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Abstract—This paper investigates how the expansion of array size may improve the spatial diversity of state-of-the-art Wi-Fi system
and increase its throughput. With comprehensive Wi-Fi measurement studies with augmented antennas, we identify the potential
performance gain atop spatial diversity gains from existing technologies like MIMO and beamforming. We propose WINAS, a general
Wi-Fi intelligent antenna selection scheme with full system implementation that can be easily integrated with commodity Wi-Fi AP.
WINAS provides substantially improved throughput for downlink traffics. Our experimental evaluation suggests that WINAS improves
Wi-Fi throughput up to 1.56x, and 1.47x in average, in real user-based evaluation.

Index Terms—Wireless system, communication, measurement, channel adaptation, antenna augmentation, Wi-Fi throughput

✦

1 INTRODUCTION

High throughput has been a paramount concern of Wi-
Fi for supporting Gigabit Internet. The maximum physical
data rate (PHY-rate) defined in 802.11ac is up to 6.933
Gbps [1]. In practical usage, however, the true data rate is
fundamentally limited by the quality of the wireless channel
that the radio signal experiences. If the wireless channel
quality is not favourable, Wi-Fi transmission has to fall back
to lower-order modulation and higher coding redundancy
in order to cope with a low signal-to-noise ratio (SNR) [2],
[3], [4]. The 802.11ac application data rate has been reported
to be at the order of 90 to 200 Mbps at different locations in
a typical office environment [5], [6].

Previous Wi-Fi editions have employed schemes such
like MIMO (since 802.11n, MU-MIMO of 802.11ac/ax) and
beamforming (since 802.11ac) to improve the data rate by
leveraging space — the wireless channel varies across differ-
ent Tx/Rx pairs due to multipath propagation of the signal,
and thus offers opportunities for multiplexing or directional
signal enhancement [7]. The adoption of MIMO and beam-
forming has brought significant improvement to the Wi-Fi
throughput. The performance gain of MIMO and beam-
forming, however, is still limited by the number of Tx/Rx
pairs, which has not grown much due to the hardware cost
(RF chain components including LNA, mixer, LPF, ADC)
and the incurred processing overhead (e.g. 20MHz sam-
pling rate adds 40M I/Q samples per RF chain) for MMSE
channel estimator[8], [9], [10] and STBC coder/decoder[11],

• Y. Zhang and M. Li are with the School of Computer Science and
Engineering, Nanyang Technological University, Singapore 639798.
E-mail: yanbo001@e.ntu.edu.sg, limo@ntu.edu.sg

• W. Sun is with Samsung Research and Development, 6G Research Team,
Seoul, KR 06620. E-mail: wp.son@samsung.com

• Y. Ren is with the Department of Computer Science and Engineering,
Michigan State University, East Lansing, MI 48824.
Email: renyidon@msu.edu.sg

• S. Lee is with School of Computing, Korea Advanced Institute of Science
& Technology (KAIST), Daejeon, KR 34141.
Email: profsj@kaist.ac.kr

Manuscript received January 18, 2022; firstly revised May 16, 2022; secondly
revised June 28, 2022; accepted July 20, 2022.
(Corresponding author: Mo Li)

which in turn requires more powerful processor with higher
cost. To our knowledge, even the most advanced 802.11ax
commercial Wi-Fi APs (e.g. ROG GT-AX11000, TL-ARCHER
AX90) use utmost four RF chains for single band (2.4 GHz
or 5 GHz), and are priced at above $300. ON semiconductor
develops QT7810X RF transceiver [12] with up to eight radio
chains for 802.11ax, which however is not available at the
market.

Given the limit on the number of radio chains of Wi-Fi
chipset, in this paper, we investigate how the increase of
antennas in space may improve the spatial diversity gain
on top of existing schemes like MIMO and beamforming.
The rationale of antenna augmentation comes from the fact
that multiple antennas offer multiple observations of the
same signal. If one antenna is experiencing a destructive
superposition of multi-path signals, it is likely that another
antenna encounters the opposite situation. If a Wi-Fi device
has more antennas than its radio chains, it can choose from
the possible antenna combinations and use the best one to
provide the highest throughput.

The concept of “antenna selection” has been studied
in past literatures, but mostly in theory [13], [14], [15],
[16], which proved that additional diversity gain can be
obtained by selecting different sets of antennas atop fixed
number of radio chains. Algorithms and methods around
optimizing antenna selection have been proposed [17], [18],
[19], [20], [21] and mostly assessed by simulated wireless
transmissions. To the best of our knowledge, however, lit-
tle systematic development and application to commodity
wireless systems, e.g., Wi-Fi, has been performed mainly
due to the following challenges: 1) Low scalability. Most ex-
isting antenna selection algorithms incur excessive channel
probing overhead and are thus not practical to scale with
larger size of the antenna array - the two known recent
system developments by Huawei [22] and Samsung[23]
are limited to two antennas per radio chain. 2) Inadequate
adaptability. Adapting to wireless channel variation and effi-
ciently switching to more appropriate antennas is necessary
to maintain high throughput but seldomly investigated in
existing literatures - significant system design consideration

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3195453

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on October 26,2022 at 05:34:06 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS OF MOBILE COMPUTING 2

is lacking. 3) Protocol compatibility. No existing studies can
easily generalize to typical Wi-Fi scenario where protocol
compatibility has to be ensured - in order to integrate 802.11
MAC and PHY behaviors involved in channel sounding,
rate adaptation, and multiple access.

