers client-server architecture-
based abstraction to improve extensibility. This abstraction pro-
vides improved expressiveness compared to other frameworks and
enables a few templatized deployments. However, it quickly be-
comes difficult to support scenarios where FL components don’t
fit as either client or server. A canonical example is architectures
in [5, 22] where there exist diverse interactions among aggregator,
selector and coordinator; classifying them as either client or server
gets complicated. Therefore, extending and evolving the deploy-
ment scenarios supported by FedML, demands intrusive changes
in its codebase, and poses limitations to the flexibility supported by
the framework.

To overcome the limitations of current systems and to enable
support for FLOps, Flame introduces a new abstraction called the
Topology Abstraction Graph (TAG). This abstraction enables explicit
customization of individual components in the system and supports
heterogeneity and hybrid designs without requiring modifications
to the core system components. The higher level TAG abstraction
allows for flexible expression of how these components combine
and how they are deployed. Flame also provides thin integration
interfaces that allow for integration with compute infrastructure
and dataset providers, enabling support for different resource or-
chestrators and heterogeneous deployment platforms. This allows
Flame to decouple compute and data management such that a pool
of compute resources can be registered independently of data reg-
istration, and data can be linked to the pool instead of a single
static compute. The actual coupling of compute and data occurs at
deployment time.

The modular design of Flame allows participants to express their
deployment in a compact TAG representation, provide the machine
learning code for the respective roles and select a communication

backend. Flame then expands the TAG to map its physical deploy-
ment, using information about the properties of the registered
nodes and available datasets in the system. The abstract representa-
tion supported by Flame allows the users to update their topology
by merely updating the TAG graph and providing definitions for
any new roles or channel protocols, without modifications to the
core library (§6.1). In §6.2, we demonstrate the benefits of Flame’s
flexibility. As presented in Table 7 in the appendix, Flame’s flexibil-
ity and extensibility offer a variety of topologies and mechanisms.
Therefore, users can easily switch from one mechanism/topology to
another (§6.3). We release Flame as an open source project2, which
can facilitate the development of new FL methodologies.

2 BACKGROUND AND MOTIVATION
2.1 Federated Learning
Federated learning [36] has recently emerged as a compelling ma-
chine learning practice for preserving privacy and meeting data
sovereignty. It builds a global model by aggregating model weights
at a central location shared from many clients. In FL, clients train a
local model while keeping their dataset local. A typical FL job goes
over multiple rounds, each of which consists of three broad steps:
global model distribution, local training and model aggregation.
There exist many variants of federated learning. Some focus on
algorithms [30, 31, 36, 37, 45] for improving fairness, accuracy and
convergence performance. Others propose to select clients intelli-
gently [26, 38] or to carefully sample a client’s dataset [50] for faster
convergence. All of these assume the classical federated learning
setting where all clients talk to an aggregation server. In contrast,
approaches like hierarchical FL [34, 35], hybrid FL [17] and peer-
to-peer FL [27] propose different topologies, and thus entail system
architectures and communication patterns different from those of
the classical FL.

The notion about FL is in-situ training whereby training is done
on the device that data is generated. Gboard (a virtual keyboard
on Android phone) which recommends keywords that user may
type on the keyboard [18, 53] is a go-to example of FL. However,
one should note that FL is also widely used by companies with
geo-distributed data that cannot be moved to a centralized location
because of data privacy laws or network bottleneck. Thus, the
requirements for FL job creation and deployment changes in these
settings when compared to Gboard use case. In fact, in many cases
FL is rather off-site training than in-situ training because datasets
can’t be readily available for training at a target machine. In such
cases, FL relies on separate compute resources where datasets need
to be available at those compute resources.

2.2 Federated Learning Operations
We start off our discussion by introducing MLOps briefly. MLOps
take place in a central facility such as cloud or on-prem datacenters.
Therefore, MLOps are tailored to leverage services or tools avail-
able in those infrastructures. At a high level, MLOps can be divided
into three phases: (i) data engineering that includes sequence of
operations on raw data to curate datasets; (ii)ML model engineering
responsible for writing and executing learning algorithms to obtain

2https://github.com/cisco-open/flame

(a) (b) (c) (d) (e)

Figure 1: Topologies that can be used in federated learning:
(a) distributed, (b) classical FL, (c) hierarchical, (d) hierarchi-
cal with replicas and coordinator, and (e) hybrid. : training
node, : aggregation node, : global aggregation node, and
: coordinator. In (d), dotted lines are to tell connections

between training nodes and aggregation nodes from those
with coordinator.

an ML model; and (iii) deployment where the trained model is inte-
grated into application and its performance is monitored. Similar
to DevOps principles that combine software development and IT
operations, MLOps are a set of principles that aim to build, deploy
and maintain machine learning models in production, reliably and
efficiently.

FLOps can benefit from some of the MLOps practices. For ex-
ample, MLOps’s deployment practice can be applicable for FLOps
as a model trained through FL can be plugged into a cloud-based
deployment pipeline easily. However, there also exist stark differ-
ences between FLOps and MLOps. In FL, training takes place in
a geo-distributed manner where participants are not co-located
physically. Hence, conducting data engineering uniformly is hard
as training data may be stored across independent entities. More-
over, model engineering too is conducted across heterogeneous
settings (e.g., mobile phones, healthcare use cases, mobile edge
computing (MEC) setting, cross-VPC (Virtual Private Cloud) setting
in cloud [44], and so on). The heterogeneity makes in-situ training
hard too as a machine that generates data may not be one that
trains a local model in these different settings.

The heterogeneity indeed led to the development of many vari-
ants of federated learning as discussed in §2.1, which makes FLOps
more challenging. Our analysis on these approaches suggests that
a diverse set of topologies should be supported as part of FLOps.
We present some of them in Figure 1. Applying distributed learn-
ing mechanisms (e.g., all-to-all, all-reduce, scatter-gather) with a
distributed topology shown in Figure 1a can be more effective
for cloud-based FL [44] where VPC peering enables high-speed
links among participants. On the other hand, classical FL topology
shown in Figure 1b may be a reasonable option for mobile phone,
healthcare or personalized recommendation use cases. In contrast,
Figure 1c depicts a hierarchical topology that may be useful in the
MEC environment where training nodes are distributed across dif-
ferent mobile stations which exhibit bandwidth fluctuations. The
client selection process can be separated out of a global aggregation
node as a coordinator so that the coordinator can be placed closer
to training and intermediate aggregation nodes to lower communi-
cation overheads. For such a purpose, a variant of the hierarchical
topology is a viable option (Figure 1d). Finally, hybrid topology
shown in Figure 1e can be desirable in cloud-based FL cases where
VPC peering with some participants is disallowed due to security

policy or participants are co-located across several regions in a sin-
gle cloud or several vendors’ clouds. These are just a few examples,
and FLOps may need to support many different topologies and their
associated mechanisms as FL environments and technology evolve.

The fact that FL is not in-situ training, requires distributed com-
pute and dataset management, which adds more complexity. This
is especially daunting as neither compute nor datasets may be un-
der the control of a model developer, and compute admins may be
different from data owners. A common yet inefficient practice is
to let data owner who wishes to participate in an FL job bring her
own compute along with her data, imposing additional delays and
limitations.

2.3 Current Ecosystem
To create a machine learning system, libraries/frameworks such as
PyTorch, TensorFlow and Keras, provide APIs and low level support
for a wide range of models, with focus on speed and optimization.
However, creating and deploying such models in geo-distributed
settings requires support from resource orchestrators, model reg-
istry to store model snapshots and integration with monitoring
tools. Alternatively, platforms such as Ray, Amazon Sage Maker,
Azure, Vertex AI, integrate such supporting tools around which a
system can be developed. Although such platforms are helpful, their
goal is to provide a service that focuses on the main phases in the
MLOps cycle, and their tight coupling with internal services [11]
and APIs does not allow them offer the flexibility and modular
support needed for FLOps operations.

FedML [21] is a recent framework aims to support easy devel-
opment of FL-based ML models. Its API and client-server based
abstraction provide the flexibility that allows development of new
scenarios, thereby assisting few requirements of FLOps. However,
the client-server abstraction is not enough to make FedML easily
extensible. In FedML, a node is either client or server. Consider the
topology shown in Figure 1c designed for hierarchical FL. While
training node and global aggregation node fit well with the client-
server abstraction, intermediate aggregators don’t, because they
act as both client as well as server depending on which compo-
nent they interact with. In order to handle this dilemma, FedML
introduces a concept called rank and, based on the rank’s value,
implements different behaviors in its client codebase. While this
enables support for hierarchical FL, it is unfortunately a stop gap.
In hierarchical FL with a separate coordinator (Figure 1d), the rank
value can’t help because it is unclear which value to assign to rank.

Moreover, while topologies for classical FL (Figure 1b) and hybrid
FL (Figure 1e) look similar, behaviors of training and aggregation
nodes are dissimilar even though trainers in both topologies are
classified as client. Hence, classifying a role as client or server is too
coarse to support emerging and diverse FL scenarios. This limitation
can require intrusive source code changes in the core codebase.
There are other frameworks such as FedScale [25], Flower [4] and
PySyft [48], all of which follow the same client-server architecture
or two-tier topology, and share the same shortcomings of FedML
in terms of extensibility.

