
1

Adapting to Unknown Conditions
in Learning-based Mobile Sensing

Taesik Gong, Yeonsu Kim, Ryuhaerang Choi, Jinwoo Shin, and Sung-Ju Lee

Abstract—Many applications utilize sensors on mobile devices and apply deep learning for diverse applications. However, they have
rarely enjoyed mainstream adoption due to many different individual conditions users encounter. Individual conditions are
characterized by users’ unique behaviors and different devices they carry, which collectively make sensor inputs different. It is
impractical to train countless individual conditions beforehand and we thus argue meta-learning is a great approach in solving this
problem. We present MetaSense that leverages “seen” conditions in training data to adapt to an “unseen” condition (i.e., the target
user). Specifically, we design a meta-learning framework that learns “how to adapt” to the target via iterative training sessions of
adaptation. MetaSense requires very few training examples from the target (e.g., one or two) and thus requires minimal user effort. In
addition, we propose a similar condition detector (SCD) that identifies when the unseen condition has similar characteristics to seen
conditions and leverages this hint to further improve the accuracy. Our evaluation with 10 different datasets shows that MetaSense
improves the accuracy of state-of-the-art transfer learning and meta learning methods by 15% and 11%, respectively. Furthermore, our
SCD achieves additional accuracy improvement (e.g., 15% for human activity recognition).

Index Terms—Mobile computing, mobile sensing, machine learning, meta learning, few-shot learning

F

1 INTRODUCTION

With the utilization and coupling between deep learning
and various sensors in mobile devices, mobile sensing appli-
cations are services have become boundless. Recent mobile
sensing applications include human activity recognition [1],
[2], [3], [4], acoustic context recognition [5], [6], device-
free authentication [7], [8], sign language recognition [9],
emotional status recognition [10], [11], and even Parkinson’s
disease detection [12]. These mobile sensing applications
show the potential of benefits from context-based services,
enabled by a single device, e.g., a smartphone.

Although these mobile sensing applications have great
potential for enriching our daily lives, most fail to enjoy
mainstream adoption and remain as merely research pro-
totypes due to the critical challenge when deployed to real
users: performance degradation caused by different individ-
ual conditions users have. We refer to an individual condition
as a combination of all user-specific dependencies that affect
sensor readings (e.g., the user’s behavior pattern and the
specific device the user has). For example, in human activity
recognition with smartphone motion sensors, users have
different characteristics in their behaviors for the same activ-
ity; someone walks slowly while others fast with their own
walk stride. In addition, their mobile devices have unique

• Taesik Gong is with School of Computing, KAIST, Republic of Korea.
E-mail: taesik.gong@kaist.ac.kr

• Yeonsu Kim is with School of Computing, KAIST, Republic of Korea.
E-mail: yeonsu.kim@kaist.ac.kr

• Ryuhaerang Choi is with School of Computing, KAIST, Republic of Korea.
E-mail: fkdfkd98@kaist.ac.kr

• Jinwoo Shin is with Graduate School of AI and School of Electrical
Engineering, KAIST, Republic of Korea.
E-mail: jinwoos@kaist.ac.kr

• Sung-Ju Lee is with School of Electrical Engineering, KAIST, Republic of
Korea.
E-mail: profsj@kaist.ac.kr

Manuscript received April 19, 2005; revised August 26, 2015.

specifications such as weight, shape, sensor sampling rates,
errors and biases, to name a few. These dependencies, as
they make sensor readings dissimilar, significantly degrade
the performance of mobile sensing [13], [14], [15]. Con-
sidering the possible number of different user behaviors
and devices, and even the numerous combinations between
them, it is an important research question to overcome
individual conditions for mobile sensing to be practically
available for wider deployment.

As deep learning performs well under trained condi-
tions, a naı̈ve approach to solve this problem is to train
a model on all possible individual conditions beforehand.
However, in order to train numerous parameters without
overfitting, it often requires more than thousands of training
instances [16], [17], [18]. This approach is infeasible as it
requires the tedious and costly work of data collection and
labeling process of every user. Sensor calibration or extract-
ing condition-independent features have been considered as
an alternative [14], [19], [20], [21], [22], [23], [24], [25], [26].
For example, one can use the squared sum of the each x, y,
and z axis of accelerometer values to make it an orientation-
independent feature with motions sensors [19], [23]. This
approach, however, is limited to a specific sensor type
(e.g., accelerometers), a specific dependency (e.g., phone
orientation), or a specific application (e.g., human activity
recognition). As it requires a new tailored method when the
sensor type, dependency, and application vary, this cannot
be a general solution for diverse types of mobile sens-
ing applications. We are motivated by the aforementioned
challenges and the limitations of existing approaches, and
seek to answer the following important question: “How
to overcome the individual condition problem in mobile
sensing with minimal user efforts?”

We present MetaSense, a framework that is capable of
adapting to unknown individual conditions with very few

2

training examples (e.g., one or two) from the target user’s
condition, i.e., few-shot adaptation. To handle many individ-
ual conditions, we design a meta learning framework for
mobile sensing. Specifically, from available (seen) training
dataset, MetaSense first generates multiple episodic tasks via
our unique task generation strategies. Each task is specially
designed to teach the sensing model how to adapt to new
conditions. With these tasks, MetaSense trains the model in
a way that its parameters are adaptive to condition changes.
Once the model is trained, it has the ability to adapt its
parameters to the target users’ condition given only few
training examples from the target before using the model.
MetaSense has several advantages over exiting solutions: (i)
While achieving high accuracy with adaptation, MetaSense
significantly reduces users’ burden of data collection as it
requires only few training examples just once before using
the model. (ii) MetaSense requires less adaptation time
than conventional training of deep neural networks and
thus is suited for resource-constrained mobile devices. (iii)
MetaSense can be applied to any deep learning models, any
type of sensors, or any type of applications, and thus it is a
general model-agnostic and condition-agnostic solution.

Existing meta learning algorithms for few-shot learn-
ing [27], [28], [29], [30] train the models with a large cor-
pus of image data. In mobile sensing however, there are
limited number of available datasets and aforementioned
numerous individual conditions; therefore, meta learning
in mobile sensing requires a different and sophisticated
training method compared to existing methods. The unique
contribution of MetaSense, beyond adopting meta learning
to mobile sensing, is that we design our unique task gen-
eration strategies to maximally utilize the limited data for
training mobile sensing models. We believe MetaSense is
the first realization of meta learning into practical mobile
sensing and thus bridges the gap between research and
practice.

While our first version of MetaSense [31] has shown
good accuracy in mobile sensing when deployed in un-
trained individual conditions, here, we take a step further
and investigate the situation where certain conditions in
the source dataset are similar to a target condition. Differ-
ent mobile sensing applications have their unique sensing
characteristics and thus a different level of heterogeneity
among conditions. Some sensing applications have a less
degree of heterogeneity among conditions. For example,
ambient scene detection [32] and song identification [33] do
not depend on users’ behaviors. When certain conditions in
the source are very similar to the target condition, this can be
an opportunity for MetaSense to improve the performance
for the target condition. To that end, we measure the impact
of utilizing similar conditions and propose similar condition
detector that identifies when similar conditions exist in the
source and leverages the hint to further enhance the accu-
racy (§4).

We evaluate MetaSense with two datasets collected in
the wild: (i) human activity recognition via motions sensors,
and (ii) speech recognition via microphones, which are
collected under realistic settings considering different users’
behaviors, device models and types, sensor positions and
orientations, and so on. We also evaluate MetaSense with
eight different public datasets, including activity detection,

stress detection, and vision datasets to understand the per-
formance and the generalizability of our approach for other
domains. Our evaluation of MetaSense with six baselines
including the state-of-the-art transfer learning [34] and meta
learning algorithms [27], [30] indicates that MetaSense not
only outperforms existing solutions in terms of accuracy but
also requires significantly less adaptation time. In particular,
MetaSense outperforms the accuracy of transfer learning by
15% and meta learning by 11% on average, thanks to our
unique task generation strategies. Moreover, our similar con-
dition detector further improves the performance especially
when only very few data is given (e.g., 15% additional
improvement for the activity recognition dataset).

We summarize our key contributions as follows: (i) We
present MetaSense, a meta-learning based adaptation frame-
work for deep mobile sensing. To the best of our knowledge,
MetaSense is the first attempt to adopt meta learning for
the individual condition problem in deep mobile sensing.
(ii) We propose three task generation strategies to address
limited available data, which are keys to being effective
in mobile sensing. (iii) We propose similar condition detector
that determines whether similar conditions to the target
condition exist in the source dataset and utilizes the hint
for improving the performance.

2 BACKGROUND AND MOTIVATION

We illustrate why models should adapt to individual condi-
tions in mobile sensing. We investigate what are the factors
that degrade in-the-wild performance of mobile sensing
applications and demonstrate the problem through two case
studies; human activity recognition and speech recognition.

2.1 Why Conditions Matter

While recent studies have shown the potential of a variety of
mobile sensing applications powered by deep learning [1],
[2], [3], [4], [5], [6], [7], [8], [9], [10], [11], they must over-
come the challenge of diverse individual conditions for wider
adoption. Mobile sensing applications get input from the
sensors in smart devices for their services, e.g., Inertial
Measurement Unit (IMU) for motions and microphone for
audio. The sensed values, however, are highly dependent on
various conditions. We summarize the following two major
categories where the individual conditions come from.
User dependency: Humans have different physical condi-
tions and behaviors that make them unique between each
other. In human activity recognition (HAR) for instance,
users have dissimilar patterns of “walking” in term of the
speed and stride, which could be confused with someone’s
“running”. In addition, some people prefer to put their
phone in their pocket, while others hold in hand, and each
smartphone position makes different sensor readings even
with the same device. Since users’ behaviors are unbounded
and cannot be easily characterized in advance, user depen-
dency is one of the major obstacles for mobile sensing to
overcome.
Device dependency: Users have their own devices that
have a different shape, weight, sensor specification, and
so on, which make the model get different sensor values.
Especially for IMU sensors, different devices have different

3

raw_activity

0.4

0.6

0.8

1

1.2

1.4

1.6

A
cc

e
le

ra
ti
o
n

P1, Attempt1 P1, Attempt2 P2, Attempt1 P2, Attempt2

Time

(a) Magnitude of acceleration from the activity “jumping”.

-0.3
-0.1
0.1
0.3

1
0
0
0
0
0 P1, Attempt1

-0.3
-0.1
0.1
0.3

1
0
0
0
0
0 P1, Attempt2

-0.3
-0.1
0.1
0.3

1
0
0
0
0
0 P2, Attempt1

-0.3
-0.1
0.1
0.3

1
0
0
0
0
0 P2, Attempt2

A
m

p
li
tu

d
e

Time

raw_speech

(b) Audio waves from the word “yes”.