This paper performs a measurement study to reveal the
spatial diversity gain atop existing MIMO and beamforming
technique. Our investigation shows up to 1.9x and 1.65x
throughput gains atop MIMO on 2.4 GHz and 5 GHz,
respectively. There is 1.2x throughput gain even when beam-
forming is enabled.

Following the measurement study, we propose WINAS,
a general Wi-Fi INtelligent Antenna Selection scheme for an-
tenna augmentation of commercial Wi-Fi APs. The proposed
solution can be easily integrated with commodity Wi-Fi AP
to augment the number of candidate antennas connected
to each radio chain and improve its spatial diversity. The
AP can configure the RF switches to select a combination of
antennas on demand for best communication performance.
The prototype we build consists of a commodity Wi-Fi AP
with three radio chains and a linear antenna array with 12
antennas. All components are connected through standard
hardware interfaces and work in a plug-and-play mode
without any hardware modifications to the AP. The total
hardware cost including antennas and RF switches is below
$30 which is far lower than the cost of increasing radio
chains to achieve antenna array of the same size. Fig. 1(a)
shows the prototype platform. To fully exploit the aug-
mented antennas and address aforementioned challenges in
system design, WINAS entails an intelligent antenna combi-
nation (AntComb) control, by which the AP can quickly iden-
tify the best AntComb, tailoring for wireless channel con-
dition, and achieve fast antenna switching in milliseconds.
Instead of heavily probing instantaneous channel condition,
WINAS predicts variation of channel quality with a machine
learning based estimator, achieves timely AntComb switches,
while at the same time avoids unnecessary probing over-
head. For compatibility consideration, WINAS embeds itself
into 802.11 standard MAC and PHY operations that involve
light modification to 802.11 modulation and coding scheme
(MCS) control, and is able to support multi-client scenarios.

End-to-end system performance is evaluated with ex-
tensive real world experiments conducted in different en-
vironmental conditions. Compared with legacy Wi-Fi, the
averaged throughput gain delivered by WINAS is 1.61x
and 1.47x with single client and multiple clients scenarios,
respectively.

In summary, we claim the following contributions.

• To the best of our knowledge, we are the first to
experimentally investigate the spatial diversity gain
brought by antenna augmentation with commodity
Wi-Fi.

• We develop a complete end-to-end design, enabling
an intelligent utilization of the augmented antennas.

• We implement a real-time system with hardware
extension and software modification compatible with
commodity 802.11 AP, with which the performance
of the proposed design can be corroborated by real
world experiments.

The rest of this paper is organized as follows: In Sec-

tion 2, we summarize and discuss the related work. In
Section 3, we provide a preliminary measurement study to
investigate potential gain from antenna augmentation. In
Section 4, we introduce the design of WINAS. Three ex-
tended topics regarding WINAS are discussed in Section 6.
The performance of WINAS is evaluated with extensive
experiment results in Section 5. We conclude the paper in
Section 7.

2 RELATED WORK

Multi-antenna systems. From the first paper [24] that
proves the possibility of MIMO, the major efforts in the
direction of exploiting spatial diversity have been made to
improve multiplexing and transmit/receive diversity, where
multiple RF chains are used simultaneously to increase
spatial streams, provide redundant copies, or enhance sig-
nal strength in directions [25], [26], [27]. Recent Massive
MIMO [28], [29], [30] may scale up to hundreds of antennas
to simultaneously serve many cells with the same time fre-
quency resource. It is one crucial PHY technique for the 5G
base stations. The increased number of RF chains in MIMO,
however, imposes excessive processing overhead regarding
both infrastructural and computational cost, which makes
the multi-antenna systems in-affordable to wireless local
area networks like those of Wi-Fi. To our knowledge, the
maximum number of RF chains accommodated in single
commercial Wi-Fi chipset (being 2.4 GHz or 5 GHz) is four.
As our empirical study suggests, WINAS can provide extra
gain on top of the limited number of RF chains by providing
better options of inexpensive antennas in space.