Summary. Similar to DevOps tasks, new use cases and require-
ments will arise in FLOps as federated learning techniques evolve.
Thus, well-defined and finer abstraction boundaries are required

to help express the needs of a federated learning environment. But
it is difficult to enforce such abstraction boundaries in the exist-
ing frameworks, as their intended goal is to provide support for
MLOps, and are thus too rigid to incorporate the constantly chang-
ing requirements for a federated learning system. Alternatively, a
clean-slate approach and redesign from the ground up to provide
flexibility can help. The consequent investment of engineering ef-
fort is one that can dramatically reduce ongoing costs and speed
further innovation. Thus, there is a need for a system like Flame,
that can provide better abstractions for federated settings, while
allowing integration with the existing tools.

3 FLAME
Goal. Flame is designed with the goal to provide fine grain abstrac-
tion for composability and extensibility for federated learning tasks,
thus providing support for FLOp tasks. One way to achieve this
is for developers to design a modular system or general purpose
solutions using different softwares packages. This often results in
in glue code or pipeline jungles, that can inhibit improvements [49].
Additionally, over time not only the requirements for learning job
change, but with such a fast developing field new techniques such
as models and algorithms are introduced to improve accuracy, con-
vergence rate and reduce communication cost. To adapt to such
changes, the system should be able to provide building blocks that
can support quick introduction and testing of new models and
algorithms, and allow support for various deployment strategies
(topologies), such as moving from classical to complex hybrid feder-
ated learning approaches. It should also provide fine grain control
over communication backend for data movement in different parts
of the system.
Overview. The design of Flame enables these decoupling through
Topology Abstraction Graph (TAG). It employs a graph-based rep-
resentation that maps the expanded physical topology to a con-
densed logical TAG. Behavior of each node in the TAG is specified
with a role abstraction, and roles are interconnected via a channel
primitive. Using a graph-based representation, over a client-server
architecture, provides expressiveness and extensibility benefits: (i)
expressing the responsibility of any component as independent
roles; (ii) breaking the components into individual roles provides us
with automatic fine-grain abstraction for communication backend
between the roles which can be easily switched without impacting
the machine learning logic and; (iii) all topologies can be expressed
as a graph and TAG is abstract representation of physical expanded
deployment.

Finally, the Flamemanagement plane offers support to integrate
with different and/or independent orchestrators and resource man-
agers.When expending a TAG into a concrete physical instantiation,
Flame relies on the metadata about the infrastructure resources,
in the form of various attributes that describe the properties or
access constraints of individual components. This allows Flame
to coordinate the application deployment with consideration of
the requirements of the various stakeholders in the distributed FL
systems – application and infrastructure (compute and dataset)
providers. Thus, providing an enhanced collaborative environment
where Flame participants can focus on FL job and the system takes

replica
groupAssociation
isDataConsumer

Role
Attributes:

groupBy
funcTags
backend

Attributes:
Channel

(a) (b) (c)

groupBy

(d)

groupBy

(e)

Figure 2: (a) Building blocks of TAG. TAG representation of
topologies: (b) distributed, (c) classical FL, (d) hierarchical FL,
(e) hybrid. is a trainer node with isDataConsumer set. The
groupBy attribute is used to create groups of the same role.

care of the operational steps in the FL process, paving the way
toward automation for FLOps.

4 DESIGN
In this section, we introduce the design of Flame. First, we explain
a key concept called Topology Abstraction Graph (TAG) in §4.1.
Next, we discuss how a TAG is expanded into a real topology for
deployment (§4.2). We then describe resource annotation that is
essential to drive actual deployment of a real topology (§4.3). Finally,
we discuss Flame’s two programming models that can aid fast
development of a distributed ML job and easy extension of existing
FL methodologies (§4.4).

4.1 Topology Abstraction Graph
A central abstraction in Flame is Topology Abstraction Graph (TAG).
It represents a simple logical graph, which allows users to express
a training workload declaratively for any machine learning job. It
comprises of two basic building blocks: role and channel. A role is a
vertex and serves as an abstraction for worker while a channel is
an undirected edge between a pair of roles and acts an abstraction
for communication backends. TAG’s schema is visually represented
as illustrated in Figure 2a and different learning topologies can
be represented using a TAG as shown in Figures 2b-2e. Below we
discuss role and channel in detail. To aid understanding of the
discussion, a concrete example of a TAG is presented in Figure 3a.
Role. An executable worker unit carrying out a specific task in a
machine learning job is defined as a role. Depending on the topology,
the task and behavior of a role can vary. For instance, a training
worker in FL uses data to build a local model and sends model
updates to an aggregation worker, which combines them to create
a global model. In hierarchical FL, the aggregator may forward the
aggregated model to a global aggregation worker. By exploiting
the the uniqueness of the tasks associated with these workers,
Flame is able to abstract their behavior in the learning process and
assign them roles. This forms the foundation of Flame’s flexible
and adaptable system. These roles are associated with programs
that are defined at the job composition stage. The programs are
made up of a set of functions such as train, evaluate, load data, and
get/distribute model updates, based on the role’s responsibility. The
program also contains information about the functions execution,
as described in Section 4.4.

The flexible binding between role and program allows Flame
to be extensible and support different mechanisms under different
topologies. Additionally, role has three attributes: replica, isData-
Consumer and groupAssociation. A TAG is expanded into its physical

param-channel
groupBy: [west, east]

agg-channel
groupBy: [default]

datasets: west: [A, B], east: [C, D]

groupAssociation
- agg-channel: default

groupAssociation
- agg-channel: default
param-channel: west

- agg-channel: default
param-channel: east groupAssociation

- param-channel: west
- param-channel: east

(a)

label: west east eastwest

A B C D

(b)

label: west east eastwest

A B C D

eastwest

(c)

label: west east eastwest

A B C D

default

(d)

Figure 3: Expansion of a TAG into a physical topology. (a) TAG representation of hierarchical FL (H-FL); each dataset belongs
to a group; (b) dataset is expanded; (c) one training worker is allocated per dataset and the worker’s group is determined by the
dataset’s group; and (d) each entry in groupAssociation corresponds to one aggregation worker; hence, two aggregators are
created; each belongs to a different group for param-channel while both have one “default” group for agg-channel. Since there
is one entry for groupAssociation in the global aggregation role, expansion finishes by creating one global aggregation worker.
Note that the expansion of roles can be done in an arbitrary order since groupAssociation has all the necessary information
for expansion. A channel’s attributes (e.g., groupBy) are used to validate the expansion.

topology by combining these attributes, as discussed in §4.2. Replica
is to set the number of replicated workers for a role. The replicated
workers share the same properties. Thus, this attribute is useful in
load-balancing aggregation work among aggregators, for instance
(see §6.1). isDataConsumer attribute specifies whether or not a role
consumes data and groupAssociation dictates the way a worker of
the role is associated with channels and one of their groups (more
on channel below). Each worker of the role has a set of channels
and one of their groups. Therefore, groupAssociation instructs how
workers of a role are connected with those of other roles. This
attribute contains a list of the following set: {𝑘1:𝑣1, ..., 𝑘𝑖 :𝑣𝑖 } where
𝑘𝑖 is the name of channel 𝑖 and 𝑣𝑖 is a group in the channel; an
example of this attribute is shown in Figure 3a. The size of the list
corresponds to the number of workers for the given role.
Channel. It is an abstraction that links a pair of roles in the TAG
and facilitates the exchange of data between them through a commu-
nication channel. This design choice enables Flame to offer precise
control over the communication backend used for each channel,
facilitating the design of efficient machine learning jobs tailored
to the user’s specific requirements and resource availability. The
attributes associated with a channel provide flexibility in creating
various topologies, as shown in Figure 2. Additionally, to ensure
compatibility with different communication backends such as MPI,
MQTT, Kafka, and gRPC, Flame’s SDK separates the ML logic from
the communication layer by providing a channel manager interface
with a standard set of APIs (e.g., send, recv, broadcast, join, leave)
that any two roles connected by a channel can use. This approach
abstracts the implementation details of the communication backend,
allowing roles to send and receive messages uniformly, regardless
of the underlying communication protocol.

Channel has three key attributes: groupBy, funcTags and backend.
The groupBy attribute is responsible for grouping roles that are con-
nected through the channel. Currently, Flame utilizes a label-based
grouping approach, but the implementation can be easily extended
to support customized grouping algorithms. The funcTags attribute

maps the end-points of the channel to the functions within the
connected roles. This attribute helps avoid any ambiguity in identi-
fying which function to execute on a specific channel when a role
is connected to multiple channels. The backend attribute is used to
determine the communication protocol for a channel. For instance,
users may choose to store their datasets in the cloud of one provider
or store them with different cloud providers. It’s also possible that
users may choose to keep their datasets across different regions
of the same provider’s cloud. In such cases, co-location of datasets
naturally leads to co-location of trainers; and using one type of
backend may result in inefficiency (e.g., MQTT traffic over WAN
via a broker), increased complexity (e.g., multi-broker setting for
MQTT or complex configuration updates for firewall, ACL and re-
verse proxy in case of non-broker communication protocol such as
gRPC) or both. By allowing per-channel backend, these limitations
can be mitigated. We show this attribute’s efficacy in §6.2.

4.2 TAG Expansion
The TAG only specifies the roles and channels, but not the associa-
tion of datasets with these roles. To allow for flexibility in dataset
association, Flame requires users to provide a dataset specification.
Additionally, users may need to group datasets to form clusters, as
in hierarchical federated learning (H-FL). To enable dataset group-
ing, Flame provides datasetGroups attribute that enables developers
to combine different datasets into a single learning group. For in-
stance, in Figure 3a, the user has formed two dataset groups (“west”
and “east”), each comprising two distinct datasets (A, B) and (C, D),
respectively.