Fig. 1: Comparison of raw signals between and within users P1 and P2. Attempt 1 and 2 are specified for each user.

sensor biases, errors, and sampling rates [15]. In addition,
software heterogeneity (e.g., different versions of OS) makes
sensor readings different [35]. With the recent spread of
wearable devices, some users might run the sensing ap-
plication in their wearable devices instead of smartphones.
As the number of unique Android devices has already
exceeded over 24,000 in 2015 [36], it seems infeasible to
collect data from all possible devices in advance to train
and make the model work effectively for every device.

Previous studies have shown that the user and device
dependencies degrade the performance of mobile sens-
ing [13], [15]. While there have been attempts to resolve
the dependencies, most focus on isolated dependencies,
e.g., user dependency [19], [37], [38], [39], [40], device po-
sition/orientation [20], [21], [41], and hardware/software
heterogeneity [26], [35]. However, mobile sensing when
deployed in practice, typically faces all of the dependencies.

2.2 Case Study: Activity & Speech Recognition
To understand how the individual condition affects deep
mobile sensing performance, we collected two datasets, i.e.,
activity and speech recognition with ten different users
(P1–P10) and devices (seven smartphones and three smart-
watches). Activity recognition has nine activities and speech
recognition has 14 keywords. Note that there are no du-
plicate devices or users, and data collection is performed
without specific restrictions to allow and encourage differ-
ent behaviors of users. The resulting dataset contains ten
individual conditions from ten users. The details of the
dataset and preprocessing are described in §5.1.1.

Figure 1 compares the raw signal within and between
users P1 and P2. Figure 1a illustrates the square root of
the squared sum of x, y, and z-axis accelerations for the
“jumping” activity of users P1 and P2. We specify two
different instances of the jumping activity as Attempt1 and
Attempt2 in order to compare within-condition variability
to cross-conditions variability. Similarly, Figure 1b shows
the raw audio waves from the keyword “yes”. The top two
graphs show two different instances of P1 while the bottom
two graphs show those of P2. As shown in both figures,
while two different attempts from the same user appear sim-
ilar, different conditions make significantly different sensor
readings even for the same class (i.e., “jumping” and “yes”).
This result clearly suggests that a model trained on some
conditions could perform poorly when faced with a new
condition (§5.2).

3 META-LEARNED ADAPTATION

We present MetaSense by starting with an overview and
the meta learning scheme MetaSense uses (§3.1). We then

detail our task generation algorithms to catalyze the effect
of meta learning (§3.2), followed by the parameter update
algorithm that makes the model adaptive to untrained con-
ditions (§3.3). With the generated model, we explain how
MetaSense can adapt rapidly to a new/unseen user with a
few labeled data (§3.4).

3.1 Overview: Meta-Learned Adaptation

We consider a practical scenario where a model developer
has a source dataset collected under several individual con-
ditions, e.g., activity recognition data from multiple users
measured with their own devices. Under the scenario, the
goal of MetaSense is to adapt to a new/unseen user’s
condition when only a few target user’s data samples are
available. We denote a labeled data instance for each class
as a shot. Note that we assume a few shots (e.g., one or
two) are given from the target user and the original source
dataset does not contain any data samples from the target
user. Namely, a model developer first trains a base model
with the source dataset, and the model further adapts to the
target user’s conditions using very small gradient steps of a
few labeled data samples.

To handle adaptation with only a few shots, we design
a meta learning framework, also known as learning to
learn, to train the model. Meta learning [27], [28], [29], [30]
generally aims to learn a new task or environment rapidly,
by learning how to learn. As an analogy, one can easily
learn how to ride an ice skate if she already knows how to
ride a roller skate. Our intuition behind using meta learning
is that deep mobile sensing systems could be deployed to
numerous unknown individual conditions, which could be
resolved by learning how to adapt to unknown conditions.
Hence, the meta-objective of MetaSense is learning effective
parameters that has an ability to adapt to an unseen condi-
tion.

Figure 2 shows an overview of MetaSense. MetaSense
trains the deep sensing model through two steps, i.e., base-
model training and adaptation. Specifically, MetaSense makes
the base model learn how to adapt to a new condition with
only a few shots and gradient steps. The base model is
trained on a set of tasks, where each task is generated from
the source dataset. Individual task mimics a situation where
the model performs under a new untrained condition. After
training, the base model has the knowledge of how to adapt
to a new condition with a few shots. In the adaptation
step, a target user provides a few shots to the model and
the model adapts its parameters with a small number of
gradient steps (e.g., 10). When the similar condition detector
determines if there are similar source conditions that would
help the adaptation, MetaSense fetches extra shots from

4

Task 1

overview

Base-Model Training (developer-side) Adaptation (user-side)

Source Dataset Task Generation

Parameter Update
via meta learning

Base model

Adapted models

Adaptation

Adaptation

Task 2

User 2

Few shots

Few shots

User 1

Class 1 Class 2 Class M

Class 2Class 1

Class 1

Class M

Class MClass 2

Task 3

Task 4

Class 2Class 1 Class M

…

…

…

…

…

Extra shots

Similar Condition Detector

Fig. 2: MetaSense overview.

the condition, which we detail in §4. After the adaptation
process, the model is ready for the target user’s conditions.

Algorithm 1 MetaSense Base-Model Training

Input: Source dataset D = {(x1,y1), ..., (xN ,yN)}, learn-
ing rate hyperparameters α, β

Output: Trained parameters θ
1: θ ← random initialization
2: while not finished do
3: T ← GENERATETASK(D) . Details in §3.2
4: for Ti ∈ T do
5: STi ← K support samples from Ti
6: QTi ← K query samples from Ti where STi ∩
QTi = ∅

7: Evaluate ∇θLTi(fθ) with STi via Equation (2)
8: θ′Ti = θ − α · ∇θLTi(fθ) . Get Ti-specific

parameters
9: Evaluate LTi(fθ′Ti) with QTi

10: gθ = ∇θ
∑
Ti

LTi(fθ′Ti)

11: θ ← θ − β · ADAM(gθ) . Update θ

Algorithm 1 outlines our base-model training method,
where we provide further details in §3.2 and §3.3. We refer
to D = {(x1,y1), ..., (xN ,yN)} as the source dataset, xi
is an input vector, and yi is a one-hot label vector where
yi ∈ Y , Y is the set of all labels, and |Y| = M . The source
dataset has been collected from multiple conditions. Base-
model training algorithm outputs trained parameters θ for
a deep sensing model fθ(x). With D, MetaSense generates
a set of tasks T that are designed to boost the effect of
meta-learning objective, e.g., learning to adapt to the target
condition (line 3). We explain the details of task generation
in §3.2. From each generated Ti ∈ T , MetaSense samples a
support set and a query set without overlap between them
(line 5–6). For each task, MetaSense computes temporal
parameters θ′Ti via stochastic gradient descent (SGD) with
the support set and evaluates the loss function LTi with
the temporal parameters and the query set (line 7–9).
The final parameters are updated by a meta objective via
Adam optimizer [42], which minimizes the sum of each

task-specific loss (line 11). We detail this parameter update
process in §3.3. Through this meta learning process, the
trained parameters learn an effective way to adapt to the
unseen task, i.e., the target condition.

3.2 Task Generation
Unlike existing meta learning methods where tasks are ran-
domly generated by sampling from a large available dataset,
how to efficiently and effectively leverage the limited source
dataset is the unique challenge in applying meta learning
to mobile sensing. We view each task as each individual
condition in mobile sensing. Thus, the goal of our task
generation is to generate diverse and realistic individual
conditions given the source dataset so that MetaSense can
teach the base model how to adapt to possible condition
changes via various tasks.

MetaSense generates a set of tasks T from D.
Each task Ti ∈ T has a set of data samples,
{(x1,y1), ..., (xNTi ,yNTi

)}. We assume the model devel-
oper has a source dataset D from C individual conditions
(e.g., a user wearing a smartwatch on the left wrist, a user
placing a smartphone in a pocket, etc.). We let a subset of
dataset Dc ⊂ D, an individual condition dataset (ICD) that
represents a dataset from a specific condition such that

C⋃
c=1

Dc = D and Dc ∩ Dd = ∅, (1)

where ∪ is the set of all elements in the collection, c 6=
d, and 1 ≤ c, d ≤ C . We devise three strategies of generating
tasks to maximize the effect of meta learning for few-shot
adaptation to individual conditions as follows.
Per-condition tasks: To mimic a situation where the base
model meets an unseen target condition when deployed to
the target user, we generate each per-condition task from
a sampled data by each ICD. Specifically, we generate Ti
where Ti ⊂ Dc=i for all 1 ≤ i ≤ C as illustrated in Figure 3.
With these tasks, the base model experiences adapting to
real individual conditions. As the number of per-condition
tasks is equal to the number of collected conditions C , the
number of conditions the model developer has affects the
performance of base model training. We found that the

5

task

Source Dataset

𝒯1

Per-condition tasks Multi-conditioned tasks

𝒯2

𝒯3

𝒯4

𝒯5

Five
ICDs

𝒟1

𝒟2

𝒟3

𝒟4

𝒟5

𝒯6

𝒯7

𝒯8

𝒯9

𝒯10

𝑦1 𝑦2 … 𝑦𝑀 𝑦1 𝑦2 … 𝑦𝑀

…

…

…

…

…

…

…

…

…

…

Fig. 3: An illustration of per-condition tasks and multi-
conditioned tasks generated from five individual condi-
tioned datasets (ICDs).

more conditions the base model is trained on, the better
the performance. This is because the base model has more
opportunities in advance to experience diverse conditions
before being deployed to the target user.
Multi-conditioned tasks: We generate multi-conditioned
tasks in addition to per-condition tasks. A multi-conditioned
task is made of samples from randomly selected ICDs. Our
intuition for generating multi-conditioned tasks is to inten-
tionally provide the base model with artificial conditions so
that it can be (i) trained on more diverse tasks beyond per-
conditions tasks while (ii) avoiding possible overfitting to
the per-conditions tasks. We generate C number of multi-
conditioned tasks for each iteration of training in order
to take advantage of the randomness for generalization.
Specifically, for each class label yj ∈ Y , we randomly choose
an ICD Dc and sample data from the dataset for the label
as illustrated in Figure 3. That means for all (xi,yi) in
a multi-conditioned task if yi = yj then (xi,yi) ∈ Dc.
Each multi-conditioned task is thus generated from at most
|Y| = M ICDs. This way, we can generate more realistic
tasks compared to entirely random sampling from D, as it
keeps input distribution within each class.
Homogeneous task generation: We generate the above
tasks with keeping labels consistent across tasks. This is
contrary to existing meta learning approaches [27], [28], [29],
[30] where the labels for each task are mixed randomly, i.e.,
YTi 6= YTj where Ti 6= Tj . Since the objective of most
meta learning studies in machine learning is focused on
adapting to arbitrary tasks that might not have the same
labels, this label mixing strategy would be natural for them.
On the other hand, in our problem, the source and the target
datasets have different distribution but have the same label
space, i.e., YTi = YTj where Ti 6= Tj . We found keeping
labels consistent is effective as it leverages the common
knowledge on the same label set Y across tasks.