Algorithm 1 shows the TAG expansion pseudocode. The algo-
rithm expands the abstract representation into a physical deploy-
ment topology by creating workers based on the specifications in
roles and using channel information for validation.

The top-level function, Expand walks through roles (line 6) and
calls BuildWorkers for each role. Then, the BuildWorkers() func-
tion creates the worker configuration. The specification for each

Algorithm 1: TAG expansion
1 Function Expand(𝐽):

// 𝐽 : job specification

2 𝑊 ← 𝜙 // 𝑊 : a total list of workers

3 if PreCheck(𝐽) is false then
4 return 𝜙

5 𝑅 ← GetRoles(𝐽) // 𝑅: roles

6 for 𝑟 ∈ 𝑅 do
7 𝑋 ← BuildWorkers(𝑟, 𝐽)

8 𝑊 ←𝑊 ∪𝑋
9 if PostCheck(𝑊 , 𝐽) is false then
10 return 𝜙

11 return𝑊

12 Function BuildWorkers(𝑟 , 𝐽):
13 𝑊 ← 𝜙

14 if 𝑟 is a data consumer then
15 𝐺 ← GetGroupsOfDataSets(𝑟, 𝐽)

16 for 𝑔 ∈ 𝐺 do
17 𝐷 ← GetDataSets(𝑔)

18 for 𝑑 ∈ 𝐷 do
19 𝑚 ← GetComputeId(𝑑)

20 𝑎 ← GetGroupAssocByGroupName(𝑟, 𝑔)

21 𝑤 ← CreateWorkerConfig(𝑟, 𝑚, 𝑎)

22 𝑊 ←𝑊 ∪ {𝑤 }

23 else
24 𝐺𝐴← GetGroupAssociations(𝑟)

25 for 𝑎 ∈ 𝐺𝐴 do
26 𝑐 ← GetReplicaNum(𝑟)

27 for 𝑖 = 0; 𝑖 < 𝑐 ; 𝑖 + + do
28 𝑚 ← DecideComputeId(𝑎)

29 𝑤 ← CreateWorkerConfig(𝑟, 𝑚, 𝑎)

30 𝑊 ←𝑊 ∪ {𝑤 }

31 return𝑊

role is self-contained. Thus, there is no particular order to iterate
roles. If a role is a data consumer, the function iterates on datasets
for the role, creates one worker configuration per dataset (lines 15-
22) and uses the datasetGroups to determine the group. Otherwise,
the function takes groupAssociation values of role 𝑟 and creates
corresponding worker (lines 24-30). During the expansion, if replica
is set for a role (not a data consumer), the algorithm creates copies
of the role (line 27). Those copies share the same properties (e.g.,
channel’s group). For instance, a variant of a hierarchical topology
shown in Figure 1d is implemented by using replica. While pre
and post checks are used to validate the correctness of TAG and
expanded physical deployment respectively.
Example. Figure 3 demonstrates the application of Algorithm 1
to expand the high level TAG for Hierarchical FL (Figure 3a) to a
physical deployment topology. To begin, we associate all datasets in
the job specification with the trainer (data consumer) role, resulting
in one worker per dataset, as shown in Figure 3b. Themwe compare
the values of datasetGroups and groupAssociation to group the train-
ing workers into “west” and “east” groups. The next step is to use
replica and groupAssociation associated with the “param-channel”

to determine the number of workers required for the aggregator
role. By default, replica is set to one, unless explicitly stated. In
the example, two aggregation workers are created based on the
groupAssociation values. The same process is applied for the top-
level role (global aggregator). Since there is only one value (i.e.,
default) in the groupAssociation attribute, a single worker instance
is created (Figure 3d). Thus, completing the TAG expansion.

4.3 Resource Annotation for Deployment
In amachine learning job, resources such as compute and dataset are
required but may not be owned by the user deploying their learning
tasks. To enable deployment of FL jobs under such situations, Flame
allows different resource owners to independently register and
annotate their resources, which can then be used as needed by the
learning job. This approach effectively decouples the infrastructure
dependency from any learning tasks and provides greater flexibility
in resource usage.
Compute Access. The majority of current systems assume that
compute nodes are managed through a single provider or utilize
a single cluster management tool. However, Flame distinguishes
itself by providing an integration interface service that supports
various resource orchestration managers and allows developers to
register their own cluster (§5.1). It’s necessary to capture specific
properties for computing clusters, such as geographical boundaries.
This information is provided during registration with the realm
attribute. For example, certain data can only be accessed in specific
regions due to data privacy laws like GDPR [40]. The realm infor-
mation associated with the compute infrastructure aids the dataset
owner in defining the accessibility boundary for their datasets.
Metadata forDataset. Formachine learning training jobs, datasets
need to be associated with a configuration for training workers
to consume. Flame requires data owners to independently register
metadata information with the system, which includes the realm
and url of the dataset. Themetadata realm attribute helps in defining
access restrictions that apply to the dataset. It leverages informa-
tion from the compute infrastructure to create a logical boundary
that defines this accessibility. This design enables compliance with
security and privacy policies associated with the dataset, and al-
lows data owners to maintain control over dataset accessibility and
deployment while allowing its use by others. It is important to
note that Flame only stores metadata information and not the raw
dataset. The url points to the dataset’s location and can be extended
to support various data access methods.

As part of our design, we deliberately separated the infrastruc-
ture from the programming logic to facilitate a more organized
approach to managing a federated learning (FL) job. By doing so,
users can focus solely on composing their machine learning job,
without worrying about the coupling between compute node and
dataset. Without this design choice, developers would be unable to
complete the composition of an FL job until a data owner makes
a dataset available on a compute node. This "human-in-the-loop"
model would significantly slow down the composition and deploy-
ment of an FL job. Flame, on the other hand, allows for the automatic
acquisition of a compute node and access to a dataset, streamlining
the process.

aggregator code

trainer code

binding

attach
datasets

global agg code

base aggregator class

base trainer class

base aggregator class

SDK User-defined

inheritance

Figure 4: Workload composition for hierarchical topology.

from fledge.mode.horizontal.trainer import Trainer
class MNistTrainer(Trainer):

def initialize(self) -> None:
Initialize the model

def load_data(self) -> None:
Describe operation to handle data

def train(self) -> None:
Training code

def evaluate(self) -> None:
Testing code

t = MNistTrainer(config)
t.compose ()
t.run()

Figure 5: Code snippet of user-defined MNistTrainer role to
illustrate user programming model. After inheriting a base
class (Trainer), user only implements four basic functions:
initialize(), load_data(), train(), and evaluate().

4.4 Programming Model
Flame provides two programming models: (1) user and (2) developer.
The user programming model is for end users who wish to use the
out-of-the-box functionalities of Flame to deploy a distributed ML
job. This programming model is useful for those whose needs can
be met by Flame’s built-in functionalities. The developer program-
ming model is intended for developers who want to extend Flame’s
capabilities by allowing for different topologies, roles, and train-
ing methodologies. This programming model is essential when the
built-in features are not sufficient to fulfill the user’s needs. There-
fore, we refer to users or participants as those who mostly rely
on the user programming model whereas we denote developers as
those who need more than the built-in features.
User Programming Model. The role building block of a TAG per-
forms a task only if it is associated with a program. The Flame SDK
provides a set of base programs (as Python classes). A user builds a
job-specific program by implementing a few core functions (e.g.,
initialize, train, evaluate, etc). The example shown in Figure 4
illustrates the relationship between programs in the Flame SDK
and user-defined ones. A user can build the logic for a given role for
standard training methodology by inheriting the pre-defined base
classes. The base class implements a basic workflow for a certain
role (such as trainer, intermediate and global aggregator), so the
user only needs to implement the core functions directly relevant to
their learning job. For instance, for a hierarchical FL (H-FL) topol-
ogy user can define their custom MNistTrainer as illustrated in
Figure 5, by extending the out-of-the-box base class provided the
Flame SDK. Interestingly, the implementation for aggregator roles

class Trainer(Role , metaclass=ABCMeta):
... ...
def compose(self) -> None:

with Composer () as composer:
self.composer = composer
tl_load = Tasklet("load", self.load_data)
tl_init = Tasklet("init", self.initialize)
tl_train = Tasklet("train", self.train)
... ...
tl_copy = Tasklet("snapshot", self.snapshot)
loop = Loop(loop_check_fn=lambda: self._work_done)
tl_load >> tl_init >> loop(tl_get >> tl_train >>

... ...)

Figure 6: Code snippet that illustrates a composer mecha-
nism through developer programing model. Loop is a prim-
itive that enables repeated execution, which takes an exit
condition as a function. Once tasklets are chained, they
are executed in a sequential manner. The first argument of
Tasklet is alias that can be used to ease the modification of
a tasklet chain.

is simpler than that of trainer; user is only required to implement
a model architecture since Flame’s core library already provides
essential functions such as distribute and aggregate. In case
the aggregator roles need to conduct validation test, the user can
additionally implement the load_data and evaluate functions.
Developer Programming Model. Flame is designed to provide
extensibility to support different FL topologies. To achieve this,
Flame allows FLOps engineers to extend or create different roles and
accommodate other state-of-the-art learning approaches. Internally,
each worker executes the functions in the program associated with
its role. In Flame, those functions are specified as an execution unit
called tasklet3. These tasklets are combined together to finish
a worker’s task. Inspired by workflow management solutions [1],
Flame offers functionality to structure aworker’s task as a collection
of tasklets and present it as a workflow. Since an ML job typically
consists of repeating tasklets, the workflow-like approach helps
to formalize the development process of any machine learning
mechanisms, thereby allowing fast development. In order to create a
workflow, Flame overrides the≫ operator and provides a composer
so that various tasklets can be chained together. An additional Loop
primitive, allows repeated execution of chained tasklets until an exit
condition is met. This methodology provides easy extensibility for
a developer to create standalone tasklets such as taking a snapshot
of the model or to record various metrics after each step and link
them in the workflow, as illustrated in Figure 6.

In addition to its core features, Flame offers a convenient set of
API functions through the composer and tasklet modules, which
are detailed in Table 1. These APIs enable developers to make sur-
gical modifications to the tasklet chain and to quickly develop new
functionalities. With class inheritance, the need to re-chain all the
tasklets in the child class is avoided, and only a new tasklet is re-
quired for the new functionality. This approach reduces redundant
lines of code, avoids core library changes, and reduces the risk of
introducing bugs.

Finally, in order to expand Flame’s functionalities, developers
may require interaction with channels to exchange new types of

3It is to imply that the execution unit is small; it’s not one in Linux kernel.

Function Module Note

get_tasklet(𝑎𝑙𝑖𝑠𝑎𝑠) composer Return a tasklet of 𝑎𝑙𝑖𝑎𝑠
insert_before(𝑡𝑎𝑠𝑘𝑙𝑒𝑡)tasklet Insert 𝑡𝑎𝑠𝑘𝑙𝑒𝑡 before a tasklet
insert_after(𝑡𝑎𝑠𝑘𝑙𝑒𝑡) tasklet Insert 𝑡𝑎𝑠𝑘𝑙𝑒𝑡 after a tasklet
replace_with(𝑡𝑎𝑠𝑘𝑙𝑒𝑡) tasklet Replace 𝑡𝑎𝑠𝑘𝑙𝑒𝑡 with a tasklet
remove() tasklet Remove itself from a chain

Table 1: Composer and Tasklet API.

Function Note

join() Join channel and allocate resources for the channel
leave() Leave channel and deallocate its resources
send(𝑒𝑛𝑑, 𝑚𝑠𝑔) Send𝑚𝑠𝑔 to 𝑒𝑛𝑑
recv(𝑒𝑛𝑑) Receive a message from 𝑒𝑛𝑑

recv_fifo(𝑒𝑛𝑑𝑠) Receive a message from each end in a list of 𝑒𝑛𝑑𝑠 in
a FIFO manner

peek(𝑒𝑛𝑑) Peek a message from 𝑒𝑛𝑑

broadcast(𝑚𝑠𝑔) Broadcast𝑚𝑠𝑔 to all the peers at the other end of
channel

ends() Return a list of peers at the other end of channel
filtered by a chosen peer selection logic

empty() Check if peers exist at the other end of channel

Table 2: Channel API.

messages. To facilitate this, Flame provides various functions as
part of the channel API, as demonstrated in Table 2. This API not
only provides a great deal of flexibility in extending Flame, but also
enables developers to interact with the system in a uniform manner,
irrespective of the communication backend being utilized.

5 MANAGEMENT PLANE
The Flame SDK facilitates the composition of machine learning
jobs and the implementation of new FL mechanisms. The building
blocks of Flame, provided via its SDK, offer new abstractions that
enable systematic lifecycle management of those FL jobs, performed
by its management plane.

5.1 System Components
The management plane consists of the following system compo-
nents: APIserver, controller, notifier, deployer, and agent.
APIserver. The APIserver is a front end that exposes a REST API.
A CLI tool uses the REST API and allows users to interact with
the management plane. Through the interface, users and FLOps
engineers can operate various functions such as the creation/up-
date of job specifications (topology, machine learning code, etc),
submission/termination of a job, etc.
Controller. The controller is the core unit in the management
plane. It has three primary responsibilities. (i) It processes requests
from users and other system components (e.g., agent and deployer)
and manages the state via database (MongoDB). (ii) It performs TAG
expansion into a real topology, and interacts with compute cluster
managers, such as Kubernetes, for worker deployment, resource

User Input

API Server Controller

DatabaseNotification Service

Kubernetes

Deployer
Docker Swarm

Deployer
Apache Mesos

Deployer

5

4

TAG Dataset Spec

1

2
3

6

7

Agent
Agent

ML Code Data

Channel Manager

Worker: Trainer

Agent
Agent

ML Code Data

Channel Manager

Worker: Trainer

8

AgentAgent

ML Code

Channel Manager

Worker: Aggregator

Agent

ML Code

Channel Manager

Worker: Global Agg

Cluster 2 Cluster 1 (Default) Cluster 3

ML Code

PYPY

Figure 7: Flame architecture and workflow overview.

provisioning and decommissioning. (iii) Finally, it monitors the
job’s progress and is responsible for events such as worker failure.
Deployer. The deployer is an integration interface service, which
provides abstraction to integrate different resource orchestration
solutions such as Kubernetes, Docker Swarm, Apache Mesos, etc.
By implementing the APIs defined in the deployer’s interface, Flame
can interact with any resource orchestrator. In each compute cluster,
the deployer can generate requests for resource allocation and
instance (typically in the form of a container) creation, based on
instructions received from the controller.
Agent. A learning job in Flame consists of multiple roles executing
tasks. Each instance of a role in a cluster includes a thin client called
agent. The agent is responsible for managing a lifecycle of a task
in a given job by interacting with APIserver. It also prevents any
direct interaction of user deployed ML code with the Flame system,
thus providing a sandbox environment for the job. During instance
initialization, the deployer provides the agent with information
related to the job. The agent is then responsible to fetch the ML
code associated with the role, the channel configuration and meta
information on the dataset, all of which are needed by a worker
to carry out a task. Once obtained, the agent starts the training by
executing a worker role as a child process. It monitors the worker’s
status and regularly informs the controller. When the agent receives
a terminate event, it stops the worker process and reports the
worker’s status to the APIserver.
Notifier. A notification service provides a means for the controller
to push event signals to agents and deployers. The notifier enables
event-driven management of FLOps. For instance, upon receiving
an event, agents and deployers reach out to the APIserver to obtain
job related information.

5.2 Workflow
In Figure 7 we describe how Flame is used to register the available
compute infrastructure and datasets and to deploy a distributed ML
job across those resources.

Compute Registration. In order to register a compute cluster,
the cluster admins are required to integrate the Deployer interface
service provided by Flame. For instance, Kubernetes (K8s) uses Ku-
bernetes Deployment that coordinates with K8s to create or modify
instances of the pods that hold a containerized application. The
integration also results in appropriate permission for creating and
deleting pods. The system administrator also assigns a name and
provides properties associated with the cluster. Once the deployer
is up, it uses a REST API call to register the cluster with Flame
(step 1). It should be noted that each cluster is owned and man-
aged by its admin who has full control of the resources provided
by the cluster that can be used by Flame.
Job Configuration. To submit an FL job to Flame, the user needs
to provide a job configuration that consists of three main compo-
nents. It consists of (i) a TAG-based high-level abstract description
of the machine learning application, (ii) program logic associated
with each role, and (iii) data specification configuration containing
metadata information about the datasets, which provides deploy-
ment constraints. This information is provided as the input to the
Flame through APIServer (step 2).
JobDeployment.Upon receiving the job configuration, it is shared
with the controller (step 3). The controller records this information
in the database (step 4), and expands the TAG configuration to
determine where each role should be created, based on the metadata
datasetGroups attribute if the role’s isDataConsumer attribute is
set (i.e., it is a trainer role) or TAG groupBy and groupAssociation
attributes otherwise. The controller then sends a compute creation
event to the notification service (step 5) along with the job informa-
tion. The notification service notifies the corresponding deployers
where roles need to be created (step 6). Upon receiving such a
request, each deployer creates a compute (e.g., a pod in K8s) that
contains an agent (step 7). The agent uses the job id to retrieve the
code and task configuration files (step 8). The task configuration
file contains role, channel, and dataset access information, which
is required by each role to determine its connection with other
roles, map the methods to be executed, etc. The agent then starts a
worker which executes the FL tasks. Once the task is completed,
the agent updates its status by sending a request to the APIServer.
The deployers are subsequently notified through a revoke deploy
event to de-allocate the resources from the compute clusters. Our
system manages FL jobs in a fully automated manner.

5.3 Implementation
We have implemented the management plane of Flame in Golang
while the programming model is developed using Python. The
current implementation supports a diverse range of topologies
and algorithms, as shown in Table 7 in the appendix. Flame also
provides an emulation platform called Flame-In-A-Box (fiab). It
is a single machine management plane that leverages minikube, a
local Kubernetes cluster. All of the system components are packaged
as a Kubernetes application and deployed on minikube. This single
box deployment of our system allows FLOps engineers to easily
validate their prototypes of new FL mechanisms and algorithms or
to conduct small scale experiments. Furthermore, this environment
provides all the extensibility and flexibility of Flame in an emulation
environment, thereby accelerating research. Moreover, packaging

datasets: default: [A, B, C, D]

groupAssociation
- global-agg-coord-ch : default

replica: 2
groupAssociation

- agg-coord-ch: default
global-channel: default
param-channel: default

groupAssociation
- trainer-coord-ch: default
param-channel: default

trainer-coord-ch
groupBy: [default]

agg-coord-ch
groupBy: [default]

groupAssociation
- global-agg-coord-ch : default
agg-coord-ch: default
trainer-coord-ch: default

global-agg-coord-ch
groupBy: [default]

Figure 8: TAG for Coordinated FL (H-FL with coordinator).
Only additional changes are shown in the figure on top of
the configuration shown in Figure 3a. TAG is represented in
YAML format. : global aggregator, : aggregator, : trainer,
and : coordinator. The expanded form is shown in Fig-
ure 1d.

the system components makes the management plane deployment
portable, enabling it to be easily deployed in a large K8s cluster.