Since the source dataset is collected from multiple con-
ditions, it is common to have imbalanced numbers of data
instances among Dc. When generating per-condition and
multi-conditioned tasks, we sample a batch of data uni-
formly across conditions (i.e., giving the same weight to all
conditions and accordingly the generated tasks) in order to
avoid being biased to some conditions that have a higher
number of samples than others.

The generated task set T via the above three strategies
has 2C tasks. The base model iterates each task to update the
parameters as explained next. We evaluate the effectiveness
of our unique task generation strategies in §5.3.

3.3 Parameter Updates

With the generated tasks in §3.2, we train the parameters of
the base model via meta learning. Specifically, MetaSense
employs model-agnostic meta learning (MAML) [27] for
updating the parameters. MAML is applicable to any deep
neural networks that use gradient descent (model-agnostic)
and requires only a few gradient steps to update the model.
The assumption of MAML is that there exist initial parame-
ters that are transferable to a new task with only a few shots.
MAML trains the initial parameters in a way that the trained
parameters are adaptive to change of tasks. Our intuition
behind adopting MAML is that for deep sensing models
there exist effective initial parameters that are transferable
between individual conditions, so that the parameters can
be adapted to the target condition within a few gradient
steps.

From each task Ti, MetaSense samples a support set STi
and a query setQTi that haveK shots, respectively.K should
be a small number (e.g., 5) to simulate a few shots from a tar-
get user. Support sets are used for training the task-specific
parameters θ′Ti , which simulates adapting parameters to a
target condition. Query sets are used for evaluating the task-
specific parameters and eventually updating the parameters
θ of our interest (i.e., the base model). We ensure support
sets and query sets have no overlapping data. We target a
multi-class classification problem and use cross-entropy loss
to evaluate the per-task loss, i.e.,

LTi(fθ) =
∑

(xj ,yj)∈STi

yj log fθ(xj)+(1−yj) log fθ(1−xj).

(2)
We then get Ti-specific parameters θ′Ti with a few gradi-

ent descent steps (e.g., 5 steps):

θ′Ti = θ − α∇θLTi(fθ), (3)

where the task learning rate α is a hyperparameter: it is
usually set as a higher number (e.g., 0.1) than traditional
learning rate to enforce fast adaptation [27].

With the task-specific parameters, we define a meta-
objective function as follows:

argmin
θ

∑
Ti

LTi(fθ′Ti) where θ′Ti = θ − α∇θLTi(fθ). (4)

The meta-objective is finding parameters θ that minimize
the sum of task losses. Note that each task loss LTi is eval-
uated by the task-specific parameters θ′Ti that are calculated
by a few gradient descent steps with a query set that has
a few shots (Eq. (3)). This enforces θ to be sensitive to task
changes so that it becomes effective within a few gradient
steps. Note that the tasks generated by MetaSense reflect
individual conditions. The meta-objective is thus interpreted
as minimizing the sum of task-specific losses, so that the
optimal parameters of θ become an effective initialization of
the model such that with the parameters the model can
rapidly adapt to a new condition after several gradient steps
with a few shots.

The last step is updating the parameters θ by minimizing
the meta objective with Adam optimizer [42]:

6

θ ← θ − β · ADAM(gθ) where gθ = ∇θ
∑
Ti

LTi(fθ′Ti), (5)

and the meta learning rate β is a hyperparameter. Note that
the trained base model fθ has initial parameters θ0 = θ
that are experienced through meta learning with multiple
tasks that simulate encountering unseen conditions in the
real world. The base model is now prepared for adaptation
with a few shots from a target user.

3.4 Adaptation
After the base-model training is performed by the devel-
oper, it could be deployed to real users. The base model
is adapted for the target user with a few shots (e.g., 1 or
2 samples per class) once at the beginning of the sensing
application. We denote U = {(x1,y1), ..., (xL,yL)} as the
target user’s dataset that has L

M shots. In the adaptation, we
assume the target user’s dataset has no identical conditions
to the source dataset that the base model is trained with, i.e.,
D ∩ U = ∅.

Let the base model be fθ0 , where θ0 is the initial parame-
ters that are trained through meta learning. After i gradient
descent steps with the few shots, the parameters become:

θi = θi−1 − α∇θLU (fθi−1
). (6)

Note that since the base model experienced a set of tasks
through Eq. (2)–(5), the trained parameters can effectively
adapt to the target condition with the meta-learned knowl-
edge. While requiring only a few shots from the target user,
another advantage of this parameter update algorithm is
that it takes only a few gradients steps, which significantly
reduces the training time on the resource-constraint mobile
devices. We evaluate the time taken to adapt the model
compared to other deep neural networks baselines in §5.4.

4 SIMILAR CONDITION DETECTOR

For cases where certain conditions in the source dataset
are similar to the target condition, we aim to improve the
classification accuracy by reusing similar source samples
as additional shots for the adaptation step. To this end,
we design the similar condition detector (SCD) that identifies
whether the source dataset includes a similar condition to
the target and fetches additional shots that help adapt to the
target.

4.1 Motivation
Considering numerous combinations of users and devices,
MetaSense learns how to adapt to a target condition via
meta learning, instead of only learning directly from the
available dataset. The assumption that a target condition is
different from source conditions, however, might not hold
in some cases. There are situations where the source dataset
includes a condition that is (highly) similar to the target
condition. For instance, some applications do not involve
user dependency, such as ambient scene detection [32], song
identification [33], earthquake detection [43], etc. As they
depend only on devices, there is a good chance of having
duplicate conditions between source and target conditions.

TABLE 1: Accuracy comparison between traditional DNNs
(Src+Tgt) and MetaSense with and without similar condi-
tions.

W/o similar cond. W/ similar cond.
Src+Tgt MetaSense Src+Tgt MetaSense

Activity 30.26 67.28 86.20 74.76
Speech 48.57 63.93 63.92 68.21

Source A

Source B

Source C

Source D

Target

tsne

Fig. 4: T-SNE visualization of source conditions and the
target condition under the with-similar-condition case.

On the contrary, some applications do not entail device
dependency, such as app recommendation by users’ us-
age pattern [44]. Combined with an increasing number of
available source data (open datasets) and crowdsourcing
platforms [45], [46], MetaSense should utilize cases when
source and target conditions could be similar.

For cases where the target condition is included in the
source conditions, the meta learning objective of MetaSense
might not perform better than a traditional learning objec-
tive via a standard supervised learning scheme. Table 1
shows an example of this situation for the activity and
speech recognition data, given 1-shot from the target con-
dition (details are in §5). Src+Tgt is a traditional supervised
learning trained with both the source and the target data.
As shown, MetaSense outperforms Src+Tgt in the “without-
similar” condition, demonstrating the ability of MetaSense
to adapt to the target condition with very few training
examples. However, in the “with-similar” case, we observe
that MetaSense often perform worse than Src+Tgt. This
is because MetaSense fundamentally regards conditions as
independent tasks and does not assume condition similarity
between the source and the target. Accordingly, the adapta-
tion step depends solely on the few shots given from the
target. Therefore, it is essential for MetaSense to manage
such scenarios to further enhance its performance across
various mobile sensing applications.

When there exists a level of similarity between source
and target conditions, our goal for the performance of
MetaSense is to be as comparable as the traditional super-
vised learning. To this end, we propose similar condition
detector (SCD) to identify whether similar conditions to
target condition exist in source conditions, and utilize them
as additional shots for the adaptation step.

4.2 Design of the Similar Condition Detector
Recent studies have demonstrated that the learned rep-
resentations through backpropagation in neural networks
could be utilized as distinctive features among different
distributions of data [29], [30], [47]. Our key intuition of
designing the similar condition detector (SCD) is that if
a certain condition in the source dataset is similar to the
target condition, the learned representations (for simplicity,
we refer it as features) of the source condition have a closer

7

distance to the target condition, compared with the other
source conditions.

Figure 4 shows T-SNE [48] visualization when a similar
condition to the target is included in the source.1 The
numbers refer to class labels (0-8) of our activity recognition
dataset (§2.2). We sampled Source D and Target from the
same user and device, while Source A, B, and D are from
different combinations. It clearly illustrates the proximity of
samples between similar conditions.

The main goal of SCD is to determine a criteria with
which the detector decides whether there is a source condi-
tion that is similar the target condition. A naı̈ve approach
would be to simply select a source condition that has the
closest distance to the target and fetch additional shots from
the condition. However, choosing the condition with the
closest distance does not necessarily improve the accuracy,
as the closest distance still might not be close enough.
Therefore, a desirable SCD should only select source con-
ditions that would improve the accuracy. We hence follow
a statistical approach to detect similar conditions, which
is further divided into building distance profiles (§4.2.1),
detecting similar conditions (§4.2.2), and fetching additional
shots (§4.2.3).

4.2.1 Distance Profile
From the source dataset, we generate a distance profile that
is composed of the distribution of intra/inter-condition
feature distance. A distance profile represents the feature
distance across conditions in the source dataset, which is
later utilized to detect matched conditions for the target
condition. When the training of the base model is complete,
a distance profile is generated with the base model before
the adaptation to the target.

For each condition c in a source dataset, we define a
prototypeMc as a set of mean feature vectors per each class:

Mc = {m1,m2, ...,m|Y|}, (7)

where 1 ≤ c ≤ C and mi = 1
|K|
∑

(xk,yk)∈Dc
F(xk).

Here, yk = OneHot(i), K is the number of samples in Dc
satisfying yk = OneHot(i), F(·) is the learned features, i.e.,
the intermediate output of the model before fully-connected
layers, and OneHot(·) is one-hot representation.

We define the distance between a shot s and a prototype
Mc for condition c as follows:

Dist(s,Mc) =
1

|Y|

|Y|∑
l=1

∥∥∥F(xls)−ml

∥∥∥
2
, (8)

such that (xls,y
l
s) ∈ s and yls = OneHot(l). This distance

is the average of class-wise distances between a shot and a
prototype. We use class-wise distance because even within
a condition, each class has different learned representation,
as observed in Figure 4.

With the distance metric, we create a distance profile
from the distributions of the distances between all the shots
and the prototype pairs. Specifically, we create a distance
profile, P , a C by C matrix of which element is the mean

1. T-SNE is a dimension reduction algorithm widely used when
visualizing multi-dimensional data in a way that similar points gather
closer than dissimilar ones.