6 EVALUATION
The goal of the evaluation is to demonstrate how well Flame sup-
ports the FLOps requirements for being easily extensible, flexible,
and that it decouples the management of compute and data from
the ML application. We begin by showing how a developer can
extend a sample hierarchical FL topology (as shown in Figure 3a)
for a complex setting with a coordinator, in §6.1. We then highlight
the benefits of communication backend selection with a Hybrid FL
use case, emphasizing the flexibility provided by our system in §6.2.
Additionally, we showcase the benefits of TAG in transforming
from one topology to another in §6.3. We also compare Flame with
the state-of-the-art framework in terms of the complexity associ-
ated with creating, modifying and deploying FL applications (§6.4).
Finally, we present micro-benchmarking results that demonstrate
the overhead of one of the system’s primary tasks—TAG expansion.

6.1 Extension for New Mechanisms
The developer programming model and TAG mechanism of Flame
facilitate the extension of topologies and the addition of newmecha-
nisms. An example of topology extension is illustrated in Figure 1d,
which shows a Hierarchical Federated Learning (H-FL) topology
with a coordinator. In this paper, we refer to this variant as Coordi-
nated Federated Learning (CO-FL). The CO-FL differs from the H-FL
in two key aspects: (1) the links between aggregator and trainer
form a bipartite graph in the CO-FL, and (2) the coordinator is con-
nected to the rest of the roles. Enabling this new variant requires
an update to the TAG and update to the implementation of roles in
the H-FL TAG to allow communication with the coordinator.
TAGChanges. In Figure 8, we illustrate the changes to the TAG re-
quired to add a coordinator to the H-FL topology shown in Figure 3a.
The transformation from the original TAG to the new one, as shown
in the figure, involves modifying around 46 lines of configuration.
The majority of the changes (36 lines, 78%) involve configuring
new channels for the coordinator, while the rest of the changes
are made to existing roles and channels. Notably, the addition of a

def compose(self) -> None:
super().compose ()

with CloneComposer(self.composer) as composer:
self.composer = composer
tl_coord_ends = Tasklet("get_coord_ends", self.
get_coord_ends)

tl = self.composer.get_tasklet("distribute")
tl.insert_before(tl_coord_ends)
tl = self.composer.get_tasklet("end_of_train")
tl.remove ()

Figure 9: Code snippet for global aggregator for CO-FL.

Global Aggregator Aggregator Trainer Coordinator

Hierarchical FL 231 200 156 —

Coordinated FL 40 67 73 158

LOC reduction 82.7% 66.5% 53.2% —

Table 3: The number of lines of code for each role in Hierar-
chical and Coordinated FL.

coordinator requires the use of the replica attribute in the aggrega-
tor role, which is introduced in §4.1 and allows for the creation of
bipartite-like communication links upon TAG expansion.
Code Changes. Following the completion of TAG, the next step
is to implement each role in the TAG. Flame’s developer program-
ming model allows easy extension without the need for modifying
a core library. The developer inherits the base classes of H-FL and
implements additional functionality for the coordinator role. For
example, in CO-FL, while the global aggregator performs the same
steps as it does in H-FL, it must receive information from the coor-
dinator about which aggregators to interact within each round. To
accomplish this, we implement a get_coord_ends function associ-
ated with a funcTag called coordinate (not shown in Figure 8 for
brevity). We then use the API in Table 1 and update the inherited
tasklet chain for the global aggregator, as shown in Figure 9.

In Figure 9, we obtain tasklets by using their alias and call ap-
propriate operations (e.g., insert_before, remove). Note that we
remove end_of_train tasklet because a coordinator is now re-
sponsible for informing the end of training to all workers. Similarly,
the aggregator and trainer are implemented, resulting in minor
code revisions for the overall CO-FL implementation, as shown in
Table 3.
Result. To demonstrate the feasibility of extending CO-FL, we
implement a basic load-balancing scheme in the coordinator. We
create a toy scenario with 10 trainers and two aggregators where
the link between the global aggregator and an aggregator becomes
a bottleneck across multiple rounds. As aggregators report to the
coordinator their delays in uploading models, the coordinator can
detect delay discrepancies among aggregators. This information
allows the coordinator to identify and exclude a slow aggregator.
Moreover, the coordinator employs a binary backoff mechanism to
give the straggling aggregator a chance to join the training again.

Figure 10 showcases the result of such a scenario in comparison
with H-FL. From round #6, the load-balancing scheme detects a
significant delay from the straggling aggregator by observing the

5 10 15 20 25 30 35 40
Round

10

20

30

40

50

R
ou

nd
 E

la
ps

ed
 T

im
e

(s
ec

on
ds

)

congestion on an aggregator

Coordinated FL
Hierarchical FL

Figure 10: Performance comparison between Coordinated
FL vs Hierarchical FL. Coordinated FLmanages the network
congestion with its load-balancing scheme.

100 200 300 400 500 600
Time (seconds)

0.92

0.94

0.96

0.98

Te
st

 A
cc

ur
ac

y

Hybrid FL
Classical FL

Figure 11: Performance comparison between Hybrid FL vs
Classical FL. Flame’s flexibility in communication backend
selection demonstrates the efficacy of Hybrid FL.

time to upload model weights to the global aggregator across all
aggregators. After observing the delay for three consecutive rounds,
the scheme disables the straggling aggregator for one round (round
#9). Then, the scheme checks the presence of delay (round #10)
by allowing the straggler to join the job again, and, if present,
disables the straggling aggregator for two rounds (rounds #11-12).
As congestion persists, the coordinator disables the straggler in a
binary-backoff fashion (i.e., four rounds at round #14, eight rounds
at round #19 and 16 rounds at round #28). H-FL, without such a
load-balancing scheme, experiences large per-round time for rounds
#6-35 due to the straggling aggregator.

6.2 Flexible Backend
To demonstrate the versatility of Flame on backend configurations
and its implications, we use an example of Hybrid FL [17] (Figure 1e)
implemented on Flame. Hybrid FL is ideal for scenarios where
trainers are co-located and network bandwidth among trainers
are much higher than bandwidth between trainers and aggregator.
Unlike Classical FL (C-FL), where individual trainers should send
their model updates, the co-located trainers in Hybrid FL form a
cluster for aggregation. The trainers rapidly aggregate a cluster-
level model with algorithms like ring-allreduce [42] and uploading

C-FL C-FL→H-FL H-FL→H-FL𝑏 C-FL→Distributed C-FL→Hybrid H-FL→CO-FL

Code + trainer
+ global-agg + agg N/A - global-agg

Δ inheritance Δ inheritance + coordinator
Δ inheritance

TAG + channel + channel Δ groupBy Δ channel
Δ backend
Δ channel
Δ groupBy

+ replica
+ channels
Δ groupBy

Metadata + init info Δ datasetGroups Δ datasetGroups N/A Δ datasetGroups Δ datasetGroups

Table 4: Changes required to transform from one topology to another. The TAG representation of C-FL, H-FL, Distributed and
Hybrid is showcased in Figure 2 while TAG for CO-FL (Figure 1d) is shown in Figure 8. H-FL𝑏 represents H-FL topology with
different grouping options. +, - and Δ represent addition, removal and update respectively and N/A indicates no change. “Δ
inheritance” implies the switch of a base class from one to another, which is a single line change in user’s ML program.

a single copy of cluster-level model enables efficient aggregation at
the aggregator.

Flame can easily realize Hybrid FL by configuring the TAG to
use two different backends: (1) MQTT backend is used for channel
between aggregator and trainer, and (2) P2P backend is for one
between trainers. For an experiment, we emulate different band-
width on each backend, by utilizing Linux tc tool. Specifically, we
create a hybrid topology that consists of 50 trainers. One trainer is
chosen as a straggler with a limited bandwidth of 1 Mbps between
an aggregator and itself. P2P backend is given with a maximum
bandwidth of 100 Mbps. The trainers are equally divided into five
groups. For comparison, we also set up C-FL topology with the
exactly same setting except that MQTT backend is only used.

Figure 11 shows the test accuracy over wall-clock time of a job
with MNIST dataset [12]. Each point in the figure represents a
round. The results suggest that Hybrid FL converges faster than C-
FL, by achieving 2.21× speedup in reaching 0.985 in accuracy. This
is due to the efficient aggregation of Hybrid FL without straggler.
Hybrid FL also consumes less bandwidth (25 MB/round) compared
to C-FL (250 MB/round) to upload model updates. This experiment
demonstrates that Flame allows flexible communication backend
configurations and that such flexibility can help design and experi-
ment new FL approaches.