136, 17 303, 17 290, 17 290, 17 242, 17 252, 17 319, 17 239, 16 312, 16 304, 16

275, 2 89, 5 212, 3 234, 3 267, 2 229, 3 210, 3 266, 2 251, 3 254, 2

281, 6 236, 10 136, 12 216, 9 252, 8 218, 9 201, 10 271, 8 236, 10 229, 8

272, 4 247, 5 205, 5 115, 7 229, 5 211, 6 243, 5 256, 4 263, 7 230, 4

224, 9 281, 7 244, 7 231, 7 121, 10 208, 9 287, 6 227, 8 312, 6 254, 6

243, 17 252, 19 218, 19 220, 19 215, 18 115, 19 265, 19 228, 18 286, 17 222, 17

309, 9 232, 13 199, 14 251, 12 293, 11 262, 12 130, 15 305, 10 250, 11 266, 11

241, 14 299, 12 283, 13 278, 11 248, 12 243, 14 318, 12 153, 16 326, 10 279, 12

285, 3 254, 4 214, 5 254, 5 301, 3 265, 4 230, 5 298, 4 88, 7 275, 4

300, 8 280, 10 235, 10 245, 11 266, 10 227, 13 272, 9 271, 11 299, 7 142, 11

ℳ0 ℳ1 ℳ2 ℳ3 ℳ4 ℳ5 ℳ6 ℳ7 ℳ8 ℳ9

𝑆0
𝑆1
𝑆2
𝑆3
𝑆4
𝑆5
𝑆6
𝑆7
𝑆8
𝑆9

𝑆tgt

ℳ0 ℳ1 ℳ2 ℳ3 ℳ4 ℳ5 ℳ6 ℳ7 ℳ8 ℳ9

297 277 234 241 259 223 273 265 299 150

ℳ𝑐 : Prototype of condition 𝑐𝑆𝑐 : Shots in condition 𝑐

similar condition

distance_profile

Fig. 5: An example of distance profile and comparison with
the distance to the target condition.

and the standard deviation of the distance distribution as
follows:

Pci,cj = {Mean(Dists∈Sci
(s,Mcj)),

Stdev(Dists∈Sci
(sci ,Mcj))}, (9)

where Pci,cj is the cthi -row and cthj -column element of P ,
Sci refers to all shots in Dci and 1 ≤ ci, cj ≤ C .

The upper matrix in Figure 5 illustrates an example of
distance profile for our activity recognition dataset (§5.1.1).
The distance profile has the distance distribution (mean
and standard deviation) of all shots in the source with
respect to the source conditions. Note that each condition
has a distinctive feature distance relationship with other
conditions and has the shortest distance with itself.

4.2.2 Detection Algorithm
Given the shots from the target condition, we calculate
the distance between the target condition and the source
conditions in the same way as in Equation (8). For detecting
a similar condition, we leverage the observation that when
a source condition has a similar distribution to the target,
the distance patterns of the samples in that condition with
respect to the prototypes are comparable to that of the target
condition (Figure 5).

We determine a condition ci as a similar condition when
(i) the index of shortest distance is the same as that of Stgt
and (ii) it satisfies the following equation for all cj :∣∣∣Mean(Dists∈Stgt

(s,Mcj))− Meanci,cj

∣∣∣ ≤ γ·Stdevci,cj ,
(10)

where Pci,cj = {Meanci,cj , Stdevci,cj}, Stgt is the collection
of the target shots, and γ is a hyperparameter. Figure 5
shows that S9 is detected as a similar condition to the target
following the detection algorithm. There could be multiple
choices for the hyperparameter γ and we chose 2.58, which
covered 99% of the distribution and performed well in
our experiment. To tune γ, one can use a hyperparameter
searching algorithm such as Bayesian Optimization [49].
However, finding the optimal γ value without test data is
infeasible. One possible way for finding an appropriate γ
with only a source dataset is by selecting the best value
through cross-validation within the source dataset. We think
this is viable because we observed that the characteristics of
a dataset remain the same within the dataset, even if the
target condition changes. We leave it as future work.

8

TABLE 2: Settings for our data collection.
User Device Type IMU rate OS
P1 Samsung Galaxy J7 Phone 100Hz 7.0.0
P2 Google Nexus5 Phone 200Hz 6.0.1
P3 Essential Phone Phone 400Hz 7.1.1
P4 Google Pixel2 Phone 400Hz 8.1.0
P5 HUAWEI P20 Phone 500Hz 8.1.0
P6 Samsung Galaxy S9 Phone 500Hz 8.0.0
P7 LG G5 Phone 200Hz 6.0.1
P8 LG Urbane Watch 200Hz Wear 2.23.0
P9 LG G Style Watch 100Hz Wear 2.6
P10 ASUS Zenwatch3 Watch 100Hz Wear 2.23.0

4.2.3 Fetching Additional Shots
After detecting similar conditions, we use the available
shots from the selected conditions and combine them with
the target shots. We use the augmented shots for the adap-
tion stage (Equation (6)).

5 EVALUATION

We evaluate MetaSense to answer the following questions:
(i) How well does MetaSense perform against existing ap-
proaches? (ii) How effective are MetaSense’s task generation
strategies? (iii) How rapidly can MetaSense adapt to the
target? (iv) How well does MetaSense perform on different
datasets? (v) What is the performance impact of our similar
condition detector?

5.1 Settings
5.1.1 Data Collection
We detail the data collection and preprocessing of our
datasets. The goal of our data collection was to evalu-
ate MetaSense with real-world datasets collected under
individual conditions. Specifically, we collected two most
widely used types of sensors, IMU and audio. We recruited
ten users (aged 21-29; mean 24.6, and three females) and
conducted IRB-approved data collection experiments. Each
user performed activity recognition (for IMU) and speech
recognition (of audio) tasks. We randomly distributed ten
different Android devices (seven smartphones and three
smartwatches) for each user as listed in Table 2. We believe
this dataset is the first dataset collected under individual
conditions from two common sensors (IMU and audio).

Our activity recognition task was composed of nine
activities that are commonly used in the literature [15], [50].
Specifically, they were “walking”, “running”, “stair down”,
“stair up”, “lying”, “standing”, “stretching”, “sitting”, and
“jumping”. Participants performed each task for around 2–5
minutes with the duration varying based on the intensity
of the activity. Note that we let the participants hold their
device freely (e.g., in the pocket, on hand, or on wrist)
for each activity to assure conditions are individual and
natural. We did not give explicit guidelines to the activities,
so that participants performed the activities according to
their personal interpretation. We recorded each x, y, and z-
axis of accelerometer and gyroscope values at the maximum
sampling rate. We divide the data with 256-length window
and use it to train the model.

The second task is speech recognition. We chose 14
words considering IoT applications [51]: “yes”, “no”, “up”,
“down”, “left”, “right”, “on”, “off”, “stop”, “go”, “for-
ward”, “backward”, “follow”, and “learn” were used. Each

participant held the device in their preferred fashion and
uttered each word 30 times in an office room. We did not
control their behaviors so that they had different individual
conditions, such as speech loudness, speed, and the distance
between the device and the user, etc. We recorded each
utterance of a word for 2 seconds with 16 kHz sampling
rate.

5.1.2 Baselines
We compare MetaSense to six baselines, which are widely
used approaches for handling various untrained conditions:
traditional DNNs, the state-of-the-art transfer learning and
few-shot learning approaches. We not only aim to compare
the performance of MetaSense to these baselines, but also in-
spect how these baselines perform under condition changes.
Specifically, we have the following baselines.
Src: For Src (source only), we use only the source dataset for
training the deep neural network and there is no adaptation
to the target user. Src is a widely used method in resolving
the diversity of inputs, i.e., training on as many data as
possible that are collected from diverse conditions.
Tgt: Tgt (target only) trains the model with only the few
shots from the target user.
Src+Tgt: Src+Tgt (source plus target) uses both the source
dataset and the target users’ few shots for training the deep
neural network. Compared to Src, this baseline leverages the
target user’s data for adaptation while utilizing a relatively
large amount of source data to learn general representations.
TrC: Transfer Convolutional (TrC) [34] is the state-of-the-
art transfer learning in adapting to a target user’s activity
recognition with motion sensors with a few data samples.
Specifically, TrC first trains the model with the source
dataset. When TrC adapts the model, it freezes the CNN
layers’ parameter and fine-tunes only the following fully
connected layers with a few shots.
PN: Prototypical Network (PN) [30] is one of the state-of-
the-art few-shot learning algorithms based on meta learn-
ing. Given a few training data, PN generates prototypes in
embedding space and each prototype is the representative
of each class. In inference, PN uses the Euclidean distance
metric to classify the closest prototype (i.e., class).
MAML: Another popular few-shot learning baseline is
MAML [27], which is adopted in our parameter update
stage §3.3. The performance difference between PN and
MAML would indicate which method is more effective in
deep mobile sensing, while the comparison between the
original MAML and MetaSense would highlight the impact
of our task generation strategies.

5.1.3 Implementation
To ensure a fair evaluation, we used the same model ar-
chitecture and hyperparameters, e.g., learning rates, for all
DNN-based baselines and MetaSense. We designed them
with convolutional neural networks (CNN) followed by
fully-connected layers. CNN is a widely used architecture
not only in vision but also in activity and speech recognition
with mobile sensors [34], [52], [53]. Specifically, the model
architecture was composed of three to five convolutional
layers, followed by three fully-connected layers. We used

9

Rectified Linear Unit (ReLU) for activation function. We
used two regularization techniques, i.e., L2-regularization
and batch normalization to prevent overfitting. We trained
the model with Adam optimizer [42]. We used five gradient
descent steps for training the base model (Eq. (2)) with
K = 5 and ten steps for adaptation (Eq. (6)). We imple-
mented MetaSense using the PyTorch framework [54] and
trained the model in a server equipped with eight NVIDIA
TITAN Xp GPUs and 256 GB memory with Intel Xeon E5-
2697 2.30 GHz processors.

5.2 Result

We trained the base model in a leave-one-user-out manner.
Specifically, we used the others’ data as the source dataset
for each target user. Namely, there are ten evaluations in
total, and for each user we have a source dataset with nine
ICDs of the other users. We report the average accuracy
for the untrained/target user among the ten scenarios. We
focus on 1, 2, 5, and 10-shot cases that are frequently used in
few-shot learning evaluations [27], [28], [30]. We used early
stopping on the validation set and evaluate the accuracy on
the test set.

Figure 6 reports the accuracy of the baselines and
MetaSense for activity recognition (Figure 6a) and speech
recognition (Figure 6b). The error bar is standard deviation
(stdev for short) across users and thus high stdev indicates
the method has high variance among users, i.e., low stdev
suggests the method shows stable performance across users.

In general, as the number of shots increases, the ac-
curacy also increases except for Src as Src does not use
the target data. In most cases, Tgt performs better than
Src, which means the learned representations from multiple
other conditions would not generalize to a new condition.
This again highlights the importance of adaptation for deep
mobile sensing. Tgt, however, does not achieve higher per-
formance than MetaSense, in particular when the number
of data is small due to overfitting. In all cases, MetaSense
outperforms the baselines, which shows the effectiveness
of our approach when dealing with new unseen/target
conditions. In activity recognition, MetaSense improves the
accuracy of Src from 27.6% to 67.2% with only one shot,
where the improvement is 15% higher compared to TrC.
Furthermore, MetaSense outperforms the few-shot learning
baselines thanks to our task generation strategies, which we
dissect in §5.3.

Figure 7 illustrates the receiver operating characteristic
(ROC) curves of the baselines and MetaSense for the activity
and speech recognition datasets. We also specify the area
under the curve (AUC) for each method, where AUC=0.5
means a random classifier while AUC=1 is a perfect classi-
fier. Similarly, MetaSense shows its effectiveness over the
baselines without depending on a single false-positive-
rate/true-positive-rate threshold. We found similar patterns
in other experiments, and we thus focus on the accuracy
metric in the following experiments.

5.3 Effect of Task Generation

We now examine the effectiveness of our task generation
methods described in §3.2. We evaluated the accuracy of

MetaSense while gradually adding each of our task genera-
tion method. As a baseline, we used random task generation
from the source dataset, which is widely used in recent
meta learning approaches [27], [28], [29], [30]. We implement
the random task generation as described in §3.2. More
specifically, tasks are generated from the instances sampled
randomly from the source data regardless of conditions.
We then use the same number of random tasks as the per-
conditioned tasks. We use the activity and speech recogni-
tion datasets and report the accuracy for 1, 2, 5, and 10-shot
cases.

Figure 8 reports the accuracy gain of our task generation
methods. Random refers to the random task generation.
The accuracy improvement escalates as each of our task
generation strategies is added. The result shows that our
per-condition (Per) and multi-conditioned (Multi) tasks are
effective than random sampling. This means those tasks can
teach more plausible conditions to the base model than the
randomly generated tasks. Furthermore, generating homo-
geneous tasks (Homo) helps to accumulate the common
knowledge learned from the tasks that has the same label
set Y that would improve the performance when faced
with a target task that also has Y . In summary, the results
demonstrate the importance of task generation algorithms
to teach the base model, and our task generation methods
effectively utilize the given source dataset (18% gap on
average, 33% in the extreme case compared to Random) so
that they catalyze the efficacy of meta learning for resolving
the condition problem.

5.4 Adaptation Overhead

It is important to note that all the baselines and MetaSense
requires different adaptation overhead. In this section, we
demonstrate that MetaSense is also computationally effi-
cient in the overhead of adaptation, i.e., the training time
required to adapt to the target, which is crucial to ensure
high quality mobile user experience. We investigate how
many training epochs are required for each method to
converge to its best performance (with respect to validation).
In the experiments, we compare only Tgt, Src+Tgt, TrC, and
MetaSense because Src and PN do not require the adapta-
tion step while MAML has the same adaptation overhead
as MetaSense. We report the accuracy averaged among 10
users in the 5-shot cases, where the overall trends for other
shot cases are similar.

Figure 9 plots the accuracy changes for the target as
training for adaptation proceeds. Note that while Tgt, TrC
and MetaSense require only the target user’s data for adap-
tation, Src+Tgt trains with the entire data composed of the
source and the target datasets. Therefore, each epoch of
Src+Tgt requires about ten times more time than others
with our datasets. For Tgt, TrC, and MetaSense, the required
time for one epoch is the same. Both activity recognition
(Figure 9a) and speech recognition (Figure 9b) show that
MetaSense entails significantly less adaptation overhead
compared to other approaches while achieving the highest
accuracy. TrC requires fewer epochs to converge compared
to Tgt as TrC already learned the representations through
the source dataset and fine-tunes its parameters to the target
via transfer learning. MetaSense maximally leverages the

10

activity_normal

0
10
20
30
40
50
60
70
80
90

100

1-shot 2-shot 5-shot 10-shot

A
cc

u
ra

cy
 (

%
)

Src Tgt Src+Tgt TrC PN MAML MetaSense

(a) Activity recognition.

speech_normal

0
10
20
30
40
50
60
70
80
90

100

1-shot 2-shot 5-shot 10-shot

A
cc

u
ra

cy
 (

%
)

Src Tgt Src+Tgt TrC PN MAML MetaSense

(b) Speech recognition.
Fig. 6: Average accuracy with 1, 2, 5, and 10-shots.

activity_roc

(a) Activity recognition.
speech_roc

(b) Speech recognition.

Fig. 7: ROC curves for the activity and speech recognition
datasets given 5 shots from the target.

source data via meta learning so that it has the fastest con-
vergence. As we use only ten gradient steps for adaptation
as described in §5.1.3, MetaSense converges with only ten
gradient steps. A different number of gradient steps could
be used, e.g., more steps for achieving higher accuracy or
fewer steps for minimizing the training overhead.

5.5 Other Datasets

We used additional four mobile sensing datasets to investi-
gate MetaSense’s generalizability to other sensing datasets.
We also used four vision datasets to understand whether the
method of MetaSense could translate onto another domain.

5.5.1 HHAR
Heterogeneity Human Activity Recognition (HHAR)
dataset [15] was collected with nine users for six human
activities. Each user was equipped with eight smartphones
around the waist and four smartwatches in the arms and
logged accelerometer and gyroscope values for each activity.
This dataset has user and device-model dependency but
does not include various device positions as each mobile

device is located at specific positions. We used the 256-
length window with 50% overlapping between two con-
secutive windows [15]. After eliminating duplicate device
models and conditions with less than 10 shots, we have six
users and four different devices that result in a total of 24
conditions. We evaluated each 24 conditions with 15 (5× 3)
ICDs, ensuring no overlap in either the target device or the
user. We report the average accuracy of the 24 conditions.

5.5.2 DSA
Daily and Sports Activities (DSA) dataset [50] was collected
with eight users for 19 daily and sports activities. Each
user was equipped with the same five sensor units, with
each unit composed of an accelerometer, a gyroscope, and a
magnetometer, on five different positions: torso, right arm,
left arm, right leg, and left leg. This dataset therefore has
user and sensor-position dependencies. We use the 125-
length window [50]. There are a total of 40 conditions, and
similar to HHAR, we evaluate each of 40 conditions with 28
(7 × 4) exclusive ICDs. We report the average accuracy of
the 40 conditions.

5.5.3 WESAD
Wearable Stress and Affect Detection (WESAD) [55] dataset
was collected with 15 subjects for stress and affect detection.
Each user was equipped with the same wrist- and chest-
worn devices that include the following sensing modalities:
blood volume pulse, electrocardiogram (ECG), electroder-
mal activity (EDA), electromyogram (EMG), respiration,
body temperature, and three-axis acceleration. Furthermore,
three different affective states (neutral, stress, amusement)
and self-reports of the subjects are included in the dataset.
This dataset has user dependency but does not contain
device-model and sensor-position dependencies as the same
wearable devices were used. We used all sensor modalities
for our evaluation. We followed the lowest sampling rate
(4 Hz for EDA and temperature sensors) and down-sampled
the other sensor values for the consistency of the model
among datasets. We used the 8-length window for training.
There are 15 conditions, and we report the average accuracy
of them. The evaluation of MetaSense with this dataset
highlights the effectiveness in stress and affect detection.

5.5.4 ExtraSensory
ExtraSensory [56] dataset was collected with 60 participants
in the free-living environment for seven days. Each subject
used their personal phone (34 were iOS users and 26 were
Android users), logged sensor data and self-reported labels
describing their activity context. As there was no constraint
on activities the participants needed to perform, the dis-
tribution of activities are different among users. We thus

11

task_activity

0

10

20

30

40

50

60

70

80

90

100

1-shot 2-shot 5-shot 10-shot

A
cc

u
ra

cy
 (

%
)

Random Per Per+Multi Per+Multi+Homo (MetaSense)

(a) Activity recognition.

task_speech

0

10

20

30

40

50

60

70

80

90

100

1-shot 2-shot 5-shot 10-shot

A
cc

u
ra

cy
 (

%
)

Random Per Per+Multi Per+Multi+Homo (MetaSense)

(b) Speech recognition.
Fig. 8: Accuracy with and without our task generation strategies.

conv_activity

0

10

20

30

40

50

60

70

80

90

100

A
cc

u
ra

cy
 (

%
) Tgt Src+Tgt TrC MetaSense

0 10 100 200

Epoch

(a) Activity recognition.

conv_speech

0

10

20

30

40

50

60

70

80

90

100

A
cc

u
ra

cy
 (

%
) Tgt Src+Tgt TrC MetaSense

0 10 100 200

Epoch

(b) Speech recognition.
Fig. 9: Target accuracy changes over epochs.

MNIST-MMNIST SYNNUM SVHN

vision_dataset

Fig. 10: Four vision datasets used in our experiment.

used the three most common activities (lying-down, sitting,
and walking) and removed the other labels. Besides, users
could selectively provide a subset of sensor information. We
used the data with all sensor modalities (accelerometer, gy-
roscope, magnetometer, audio, and location) and removed
data with any missing sensor information. We used the 8-
length window with 50% overlapping between two consec-
utive windows. We selected users with greater than or equal
to 20 shots (the minimum for the following evaluations) of
the three classes with full sensor information, which leaves
us with 13 users. We report the average of the 13 individual
conditions.

5.5.5 Vision Datasets

Although MetaSense is designed for mobile sensing, we
want to test the performance of MetaSense in another do-
main and evaluate whether our approach could be trans-
lated int other domains. We therefore experimented our
framework with vision datasets, which is the most active
domain of machine learning research. Specifically, we used
four vision datasets as shown in Figure 10: MNIST [57],
MNIST with different background and colors (MNIST-
M) [47], Synthetic numbers (SYNNUM) [47], and Street-
View House Number data set (SVHN) [58], which are used
in the unsupervised domain adaptation problem [47]. As
these four datasets have the same class set (digits) and have
different distributions, we think they are suitable for our
experiment. We selected one dataset as the target and used
the remaining as the source dataset. We report the average
accuracy of the four targets.

5.5.6 Results

Figures 11, 12, 13, and 14 show the accuracy of the base-
lines and MetaSense with the HHAR, DSA, WESAD, and

hhar

0
10
20
30
40
50
60
70
80
90

100

1-shot 2-shot 5-shot 10-shot

A
cc

u
ra

cy
 (

%
)

Src Tgt Src+Tgt TrC PN MAML MetaSense

Fig. 11: Accuracy of the baselines and MetaSense on the
HHAR dataset.

dsa

0
10
20
30
40
50
60
70
80
90

100

1-shot 2-shot 5-shot 10-shot

A
cc

u
ra

cy
 (

%
)

Src Tgt Src+Tgt TrC PN MAML MetaSense

Fig. 12: Accuracy of the baselines and MetaSense on the DSA
dataset.