6.3 Topology Transformation: User Perspective
The topologies introduced in this paper are provided as templates
in Flame. The mechanisms for those topologies are available too.
Thus, to compose their ML job, users can pick and use one that
best suits their needs. However, the requirements and constraints
for the ML job may change over time, which may require topology
transformations and learning mechanisms. To demonstrate how
easily these transformations can be made, we walk through the
steps of transforming to other topologies, starting with a basic C-FL
topology.
Classical→Hierarchical. C-FL topology consists of trainers and
global aggregator. To transform from C-FL to H-FL, a user needs to
introduce an (+) aggregator role and a new connecting (+) channel
with the new aggregator. Finally, to allow the grouping of trainer
nodes the (Δ) datasetGroups attribute in metadata information is
updated.

Classical→Distributed. In FL, trainers send their model weights
to the aggregator while in distributed learning they are shared
among all the nodes directly. Flame SDK provides a separate trainer
base class for federated and distributed learning. Thus, from the
user’s perspective, C-FL to distributed training change requires,
removing the global aggregator, (Δ) updating the inherited base
trainer class, and (Δ) altering TAG representation where the trainer-
aggregator channel is updated to trainer-trainer channel as shown
in Figure 2b.
Classical→Hybrid. Transformation from C-FL to hybrid topology
entails two steps: First, it would require (Δ) updating the inherited
trainer and global aggregator class. Again, the Flame SDK pro-
vides base classes for hybrid topology, thus, a user just needs to
change the inherited parent class name in the trainer and global
aggregator role’s program. Then, it needs (Δ) to change the TAG to
create appropriate channels and backends and change groupBy and
datasetGroups to group co-located datasets.
Hierarchical→Coordinated. CO-FL is different from H-FL in
that a coordinator oversees a federated learning process. Therefore,
in CO-FL, a user needs to introduce the coordinator, (Δ) update
the inheritance of classes for the global aggregator, aggregator, and
trainer, and add new channels between the coordinator and the
rest of the roles. In addition, grouping between aggregators and
trainers can be dynamic based on the coordinator’s logic. For that,
the user (Δ) updates groupBy and datasetGroups as a single group
and configures replica in the TAG.

6.4 System Comparison
Because a system like FedML [21] is an effort to create improved
abstractions for federated learning, we present Table 5 to give an
overview of the differences in the functionality provided by both
the system. For comprehensive feature comparison among other
frameworks, we also present Table 7 in the appendix.
Topology Implementation. The role in Flame provides a gran-
ular abstraction that allows the developer to implement different
components of federated learning as individual roles. This allows
ML engineers to focus only on the ML related logic and it further
helps in selectively updating different parts of the deployment or
topology without touching other components. Contrary to that,
FedML adopts a client-server architecture which provides a tight

Feature Flame FedML

Standard Topology FL, H-FL, Distributed, Hybrid, Coordinated FL, H-FL, Distributed
New/Update Topology TAG Changes/Role logic New Implementation in Core library
New Component Role and its logic New class, modify the core library server component and redeploy it
Communication Different protocol for each channel Same protocol for all channels
Infrastructure Bring your own or use existing Bring your own
Deployment Automatically deploys Developer select compute and deploys

Table 5: Comparing the changes required in Flame and FedML to implement any topology, introduce new components, update
communication backend, and support deployment.

coupling between various tasks executed by a learning job. Cre-
ating new components such as coordinator or transforming from
one topology to another would require the developer to implement
the logic by modifying the core library, while Flame’s program-
ming model allows the developer to introduce new logic without
touching any core system library.
Communication Backend. Both systems support easy integra-
tion of different communication protocols such as MQTT, MPI,
gRPC, etc., however, these systems differ in the extensibility and
flexibility granularity they provide. The logical graph abstraction
adopted by Flame breaks down the connection between different
roles (workers) into channel which provides per-channel communi-
cation control for any FL topology. The client-server architecture in
FedML does not allow per-worker connections to be configurable.
It takes the communication configuration at the global level and
uses it for all the workers (trainers and aggregators), which means
that all nodes use the same communication backend.
Deployment and Grouping Support. The deployment of an FL
application can be categorized in two ways. First, compute centric
approach, where the application developer is responsible to secure
the compute and then deploy the ML code to start the learning
process. Second, compute agnostic approach, where the developer
provides the ML code and instruction/rules about the type of com-
pute required by each worker. The system is then responsible to
find the compute units to create the group, deploy the code, and
start the learning process. FedML follows compute centric approach,
which requires the participant to select appropriate nodes based
on constraints associated with the data, such as GDPR rules, or to
create groups such as in the case of H-FL. Flame, by associating
the channel’s groupBy attribute with metadata datasetGroups infor-
mation, enables groupings among workers in the same role. This
permits Flame to dynamically create groups for complex topologies
such as hierarchal, distributed, or hybrid. In Flame, realm allows
the system to automatically determine the compute clusters where
specific role should be deployed. Then, the deployer component
in Flame allows the system to connect to different compute clus-
ters managed by different resource orchestrators, which can spawn
workers automatically, thus following a compute agnostic approach.

6.5 TAG Expansion Overhead
To prepare for actual deployment, the first step at the management
plane of Flame is to expand TAG. Once TAG is expanded, Flame
utilizes underlying cluster management solutions, such as Helm

Topology Task Number of Workers

1 10 100 1,000 10,000 100,000

Classical FL Expansion 0.005 0.006 0.036 0.329 3.183 31.990
DB Write 0.007 0.008 0.037 0.315 2.781 27.971

Coordinated FL Expansion 0.006 0.012 0.041 0.320 3.190 32.538
DB Write 0.033 0.035 0.061 0.317 2.901 27.232

Table 6: TAG expansion latency in seconds.

(for Kubernetes), to deploy workers as containers to perform their
tasks in an FL job. Deployment time can vary significantly based
on several factors, such as the distance between the management
plane and remote compute clusters, network bandwidth, cluster
resource availability, job size, etc. These types of deployment issues
are ubiquitous in geo-distributed job or workload scenarios. As
a result, the evaluation of this deployment aspect is beyond the
scope of this paper and we instead analyze the overhead of TAG
expansion.

We conducted experiments to measure the latency of TAG ex-
pansion and database write of its results on Flame for different
FL topologies, namely C-FL (Figure 1b) and CO-FL (Figure 1d), as
shown in Table 6. We evaluated the latency with varying num-
bers of trainers, and CO-FL was configured with 100 replicas and
a coordinator. The results demonstrate that the overhead of TAG
expansion on Flame is comparable across different FL topologies.
Additionally, the results show that Flame is highly scalable, achiev-
ing TAG expansion on 100,000 trainers under a minute for both FL
topologies. The current implementation can be further optimized
since it only uses a single CPU core and data is duplicated during
the expansion.

7 RELATEDWORK
Library.Machine learning libraries provide lower-level interfaces
for concisely expressing models. They provide a collection of pre-
built algorithms, functions, and tools for developing, training, and
deploying machine learning models. TensorFlow [2], PyTorch [41],
and scikit-learn [43] are some of the ML libraries providing lower-
level interfaces for concisely expressing ML models, with the ability
to create custom models and learning algorithms. These libraries
are used to create ML models from the ground up while users need
to build their system and integrate it with these models. Flame
allows developers to use any such ML libraries.
Frameworks. Spark ML [54] and Apache MXNet [8] are open
source frameworks mainly for distributed learning. Systems such

as Flower [4], FedScale [25], and PySyft [48] provide low level APIs
which make them flexible. Unlike Flame, they cannot be easily
extended to support different deployment scenarios as they lack
suitable abstractions. OpenFL [16] is another FL framework based
on a client-server architecture with two components: (1) collab-
orator, which uses a local dataset to train global models, and (2)
aggregator, which receives the model updates and combines them
to create the global model. Nvidia Clara [39] is an application frame-
work specifically designed for healthcare use cases. There are other
FL frameworks like FedML, which are based on client-server archi-
tecture and lack support for diverse FL configurations, required to
express and extend the evolving deployment requirements.
Simulators.Machine learning simulators enable quick testing of
various machine learning algorithms, models, and techniques in
a simulated environment. FedJAX [47] is a research-focused fed-
erated learning simulator that provides an API for building and
training machine learning models using a variety of federated learn-
ing algorithms. Flute [13] is another federated learning simulator
that focuses on scalability and efficiency. FLSim [29] is also a fed-
erated learning simulator that allows users to explore the effects
of different federated learning algorithms and hyperparameters
on model performance. Flame does not provide a simulator but it
supports small scale emulation via the Flame-in-a-box.

8 CONCLUSION
In this paper we introduce Flame, a system that enables composabil-
ity and extensibility for federated learning topologies, thus provid-
ing support for FLOps tasks. It relies on logical TAG representation
of physical topology that exposes new capability to explicitly spe-
cialize the behavior and configuration of individual components
in any learning system. Its programming model facilitates easy
extensions without requiring any modification on its core library.
It also provides basic support that makes it possible to deal with
heterogeneous deployment environments. We open sourced the
system to help researchers and developers build FL applications in
modular fashion and accelerate the progress of federated learning.

A APPENDIX
Table 7 provides a summary of the key features of existing FL
frameworks, based on their public repositories as of May 5th, 2023.
While the table showcases Flame’s strengths in comparison to other
frameworks, it is not intended to be exhaustive. For instance, FedML
offers several other algorithms and FedScale offers other features
such as cohort-based learning [33]. Although we took great care in
conducting code analysis, we encountered ambiguities in certain
aspects during the comparison.We encourage the readers to explore
the complete list of features offered by each framework through
their project web page or GitHub repositories.