ExtraSensory datasets, respectively. The results indicate that
the effectiveness of MetaSense generalizes to other sens-
ing datasets. The baselines show different trends between
different datasets. For instance, the higher accuracy of Src
and Src+Tgt in the HHAR dataset than in the DSA dataset
means HHAR has more similar distributions among the
conditions. On the other hand, Src and Src+Tgt perform
poorly in the DSA dataset due to the severe differences
between conditions. MetaSense nevertheless shows robust
performance due to its flexibility in learning and adaptivity
to new conditions.

Figure 15 shows the result for the vision datasets. Com-
pared to the mobile sensing datasets, Src and Src+Tgt out-
perform Tgt and other methods. We interpret that this is
because the knowledge learned from vision datasets (i.e.,
ten digits) is more transferable to different datasets with
the same classes, while mobile sensing datasets are more
individual than vision datasets, and thus the target data
is more important. Still, MetaSense outperforms transfer
learning and meta-learning based adaptation, which shows
its effectiveness in the vision domain compared to other

12

wesad

0
10
20
30
40
50
60
70
80
90

100

1-shot 2-shot 5-shot 10-shot

A
cc

u
ra

cy
 (

%
)

Src Tgt Src+Tgt TrC PN MAML MetaSense

Fig. 13: Accuracy of the baselines and MetaSense on the
WESAD dataset.

es

0
10
20
30
40
50
60
70
80
90

100

1-shot 2-shot 5-shot 10-shot

A
cc

u
ra

cy
 (

%
)

Src Tgt Src+Tgt TrC PN MAML MetaSense

Fig. 14: Accuracy of the baselines and MetaSense on the
ExtraSensory dataset.

adaptation methods.

5.6 Impact of Similar Condition Detector

We now evaluate the impact of gathering additional shots
from SCD. We evaluate the accuracy of MetaSense under
two settings, i.e., with- and without-similar conditions in
the source dataset to understand the impact of SCD in both
cases. We used all aforementioned datasets for the evalua-
tion. To separately evaluate the with- and without-similar
cases within the same dataset, we additionally generated
situations where similar conditions are included in the
source dataset. Specifically, we divided the data in the target
condition into halves, incorporated one half into the source
dataset, and the other half is used for few-shots of the target.
By doing so, a source dataset includes a similar condition to
the target condition. We also evaluate the impact of having
partially identical conditions in the source dataset in §5.6.3.

5.6.1 Accuracy with Similar Conditions
We investigate the effect of SCD when similar conditions
are included in the source. Figure 16 shows the accuracy
of the baselines and MetaSense among four datasets. Tgt is
excluded as it does not use source dataset in the training.
We compare MetaSense without SCD to MetaSense with
“naı̈ve SCD” and SCD, where the naı̈ve SCD is a baseline
that always selects the condition with the closest distance to
the target without considering the similarity. For instance,
in Figure 5, naı̈ve SCD chooses S9 as the distance from its
prototype to the target is the shortest (150). In our with-
similar-conditions settings, naı̈ve SCD can be seen as an
effective upper bound for SCD as it always assumes there
exists a similar condition and fetches shots from it.

As expected, if similar conditions are included in the
source data, the accuracy of Src and Src+Tgt is drastically
increased compared with results without similar conditions.
It is interesting to note that the performance of transfer
learning (TrC) and meta learning (PN, MAML) baselines
are far below that of Src and Src+Tgt as they do not
leverage similar conditions in the source and the target.
Similarly, MetaSense without SCD suffers from the same

vision

0
10
20
30
40
50
60
70
80
90

100

1-shot 2-shot 5-shot 10-shot

A
cc

u
ra

cy
 (

%
)

Src Tgt Src+Tgt TrC PN MAML MetaSense

Fig. 15: Accuracy of the baselines and MetaSense on the
vision datasets.

problem. Meanwhile, with SCD, MetaSense shows a signifi-
cant improvement. The accuracy improvement is prominent
especially when the number of given shots is few (e.g.,
15% increase for activity recognition in the 1-shot case), by
utilizing additionally fetched shots from similar conditions.
We also observe that with the help of SCD, the classification
accuracy of MetaSense (w/ SCD) is comparable to that of
naı̈ve SCD.

5.6.2 Accuracy without Similar Conditions
When a source dataset does not have similar conditions
from the target, a desirable SCD should not degrade the per-
formance resulting from wrong selections. We thus evaluate
the accuracy impact of SCD in scenarios without similar
conditions in the source dataset. Figure 17 shows the result.
We focus on MetaSense without SCD, with naı̈ve SCD, and
with SCD as the accuracy of other methods are the same as
previous results (Figures 6, 11, and 12). We only present the
5-shot case but the trend is similar across different number
of shots.

Compared with MetaSense without SCD, naı̈ve SCD
shows an accuracy degradation (except for the ExtraSensory
and Vision datasets) as it always gets additional shots from
the closest condition without considering whether it is sim-
ilar to the target. On the other hand, MetaSense with SCD
shows nearly identical performance to MetaSense without
SCD by effectively rejecting wrong selections that are closest
conditions but not similar to the target.

The result of the vision datasets is in line with the
findings of the previous result in Figure 15. In both with-
and without-similar conditions cases, naı̈ve SCD is better
in the vision experiment because of utilizing transferable
knowledge from other conditions. We found that the Ex-
traSensory dataset could leverage the common knowledge
from other conditions, and thus there is no degradation in
naı̈ve SCD, possibly due to fewer classes (three) compared
to the other datasets.

In summary, SCD enhances the accuracy of MetaSense
when similar conditions exist in the source dataset and
does not degrade the accuracy when there is no similar
conditions. We believe our SCD framework, combined with
MetaSense, further brings mobile sensing applications closer
to wide deployment in real settings.

5.6.3 Impact of Training with the User, Device, or Position
In the previous experiments for the with-similar case, the
source data includes the target condition. This inclusion
simplifies the analysis in that we can separately evalu-
ate under with- and without-similar conditions. However,
learning with the data collected from the identical condition

13

0
10
20
30
40
50
60
70
80
90

100

1-shot 2-shot 5-shot

A
cc

u
ra

cy
 (

%
)

Src Src+Tgt TrC PN MAML MetaSense (w/o SCD) MetaSense (naïve SCD) MetaSense (w/ SCD)

activity_with_similar

(a) Activity recognition.

0
10
20
30
40
50
60
70
80
90

100

1-shot 2-shot 5-shot

A
cc

u
ra

cy
 (

%
)

Src Src+Tgt TrC PN MAML MetaSense (w/o SCD) MetaSense (naïve SCD) MetaSense (w/ SCD)

speech_with_similar

(b) Speech recognition.

0
10
20
30
40
50
60
70
80
90

100

1-shot 2-shot 5-shot

A
cc

u
ra

cy
 (

%
)

Src Src+Tgt TrC PN MAML MetaSense (w/o SCD) MetaSense (naïve SCD) MetaSense (w/ SCD)

hhar_with_similar

(c) HHAR.

0
10
20
30
40
50
60
70
80
90

100

1-shot 2-shot 5-shot

A
cc

u
ra

cy
 (

%
)

Src Src+Tgt TrC PN MAML MetaSense (w/o SCD) MetaSense (naïve SCD) MetaSense (w/ SCD)

dsa_with_similar

(d) DSA.

0
10
20
30
40
50
60
70
80
90

100

1-shot 2-shot 5-shot

A
cc

u
ra

cy
 (

%
)

Src Src+Tgt TrC PN MAML MetaSense (w/o SCD) MetaSense (naïve SCD) MetaSense (w/ SCD)

wesad_with_similar

(e) WESAD.

es_with_similar

0
10
20
30
40
50
60
70
80
90

100

1-shot 2-shot 5-shot
A

cc
u
ra

cy
 (

%
)

Src Src+Tgt TrC PN MAML MetaSense (w/o SCD) MetaSense (naïve SCD) MetaSense (w/ SCD)

(f) ExtraSensory.

0
10
20
30
40
50
60
70
80
90

100

1-shot 2-shot 5-shot

A
cc

u
ra

cy
 (

%
)

Src Src+Tgt TrC PN MAML MetaSense (w/o SCD) MetaSense (naïve SCD) MetaSense (w/ SCD)

vision_with_similar

(g) Vision datasets.
Fig. 16: Accuracy with similar conditions included in the source dataset.

without_similar

0
10
20
30
40
50
60
70
80
90

100

Activity Speech HHAR DSA WESAD ExtraSensory Vision

A
cc

u
ra

cy
 (

%
)

MetaSense (w/o SCD) MetaSense (naïve SCD) MetaSense (w/ SCD)

Fig. 17: Accuracy without similar conditions in the source
dataset given 5 shots from the target.

to the target might always improve accuracy. We thus in-
vestigate the impact of SCD when the source data includes
“partially identical” conditions to the target. For instance,
the source data includes the same device as the target user
has, but collected from a different user.

We use HHAR and DSA datasets for this experiment
as they were collected from all combinations (i.e., from all
users × devices or users × positions) and thus suitable for
our purpose. Specifically, for the HHAR dataset, we select
a target among “six users × four devices” combinations,
and use the rest 23 as the source data. For the DSA dataset,
we select a target among “eight users × five positions”
combinations and use the rest 39 as the source data. This
way, we can include partial conditions (e.g., training with
the target user and the device, but not exactly the same pair)

as opposed to the previous experiments with no overlap
between the source and the target §5.5.

Figure 18a shows the result for HHAR and Figure 18b
shows the result for DSA. The result shows that with
partially similar conditions, the overall trend is somewhere
between those without similar conditions (Figure 17) and
with similar conditions (Figure 16). We observed that SCD
did not detect anything similar to the target condition in
most cases, and thus the performance between MetaSense
w/o SCD and w/ SCD is similar. This is also in line with our
motivation and previous findings that a combination of user,
device, and position makes a unique individual condition.

Interestingly, we found that SCD detected a similar
condition in some cases, but it did not necessarily result
in performance improvement or decline. Especially for the
HHAR with 1-shot case, we found that the most similar
condition to the target selected from the naı̈ve SCD does
not harm the performance, while with more shots given, the
accuracy of naı̈ve SCD decreases compared to MetaSense.
This implies that with more shots, directly adapting to
the target data is more effective than relying on the most
similar condition from the source, and our SCD algorithm
can effectively catch this situation.

14

hhar_partial_include

0
10
20
30
40
50
60
70
80
90

100

1-shot 2-shot 5-shot

A
cc

u
ra

cy
 (

%
)

Src Src+Tgt TrC PN MAML MetaSense (w/o SCD) MetaSense (naïve SCD) MetaSense (w/ SCD)

(a) HHAR.

dsa_partial_include

0
10
20
30
40
50
60
70
80
90

100

1-shot 2-shot 5-shot

A
cc

u
ra

cy
 (

%
)

Src Src+Tgt TrC PN MAML MetaSense (w/o SCD) MetaSense (naïve SCD) MetaSense (w/ SCD)

(b) DSA.
Fig. 18: Accuracy when (i) the same user or device is included (HHAR) and (ii) the same user or position is included in the
source data.

6 RELATED WORK

We summarize prior approaches that tackle the challenge of
diverse dependencies in mobile sensing.

6.1 Synthetic Training
One category to mitigate the dependency problem is to
train with synthetic training examples generated from the
source dataset [35], [59]. Mathur et al. [35] proposed build-
ing a deep model with synthetic data made of multiple
devices to mitigate hardware/software heterogeneities of
smart devices. However, this solution is focused only on
the device dependency. CrossSense [59] proposed a roaming
model for large-scale cross-site WiFi sensing. It leverages a
large amount of source data for generating synthetic data
that mimic unseen instances or users from the target site.
However, it requires thousands of samples from the target
site to train the roaming model, while MetaSense requires
only a few shots.

6.2 Utilizing Unlabeled Target Data
Another line of research utilizes unlabeled data from a target
condition [52], [53], [60], [61], [62]. This approach employs
transfer learning (or domain adaptation); with labeled data
from the source and unlabeled data from the target condi-
tion, it trains an adaptive model for the target condition. The
advantage of this approach is that target users need not label
their data. Although the approach does not require labeled
target data, it needs a large amount of target data compared
to our few-shot learning scheme. Furthermore, these ap-
proaches have been limited to specific individual conditions,
e.g., changes of sensor positions on the body [61], [62] and
changes of users with the same device [60]. It is uncertain
whether such unsupervised approach would be accurate
under a complex combination of multiple dependencies
where the input distribution is different from the source
dataset; a study showed that the performance for HAR
under individual conditions is only marginally improved
or often dropped with the unlabeled target data [53].

7 DISCUSSION

We discuss the limitations of MetaSense and suggest future
research.

7.1 Long-term Behavior Changes
Our current design of MetaSense requires users to provide
a few shots only at the initial adaptation step. After the
adaptation, the model is adapted to the target user’s con-
dition. However, user behaviors could change with time
(e.g., walking slowly when one gets ill) and this could

affect the model performance. To handle such a scenario,
one can periodically adapt the model parameters for fast
adaptation. Since the model is already adapted for that user
at the initial step, the model would require even fewer data
to adapt to the behavior changes. We remark that a recent
meta learning scheme [63] that continuously adapts to non-
stationary environments could be a promising direction to
explore for adapting to long-term behavior changes.

7.2 Number of Classes and User Effort

MetaSense aims to minimize the users’ labeling burden
via the concept of few-shot learning. However, as a shot
means one labeled instance for each class, the labeling
cost increases when the number of classes increases. This
is an inherent issue in classification problems where the
number of classes is inversely proportional to the classifi-
cation accuracy given the same amount of training data per
class. For less user burden, adaptation with few shots from
partial classes could be considered. For instance, a recent
study [64] proposed generating data for missing classes via a
generative adversarial network (GAN), which could further
mitigate user effort in conjunction with MetaSense.

7.3 Other Dependencies

We considered a typical practical scenario in mobile sensing
where there exist different user behaviors and different
devices (accordingly sensor positions and orientations). We
realize in real deployments there could be other unexpected
dependency problems such as environmental changes that
we have not considered. However, our approach could
be employed in other dependency problems. For instance,
activity recognition with Wi-Fi signals faces the challenge of
environment and user dependency [52], [59]. In situations
where combinations of dependencies make input distribu-
tions significantly heterogeneous, we believe the insights
and methods from MetaSense could be applied.

8 CONCLUSION

We investigated the problem of individual conditions in
mobile sensing and how deep learning models perform
under such situations. Inspired by the recent successes
of meta learning in the machine learning community, we
proposed MetaSense, a few-shot adaptation system that
learns to learn for deep mobile sensing as a solution to
this problem. MetaSense leverages intelligently generated
tasks, parameter updates via meta learning, and similar
condition detection for resolving individual conditions in
mobile sensing. In essence, MetaSense is model-agnostic,

15

i.e., applicable to any deep learning models, and condition-
agnostic, i.e., its coverage is not limited to a specific type
of sensors and applications. Our evaluation with multiple
real-world datasets showed that MetaSense outperforms
other approaches in both accuracy and adaptation time
with very few training examples. We believe MetaSense is
a step towards mainstream adoption of mobile sensing for
practical impact. The proposed meta learning approach and
the insights from our study could be applied in innovative
mobile sensing applications so that everyday users could
deploy them without being limited by operating conditions.

ACKNOWLEDGMENTS

This work was supported in part by the National Research
Foundation of Korea (NRF) grant funded by the Korea
government (MSIP) (No.NRF-2020R1A2C1004062) and by
Microsoft Research.

REFERENCES

[1] C. A. Ronao and S.-B. Cho, “Deep convolutional neural networks
for human activity recognition with smartphone sensors,” in In-
ternational Conference on Neural Information Processing. Springer,
2015, pp. 46–53.

[2] ——, “Human activity recognition with smartphone sensors using
deep learning neural networks,” Expert systems with applications,
vol. 59, pp. 235–244, 2016.

[3] V. Radu, C. Tong, S. Bhattacharya, N. D. Lane, C. Mascolo, M. K.
Marina, and F. Kawsar, “Multimodal deep learning for activity
and context recognition,” Proceedings of IMWUT, vol. 1, no. 4, p.
157, 2018.

[4] A. Soro, G. Brunner, S. Tanner, and R. Wattenhofer, “Recognition
and repetition counting for complex physical exercises with deep
learning,” Sensors, vol. 19, no. 3, p. 714, 2019.

[5] N. D. Lane, P. Georgiev, and L. Qendro, “Deepear: robust smart-
phone audio sensing in unconstrained acoustic environments us-
ing deep learning,” in Proceedings of UbiComp. ACM, 2015, pp.
283–294.

[6] G. Laput, K. Ahuja, M. Goel, and C. Harrison, “Ubicoustics: Plug-
and-play acoustic activity recognition,” in Proceedings of UIST.
ACM, 2018, pp. 213–224.

[7] B. Zhou, J. Lohokare, R. Gao, and F. Ye, “Echoprint: Two-factor
authentication using acoustics and vision on smartphones,” in
Proceedings of MobiCom. ACM, 2018, pp. 321–336.

[8] J. Chauhan, J. Rajasegaran, S. Seneviratne, A. Misra, A. Senevi-
ratne, and Y. Lee, “Performance characterization of deep learn-
ing models for breathing-based authentication on resource-
constrained devices,” Proceedings of IMWUT, vol. 2, no. 4, p. 158,
2018.

[9] Q. Dai, J. Hou, P. Yang, X. Li, F. Wang, and X. Zhang, “The sound of
silence: end-to-end sign language recognition using smartwatch,”
in Proceedings of MobiCom. ACM, 2017, pp. 462–464.

[10] J. Lu, C. Shang, C. Yue, R. Morillo, S. Ware, J. Kamath, A. Bamis,
A. Russell, B. Wang, and J. Bi, “Joint modeling of heterogeneous
sensing data for depression assessment via multi-task learning,”
Proceedings of IMWUT, vol. 2, no. 1, p. 21, 2018.

[11] A. Mehrotra and M. Musolesi, “Using autoencoders to automat-
ically extract mobility features for predicting depressive states,”
Proceedings of IMWUT, vol. 2, no. 3, p. 127, 2018.

[12] H. Zhang, C. Song, A. Wang, C. Xu, D. Li, and W. Xu, “Pdvocal:
Towards privacy-preserving parkinson’s disease detection using
non-speech body sounds,” in Proceedings of MobiCom, 2019, pp.
1–16.

[13] G. M. Weiss and J. W. Lockhart, “The impact of personalization
on smartphone-based activity recognition,” in AAAI Workshop on
Activity Context Representation: Techniques and Languages, 2012, pp.
98–104.

[14] Y. E. Ustev, O. Durmaz Incel, and C. Ersoy, “User, device and
orientation independent human activity recognition on mobile
phones: Challenges and a proposal,” in Proceedings of UbiComp
Adjunct. ACM, 2013, pp. 1427–1436.

[15] A. Stisen, H. Blunck, S. Bhattacharya, T. S. Prentow, M. B. Kjær-
gaard, A. Dey, T. Sonne, and M. M. Jensen, “Smart devices are
different: Assessing and mitigatingmobile sensing heterogeneities
for activity recognition,” in Proceedings of SenSys. ACM, 2015, pp.
127–140.

[16] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Clos-
ing the gap to human-level performance in face verification,” in
Proceedings of CVPR, 2014, pp. 1701–1708.

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifi-
cation with deep convolutional neural networks,” in NIPS, 2012,
pp. 1097–1105.

[18] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in Proceedings of
CVPR, 2017, pp. 4700–4708.

[19] P. Siirtola and J. Röning, “Recognizing human activities user-
independently on smartphones based on accelerometer data,”
IJIMAI, vol. 1, no. 5, pp. 38–45, 2012.

[20] R. Yang and B. Wang, “Pacp: a position-independent activity
recognition method using smartphone sensors,” Information, vol. 7,
no. 4, p. 72, 2016.

[21] H. Guo, L. Chen, G. Chen, and M. Lv, “Smartphone-based activity
recognition independent of device orientation and placement,”
International Journal of Communication Systems, vol. 29, no. 16, pp.
2403–2415, 2016.

[22] A. Grammenos, C. Mascolo, and J. Crowcroft, “You are sensing,
but are you biased?: A user unaided sensor calibration approach
for mobile sensing,” Proceedings of IMWUT, vol. 2, no. 1, p. 11,
2018.

[23] P. Siirtola and J. Röning, “Ready-to-use activity recognition
for smartphones,” in Computational Intelligence and Data Mining
(CIDM), 2013 IEEE Symposium on. IEEE, 2013, pp. 59–64.

[24] F. Gu, A. Kealy, K. Khoshelham, and J. Shang, “User-independent
motion state recognition using smartphone sensors,” Sensors,
vol. 15, no. 12, pp. 30 636–30 652, 2015.

[25] M. Shoaib, S. Bosch, O. Incel, H. Scholten, and P. Havinga, “A sur-
vey of online activity recognition using mobile phones,” Sensors,
vol. 15, no. 1, pp. 2059–2085, 2015.