REFERENCES
[1] [n.d.]. Apache Airflow. https://airflow.apache.org.
[2] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. {TensorFlow}: A System for {Large-Scale} Machine Learning. In 12th
USENIX symposium on operating systems design and implementation (OSDI 16).
265–283.

[3] Durmus Alp Emre Acar, Yue Zhao, Ramon Matas, Matthew Mattina, Paul What-
mough, and Venkatesh Saligrama. 2021. Federated Learning Based on Dy-
namic Regularization. In International Conference on Learning Representations.
https://openreview.net/forum?id=B7v4QMR6Z9w

[4] Daniel J. Beutel, Taner Topal, Akhil Mathur, Xinchi Qiu, Javier Fernandez-
Marques, Yan Gao, Lorenzo Sani, Kwing Hei Li, Titouan Parcollet, Pedro
Porto Buarque de Gusmão, and Nicholas D. Lane. 2020. Flower: A Friendly Feder-
ated Learning Research Framework. https://doi.org/10.48550/ARXIV.2007.14390

[5] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex
Ingerman, Vladimir Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi,
Brendan McMahan, et al. 2019. Towards federated learning at scale: System
design. Proceedings of Machine Learning and Systems 1 (2019), 374–388.

[6] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan
McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2017. Practi-
cal Secure Aggregation for Privacy-Preserving Machine Learning. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’17). Association for Computing Machinery, New York, NY, USA, 1175–1191.
https://doi.org/10.1145/3133956.3133982

[7] Anna L Buczak and Erhan Guven. 2015. A survey of data mining and machine
learning methods for cyber security intrusion detection. IEEE Communications
surveys & tutorials 18, 2 (2015), 1153–1176.

[8] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun
Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2015. MXNet: A Flexible
and Efficient Machine Learning Library for Heterogeneous Distributed Systems.
CoRR abs/1512.01274 (2015). arXiv:1512.01274 http://arxiv.org/abs/1512.01274

[9] Harshit Daga, Yiwen Chen, Aastha Agrawal, and Ada Gavrilovska. 2021. Ca-
noe: A System for Collaborative Learning for Neural Nets. arXiv preprint
arXiv:2108.12124 (2021).

[10] Harshit Daga, Patrick K Nicholson, Ada Gavrilovska, and Diego Lugones. 2019.
Cartel: A system for collaborative transfer learning at the edge. In Proceedings of
the ACM Symposium on Cloud Computing. 25–37.

[11] Randy DeFauw and Collin Cudd. December 2021. Applying Federated Learn-
ing for ML at the Edge. https://aws.amazon.com/blogs/architecture/applying-
federated-learning-for-ml-at-the-edge/.

[12] Li Deng. 2012. The mnist database of handwritten digit images for machine
learning research. IEEE Signal Processing Magazine 29, 6 (2012), 141–142.

[13] Dimitrios Dimitriadis, Mirian Hipolito Garcia, Daniel Madrigal Diaz, Andre
Manoel, and Robert Sim. 2022. Flute: A scalable, extensible framework for high-
performance federated learning simulations. arXiv preprint arXiv:2203.13789
(2022).

[14] Cynthia Dwork. 2006. Differential Privacy. In Automata, Languages and Pro-
gramming, Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1–12.

[15] Meherwar Fatima, Maruf Pasha, et al. 2017. Survey of machine learning al-
gorithms for disease diagnostic. Journal of Intelligent Learning Systems and
Applications 9, 01 (2017), 1.

[16] Patrick Foley, Micah J Sheller, Brandon Edwards, Sarthak Pati, Walter Riviera,
Mansi Sharma, Prakash Narayana Moorthy, Shi-han Wang, Jason Martin, Parsa
Mirhaji, Prashant Shah, and Spyridon Bakas. 2022. OpenFL: the open federated
learning library. Physics in Medicine & Biology (2022). https://doi.org/10.1088/
1361-6560/ac97d9

[17] Yuanxiong Guo, Ying Sun, Rui Hu, and Yanmin Gong. 2022. Hybrid Local SGD
for Federated Learning with Heterogeneous Communications. In International
Conference on Learning Representations.

[18] Andrew Hard, Chloé M Kiddon, Daniel Ramage, Francoise Beaufays, Hubert
Eichner, Kanishka Rao, Rajiv Mathews, and Sean Augenstein. 2018. Federated
Learning for Mobile Keyboard Prediction. https://arxiv.org/abs/1811.03604

[19] Stephen Hardy, Wilko Henecka, Hamish Ivey-Law, Richard Nock, Giorgio Patrini,
Guillaume Smith, and Brian Thorne. 2017. Private federated learning on vertically
partitioned data via entity resolution and additively homomorphic encryption.
https://doi.org/10.48550/ARXIV.1711.10677

[20] Stephen Hardy, Wilko Henecka, Hamish Ivey-Law, Richard Nock, Giorgio Patrini,
Guillaume Smith, and Brian Thorne. 2017. Private federated learning on vertically
partitioned data via entity resolution and additively homomorphic encryption.
arXiv:cs.LG/1711.10677

[21] Chaoyang He, Songze Li, Jinhyun So, Xiao Zeng, Mi Zhang, Hongyi Wang,
Xiaoyang Wang, Praneeth Vepakomma, Abhishek Singh, Hang Qiu, et al. 2020.
Fedml: A research library and benchmark for federated machine learning. arXiv
preprint arXiv:2007.13518 (2020).

[22] Dzmitry Huba, John Nguyen, Kshitiz Malik, Ruiyu Zhu, Mike Rabbat, Ashkan
Yousefpour, Carole-Jean Wu, Hongyuan Zhan, Pavel Ustinov, Harish Srinivas,
et al. 2022. Papaya: Practical, private, and scalable federated learning. Proceedings
of Machine Learning and Systems 4 (2022), 814–832.

[23] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Se-
bastian Stich, and Ananda Theertha Suresh. 2020. SCAFFOLD: Stochastic
Controlled Averaging for Federated Learning. In Proceedings of the 37th In-
ternational Conference on Machine Learning (Proceedings of Machine Learning
Research), Hal Daumé III and Aarti Singh (Eds.), Vol. 119. PMLR, 5132–5143.

https://openreview.net/forum?id=B7v4QMR6Z9w
https://doi.org/10.48550/ARXIV.2007.14390
https://doi.org/10.1145/3133956.3133982
http://arxiv.org/abs/1512.01274
https://doi.org/10.1088/1361-6560/ac97d9
https://doi.org/10.1088/1361-6560/ac97d9
https://arxiv.org/abs/1811.03604
https://doi.org/10.48550/ARXIV.1711.10677
http://arxiv.org/abs/cs.LG/1711.10677

Feature Flame (ours) FedML [21] Flower [4] FedScale [25]

Topology

Classical FL [36] ✓ ✓ ✓ ✓

Hierarchical FL [34] ✓ ✓ ✗ ✗

Distributed FL [21] ✓ ✓ ✗ ✗

Hybrid FL [17] ✓ ✗ ✗ ✗

Coordinated FL [5] ✓∗ ✗ ✗ ✗

Vertical FL [20] ✗ ✓ ✗ ✗

Async Hierarchical FL ✓ ✗ ✗ ✗

Async Coordinated FL ✓ ✗ ✗ ✗

Protocol

gRPC ✓ ✓ ✓ ✓

MQTT ✓ ✓ ✗ ✗

MPI ✗ ✓ ✗ ✗

NCCL ✗ ✓ ✗ ✗

Aggregation Policy
Synchronous FL [36] ✓ ✓ ✓ ✓

Asynchronous FL [37] ✓ ✓† ✗ ✓

Algorithm‡

FedAvg [36] ✓ ✓ ✓ ✓

FedProx [30] ✓ ✓ ✓ ✓

FedAdam [46] ✓ ✗ ✓ ✗

FedAdagrad [46] ✓ ✗ ✓ ✗

FedYogi [46] ✓ ✗ ✓ ✓

FedDyn [3] ✓ ✓ ✗ ✗

FedBuff§ [37] ✓ ✓† ✗ ✓

SCAFFOLD [23] ✗ ✓ ✗ ✗

q-FedAvg [32] ✗ ✗ ✓ ✓

FedNova [51] ✗ ✓ ✓ ✗

Client Selection

Select All ✓ ✓ ✓ ✓

Random [36] ✓ ✓ ✓ ✓

FedBuff§ [37] ✓ ✓† ✗ ✓

Oort [26] ✓ ✗ ✗ ✓

Sample Selection
Select All ✓ ✓ ✓ ✓

FedBalancer [50] ✓ ✗ ✗ ✗

Security
Differential Privacy [14] ✓ ✓ ✓ ✓

Secure Aggregation [6] ✗ ✓ ✗ ✗

Table 7: Comparing Flame with other FL frameworks. †: simulation; ∗: simplified version of an original architecture; ‡: widely
used algorithms listed; others (e.g., FedML) implemented several other algorithms (omitted for brevity); §: both aggregation
algorithm and client selection are included.

https://proceedings.mlr.press/v119/karimireddy20a.html
[24] Shristi Shakya Khanal, PWC Prasad, Abeer Alsadoon, and Angelika Maag. 2020.

A systematic review: machine learning based recommendation systems for e-
learning. Education and Information Technologies 25, 4 (2020), 2635–2664.