[26] J. Saha, C. Chowdhury, and S. Biswas, “Device independent activ-
ity monitoring using smart handhelds,” in Cloud Computing, Data
Science & Engineering-Confluence, 2017 7th International Conference
on. IEEE, 2017, pp. 406–411.

[27] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in Proceedings of ICML.
JMLR. org, 2017, pp. 1126–1135.

[28] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap,
“Meta-learning with memory-augmented neural networks,” in
Proceedings of ICML, 2016, pp. 1842–1850.

[29] G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese neural net-
works for one-shot image recognition,” in ICML Deep Learning
Workshop, vol. 2, 2015.

[30] J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for few-
shot learning,” in NIPS, 2017, pp. 4077–4087.

[31] T. Gong, Y. Kim, J. Shin, and S.-J. Lee, “MetaSense: few-shot
adaptation to untrained conditions in deep mobile sensing,” in
Proceedings of SenSys. ACM, 2019, pp. 110–123.

[32] M. Rossi, S. Feese, O. Amft, N. Braune, S. Martis, and G. Tröster,
“Ambientsense: A real-time ambient sound recognition system for
smartphones,” in PerCom Workshops. IEEE, 2013, pp. 230–235.

[33] S. Chang, J. Lee, S. K. Choe, and K. Lee, “Audio cover song
identification using convolutional neural network,” arXiv preprint
arXiv:1712.00166, 2017.

[34] S. A. Rokni, M. Nourollahi, and H. Ghasemzadeh, “Personalized
human activity recognition using convolutional neural networks,”
in AAAI, 2018.

[35] A. Mathur, T. Zhang, S. Bhattacharya, P. Veličković, L. Joffe, N. D.
Lane, F. Kawsar, and P. Lió, “Using deep data augmentation train-
ing to address software and hardware heterogeneities in wearable
and smartphone sensing devices,” in Proceedings of IPSN. IEEE
Press, 2018, pp. 200–211.

[36] L. Mirani, “There are now more than 24,000 dif-
ferent android devices,” Aug 2015. [Online]. Avail-
able: https://qz.com/472767/there-are-now-more-than-24000-
different-android-devices/

[37] R. Saeedi, S. Norgaard, and A. H. Gebremedhin, “A closed-loop
deep learning architecture for robust activity recognition using
wearable sensors,” in Big Data (Big Data), 2017 IEEE International
Conference on. IEEE, 2017, pp. 473–479.

16

[38] P. Siirtola and J. Röning, “Reducing uncertainty in user-
independent activity recognition-a sensor fusion-based ap-
proach.” in ICPRAM, 2016, pp. 611–619.

[39] H. Koskimäki and P. Siirtola, “Adaptive model fusion for wearable
sensors based human activity recognition,” in FUSION. IEEE,
2016, pp. 1709–1713.

[40] P. Siirtola, H. Koskimäki, and J. Röning, “From user-independent
to personal human activity recognition models using smartphone
sensors,” Proc ESANN’16, pp. 471–476, 2016.

[41] Z. Wang, D. Wu, R. Gravina, G. Fortino, Y. Jiang, and K. Tang,
“Kernel fusion based extreme learning machine for cross-location
activity recognition,” Information Fusion, vol. 37, pp. 1–9, 2017.

[42] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” ICLR, 2015.

[43] Q. Kong, R. M. Allen, L. Schreier, and Y.-W. Kwon, “Myshake: A
smartphone seismic network for earthquake early warning and
beyond,” Science advances, vol. 2, no. 2, p. e1501055, 2016.

[44] Z. Shen, K. Yang, W. Du, X. Zhao, and J. Zou, “Deepapp: a deep
reinforcement learning framework for mobile application usage
prediction,” in Proceedings of SenSys. ACM, 2019, pp. 153–165.

[45] T. Yan, M. Marzilli, R. Holmes, D. Ganesan, and M. Corner,
“mcrowd: a platform for mobile crowdsourcing,” in Proceedings
of SenSys, 2009, pp. 347–348.

[46] S. S. Kanhere, “Participatory sensing: Crowdsourcing data from
mobile smartphones in urban spaces,” in International Conference
on Distributed Computing and Internet Technology. Springer, 2013,
pp. 19–26.

[47] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle,
F. Laviolette, M. Marchand, and V. Lempitsky, “Domain-
adversarial training of neural networks,” J. Mach. Learn. Res.,
vol. 17, no. 1, p. 2096–2030, Jan. 2016.

[48] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,”
Journal of machine learning research, vol. 9, no. Nov, pp. 2579–2605,
2008.

[49] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian
optimization of machine learning algorithms,” in Advances
in Neural Information Processing Systems 25, F. Pereira,
C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds.
Curran Associates, Inc., 2012, pp. 2951–2959. [Online].
Available: http://papers.nips.cc/paper/4522-practical-bayesian-
optimization-of-machine-learning-algorithms.pdf

[50] K. Altun, B. Barshan, and O. Tunçel, “Comparative study on
classifying human activities with miniature inertial and magnetic
sensors,” Pattern Recognition, vol. 43, no. 10, pp. 3605–3620, 2010.

[51] P. Warden, “Speech commands: A dataset for limited-vocabulary
speech recognition,” arXiv preprint arXiv:1804.03209, 2018.

[52] W. Jiang, C. Miao, F. Ma, S. Yao, Y. Wang, Y. Yuan, H. Xue, C. Song,
X. Ma, D. Koutsonikolas et al., “Towards environment indepen-
dent device free human activity recognition,” in Proceedings of
MobiCom. ACM, 2018, pp. 289–304.

[53] M. A. A. H. Khan, N. Roy, and A. Misra, “Scaling human activity
recognition via deep learning-based domain adaptation,” in Per-
Com. IEEE, 2018, pp. 1–9.

[54] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differ-
entiation in pytorch,” in NIPS, 2017.

[55] P. Schmidt, A. Reiss, R. Duerichen, C. Marberger, and K. Van Laer-
hoven, “Introducing wesad, a multimodal dataset for wearable
stress and affect detection,” in Proceedings of the 20th ACM Interna-
tional Conference on Multimodal Interaction, 2018, pp. 400–408.

[56] Y. Vaizman, K. Ellis, G. Lanckriet, and N. Weibel, “Extrasensory
app: Data collection in-the-wild with rich user interface to
self-report behavior,” in Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems, ser. CHI ’18. New York,
NY, USA: Association for Computing Machinery, 2018, p. 1–12.
[Online]. Available: https://doi.org/10.1145/3173574.3174128

[57] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” –,
2010. [Online]. Available: http://yann.lecun.com/exdb/mnist/

[58] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y.
Ng, “Reading digits in natural images with unsupervised feature
learning,” in NIPS Workshop on Deep Learning and Unsupervised
Feature Learning 2011, 2011.

[59] J. Zhang, Z. Tang, M. Li, D. Fang, P. Nurmi, and Z. Wang,
“Crosssense: Towards cross-site and large-scale wifi sensing,” in
Proceedings of MobiCom. ACM, 2018, pp. 305–320.

[60] R. Fallahzadeh and H. Ghasemzadeh, “Personalization without
user interruption: Boosting activity recognition in new subjects

using unlabeled data,” in Proceedings of the 8th International Confer-
ence on Cyber-Physical Systems. ACM, 2017, pp. 293–302.

[61] J. Wang, V. W. Zheng, Y. Chen, and M. Huang, “Deep transfer
learning for cross-domain activity recognition,” in Proceedings of
the 3rd International Conference on Crowd Science and Engineering.
ACM, 2018, p. 16.

[62] Y. Chen, J. Wang, M. Huang, and H. Yu, “Cross-position activ-
ity recognition with stratified transfer learning,” arXiv preprint
arXiv:1806.09776, 2018.

[63] M. Al-Shedivat, T. Bansal, Y. Burda, I. Sutskever, I. Mordatch, and
P. Abbeel, “Continuous adaptation via meta-learning in nonsta-
tionary and competitive environments,” in ICLR, 2018.

[64] N. Suzuki, Y. Watanabe, and A. Nakazawa, “Gan-based style
transformation to improve gesture-recognition accuracy,” Proc.
ACM Interact. Mob. Wearable Ubiquitous Technol., vol. 4, no. 4, Dec.
2020. [Online]. Available: https://doi.org/10.1145/3432199

Taesik Gong received his Bachelors of Science
in Computer Science from Yonsei University in
2016 (Summa Cum Laude). He received his
Master of Science in Computer Science from
Korea Advanced Institute of Science and Tech-
nology (KAIST) in 2017. He is currently pursuing
his Doctor of Philosophy (Ph.D.) in Computer
Science in KAIST. His research interests are in
mobile computing, ubiquitous sensing, and ap-
plied machine learning.

Yeonsu Kim received her Bachelors of Science
in Computer Science from Korea Advanced Insti-
tute of Science and Technology (KAIST). She is
currently pursuing her M.S. degree in Computer
Science in KAIST. Her research interests include
mobile computing, human-computer interaction,
and machine learning.

Ryuhaerang Choi received her Bachelors of
Science in Computer Science from Inha Uni-
versity in 2019 (Summa Cum Laude). She is
currently pursuing her Master of Science (M.S.)
in Computer Science from Korea Advanced Insti-
tute of Science and Technology (KAIST). Her re-
search interests are ubiquitous sensing, mobile
health and mobile human-computer interaction.

Jinwoo Shin is currently an associate profes-
sor (jointly affiliated) in the Graduate School of
AI and the School of Electrical Engineering at
KAIST. He is also a KAIST endowed chair pro-
fessor. He obtained the Ph.D. degree (in Math)
from Massachusetts Institute of Technology in
2010 with George M. Sprowls Award (for best
MIT CS PhD theses). He was a postdoctoral
researcher at Algorithms & Randomness Center,
Georgia Institute of Technology in 2010-2012
and Business Analytics and Mathematical Sci-

ences Department, IBM T. J. Watson Research in 2012-2013. After he
joined KAIST in Fall 2013, he started to work on machine learning: topics
include graphical models, distributed optimization, uncertainty estima-
tion, etc. He received the Rising Star Award in 2015 from the Association
for Computing Machinery (ACM) Special Interest Group for the computer
systems performance evaluation community (SIGMETRICS).

Sung-Ju Lee is a Professor and KAIST En-
dowed Chair Professor at KAIST. He received his
Ph.D. in computer science from the University
of California, Los Angeles in 2000, and spent
15 years in the industry in Silicon Valley be-
fore joining KAIST. His research interests include
computer networks, mobile computing, network
security, and HCI. He is the winner of the HP
CEO Innovation Award, the Best Paper Award at
IEEE ICDCS 2016, and the Test-of-Time Paper
Award at ACM WINTECH 2016. He is an IEEE

Fellow and ACM Distinguished Scientist.