[25] Fan Lai, Yinwei Dai, Sanjay Singapuram, Jiachen Liu, Xiangfeng Zhu, Harsha
Madhyastha, and Mosharaf Chowdhury. 2022. FedScale: Benchmarking Model
and System Performance of Federated Learning at Scale. In Proceedings of the 39th
International Conference on Machine Learning (Proceedings of Machine Learning
Research), Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang
Niu, and Sivan Sabato (Eds.), Vol. 162. PMLR, 11814–11827. https://proceedings.
mlr.press/v162/lai22a.html

[26] Fan Lai, Xiangfeng Zhu, Harsha V Madhyastha, and Mosharaf Chowdhury. 2020.
Oort: Informed participant selection for scalable federated learning. arXiv preprint
arXiv:2010.06081 (2020).

[27] Anusha Lalitha, Osman Cihan Kilinc, Tara Javidi, and Farinaz Koushanfar. 2019.
Peer-to-peer Federated Learning on Graphs. https://doi.org/10.48550/ARXIV.

1901.11173
[28] Martin Leo, Suneel Sharma, and Koilakuntla Maddulety. 2019. Machine learning

in banking risk management: A literature review. Risks 7, 1 (2019), 29.
[29] Li Li, Jun Wang, and ChengZhong Xu. 2020. FLSim: An Extensible and Reusable

Simulation Framework for Federated Learning. In International Conference on
Simulation Tools and Techniques. Springer, 350–369.

[30] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar,
and Virginia Smith. 2020. Federated optimization in heterogeneous networks.
Proceedings of Machine Learning and Systems 2 (2020), 429–450.

[31] Tian Li, Maziar Sanjabi, Ahmad Beirami, and Virginia Smith. 2020. Fair Resource
Allocation in Federated Learning. In 8th International Conference on Learning Rep-
resentations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net.
https://openreview.net/forum?id=ByexElSYDr

[32] Tian Li, Maziar Sanjabi, Ahmad Beirami, and Virginia Smith. 2020. Fair Re-
source Allocation in Federated Learning. In International Conference on Learning
Representations. https://openreview.net/forum?id=ByexElSYDr

https://proceedings.mlr.press/v119/karimireddy20a.html
https://proceedings.mlr.press/v162/lai22a.html
https://proceedings.mlr.press/v162/lai22a.html
https://doi.org/10.48550/ARXIV.1901.11173
https://doi.org/10.48550/ARXIV.1901.11173
https://openreview.net/forum?id=ByexElSYDr
https://openreview.net/forum?id=ByexElSYDr

[33] Jiachen Liu, Fan Lai, Yinwei Dai, Aditya Akella, Harsha Madhyastha, and
Mosharaf Chowdhury. 2022. Auxo: Heterogeneity-Mitigating Federated Learning
via Scalable Client Clustering. arXiv:cs.LG/2210.16656

[34] Lumin Liu, Jun Zhang, SH Song, and Khaled B Letaief. 2020. Client-edge-cloud
hierarchical federated learning. In ICC 2020-2020 IEEE International Conference
on Communications (ICC). IEEE, 1–6.

[35] Siqi Luo, Xu Chen, Qiong Wu, Zhi Zhou, and Shuai Yu. 2020. HFEL: Joint Edge
Association and Resource Allocation for Cost-Efficient Hierarchical Federated
Edge Learning. IEEE Transactions on Wireless Communications 19, 10 (2020),
6535–6548. https://doi.org/10.1109/TWC.2020.3003744

[36] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep net-
works from decentralized data. In Artificial intelligence and statistics. PMLR,
1273–1282.

[37] John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Mike Rab-
bat, Mani Malek, and Dzmitry Huba. 2022. Federated Learning with Buffered
Asynchronous Aggregation. In Proceedings of The 25th International Conference
on Artificial Intelligence and Statistics (Proceedings of Machine Learning Research),
Gustau Camps-Valls, Francisco J. R. Ruiz, and Isabel Valera (Eds.), Vol. 151. PMLR,
3581–3607. https://proceedings.mlr.press/v151/nguyen22b.html

[38] Takayuki Nishio and Ryo Yonetani. 2019. Client selection for federated learning
with heterogeneous resources in mobile edge. In ICC 2019-2019 IEEE international
conference on communications (ICC). IEEE, 1–7.

[39] Nvidia. [n.d.]. Nvidia Clara. https://developer.nvidia.com/industries/healthcare
[40] European Parliament and Council of the European Union. 2018. EU General Data

Protection Regulation. https://eugdpr.org/.
[41] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

[42] Pitch Patarasuk and Xin Yuan. 2009. Bandwidth optimal all-reduce algorithms
for clusters of workstations. J. Parallel Distributed Comput. 69 (2009), 117–124.

[43] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[44] Ujjwal Ratan and Vidya Sagar Ravipati. 2022. Managed federated learning on
AWS: A case study for healthcare. https://d1.awsstatic.com/events/aws-re-
mars-event-2022/Managed_federated_learning_on_AWS__A_case_study_for_

healthcare_MLR312.pdf. Accessed: October 18 2022.
[45] Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush,

Jakub Konečný, Sanjiv Kumar, and H. Brendan McMahan. 2020. Adaptive Feder-
ated Optimization. https://doi.org/10.48550/ARXIV.2003.00295

[46] Sashank J. Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush,
Jakub Konečný, Sanjiv Kumar, and Hugh Brendan McMahan. 2021. Adaptive
Federated Optimization. In International Conference on Learning Representations.
https://openreview.net/forum?id=LkFG3lB13U5

[47] Jae Hun Ro, Ananda Theertha Suresh, and Ke Wu. 2021. Fedjax: Federated
learning simulation with jax. arXiv preprint arXiv:2108.02117 (2021).

[48] Theo Ryffel, Andrew Trask, Morten Dahl, Bobby Wagner, Jason Mancuso, Daniel
Rueckert, and Jonathan Passerat-Palmbach. 2018. A generic framework for
privacy preserving deep learning. https://doi.org/10.48550/ARXIV.1811.04017

[49] David Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Diet-
mar Ebner, Vinay Chaudhary, Michael Young, Jean-Francois Crespo, and Dan
Dennison. 2015. Hidden technical debt in machine learning systems. Advances
in neural information processing systems 28 (2015).

[50] Jaemin Shin, Yuanchun Li, Yunxin Liu, and Sung-Ju Lee. 2022. FedBalancer: Data
and Pace Control for Efficient Federated Learning on Heterogeneous Clients.
In Proceedings of the 20th Annual International Conference on Mobile Systems,
Applications and Services (MobiSys ’22). Association for Computing Machinery,
New York, NY, USA, 436–449. https://doi.org/10.1145/3498361.3538917

[51] Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H. Vincent Poor. 2020.
Tackling the Objective Inconsistency Problem in Heterogeneous Federated Opti-
mization. In Advances in Neural Information Processing Systems, H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Vol. 33. Curran Asso-
ciates, Inc., 7611–7623. https://proceedings.neurips.cc/paper_files/paper/2020/
file/564127c03caab942e503ee6f810f54fd-Paper.pdf

[52] Thorsten Wuest, Daniel Weimer, Christopher Irgens, and Klaus-Dieter Thoben.
2016. Machine learning in manufacturing: advantages, challenges, and applica-
tions. Production & Manufacturing Research 4, 1 (2016), 23–45.

[53] Timothy Yang, Galen Andrew, Hubert Eichner, Haicheng Sun, Wei Li, Nicholas
Kong, Daniel Ramage, and Françoise Beaufays. 2018. Applied Federated Learning:
ImprovingGoogle KeyboardQuery Suggestions. https://arxiv.org/abs/1812.02903

[54] Matei Zaharia, Reynold S Xin, PatrickWendell, Tathagata Das, Michael Armbrust,
Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J
Franklin, et al. 2016. Apache spark: a unified engine for big data processing.
Commun. ACM 59, 11 (2016), 56–65.

http://arxiv.org/abs/cs.LG/2210.16656
https://doi.org/10.1109/TWC.2020.3003744
https://proceedings.mlr.press/v151/nguyen22b.html
https://developer.nvidia.com/industries/healthcare
https://d1.awsstatic.com/events/aws-re-mars-event-2022/Managed_federated_learning_on_AWS__A_case_study_for_healthcare_MLR312.pdf
https://d1.awsstatic.com/events/aws-re-mars-event-2022/Managed_federated_learning_on_AWS__A_case_study_for_healthcare_MLR312.pdf
https://d1.awsstatic.com/events/aws-re-mars-event-2022/Managed_federated_learning_on_AWS__A_case_study_for_healthcare_MLR312.pdf
https://doi.org/10.48550/ARXIV.2003.00295
https://openreview.net/forum?id=LkFG3lB13U5
https://doi.org/10.48550/ARXIV.1811.04017
https://doi.org/10.1145/3498361.3538917
https://proceedings.neurips.cc/paper_files/paper/2020/file/564127c03caab942e503ee6f810f54fd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/564127c03caab942e503ee6f810f54fd-Paper.pdf
https://arxiv.org/abs/1812.02903

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Federated Learning
	2.2 Federated Learning Operations
	2.3 Current Ecosystem

	3 Flame
	4 Design
	4.1 Topology Abstraction Graph
	4.2 TAG Expansion
	4.3 Resource Annotation for Deployment
	4.4 Programming Model

	5 Management Plane
	5.1 System Components
	5.2 Workflow
	5.3 Implementation

	6 Evaluation
	6.1 Extension for New Mechanisms
	6.2 Flexible Backend
	6.3 Topology Transformation: User Perspective
	6.4 System Comparison
	6.5 TAG Expansion Overhead

	7 Related Work
	8 Conclusion
	A Appendix
	References