Antenna selection. From theory to practice, equipping more
antennas than RF chains, namely, antenna diversity, has
attracted attentions due to the reductions in the hardware
expenses [15], [31], [32], [33], [34]. Diverse algorithms have
been proposed regarding various aspects including higher
rank channel matrix [17], [35], [36], lower processing com-
plexity [18], [19], compressed channel feedback[37], [38],
and etc. Most recently we also see industry practices in
this direction, e.g., Huawei smart antenna technology [22]
enables switching between omnidirectional and directional
antennas - however limited to only two antennas due to
difficulty in channel sensing at run time. To the best of our
knowledge, most existing algorithms are not experimentally
studied in practice. Many studies have to assume practically
in-affordable methods to gain perfect channel knowledge.
How the augmented antennas can be supported by off-the-
shelf Wi-Fi chipsets, including antenna scalability, adaptabil-
ity to channel variation, and protocol compatibility, is not
answered in previous studies, which is the core of WINAS.

Latest systems in Wi-Fi antenna augmentation. In [39],
the authors propose a moving Wi-Fi AP, which moves
across different locations to exploit spatial diversity gain.
MIDAS [40] enables a distributed antenna system to benefit
multi-user MIMO (MU-MIMO) in 802.11ac. How to aug-
ment commodity Wi-Fi and improve the built-in throughput
of 802.11 is not addressed in the above two works. In [41],
the authors presents a programmable radio environment,
by instrumenting the environment with a large array of

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3195453

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on October 26,2022 at 05:34:06 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS OF MOBILE COMPUTING 3

12-Antenna Array

Group 1 Group 2 Group 3

Wi-Fi AP and Switch Controller

(a) Platform

1

2

3

4

5

6

7

8

9
10

AP

11

12

13

14

15

16

(b) Environment

Fig. 1. The platform and experiment environment.

antennas to manipulate the wireless channel. Multiple ex-
ternal antennas are introduced but attached to the environ-
ment, which is fundamentally different from the purpose of
WINAS in improving transceiver side spatial diversity on
commodity Wi-Fi terminals. An open-loop antenna selection
scheme for Wi-Fi AP has been studied in [23], which is based
on a special Wi-Fi model with only one redundant antenna
for each of the three RF chains. A try-and-error solution is
applied, which takes time at the order of seconds for probing
and switching (WINAS in comparison achieves millisecond
level switch). WINAS is a closed-loop system that enables
fast antenna adaptation on commodity Wi-Fi APs and with
the scale of the antenna array at a different level. In [42],
the authors integrate multiple APs to serve multiple clients
concurrently with a sophisticated synchronization design.
When compared to [42], WINAS provides a solution in
improving the overall capacity with a single AP, which
is orthogonal in its design purpose and can be integrated
the idea of [42] to further increase the capacity. Overall,
WINAS is the first general antenna augmentation solution
to commercial Wi-Fi AP and with compliance to standard
PHY and MAC.

3 MOTIVATION

We conduct preliminary measurement studies to investigate
the potential gain from antenna augmentation. The gain is
quantified by measuring downlink throughput of a Wi-Fi
AP equipped with 12 augmented antennas. In the follow-
ing, we show two types of measurement studies with two
different points of view. 1) To show the potential of antenna
augmentation, we study how the throughputs of different
AntCombs for MIMO are diversified at various locations in
a typical indoor environment. 2) Beamforming is another
well-known approach to improve SNR by exploiting spatial
diversity. To study how the beamforming gain overlaps with
the gain of antenna augmentation, we compare their gain
empirically with extensive measurements.

3.1 Experiment Setup

Platform. We conduct the measurement studies on both
2.4 GHz and 5 GHz Wi-Fi bands. For 2.4 GHz experiments,
we let a commodity 802.11n NIC (WLE350NX) connect with
an external antenna array and serve the Wi-Fi AP. The

AP’s three radio chains are connected with 12 COTS dipole
antennas (each of cost less than $1), i.e., each radio chain
has four candidate antennas, thus resulting in 64 different
AntCombs in the case of 3x3 MIMO. For 5 GHz experiments,
we use another commodity 802.11ac NIC (WLE1216V5) as
Wi-Fi AP, which also supports beamforming. In both cases,
for Wi-Fi client, we use the same NIC as that of AP, in its
normal condition. Fig. 1(a) depicts the setup of the platform.
Environment. We conduct the experiments in our lab
which represents a typical indoor environment as shown
in Fig. 1(b). The Wi-Fi AP is deployed at the location high-
lighted in rectangle, and we selected 16 locations denoted
in circled numbers, for deploying the Wi-Fi client. The loca-
tions of the clients are carefully selected to produce wireless
channels covering three typical scenarios of indoor environ-
ment – LOS dominating, LOS existing and LOS blocked. By
varying the location of the client, we evaluate the efficacy
of antenna augmentation with the above different indoor
scenarios. The experiments are conducted at night, thus
with a relatively controlled environment.
Methodology. For each location of the Wi-Fi client, we mea-
sure downlink Wi-Fi throughput, for all the 64 AntCombs
of 3x3 MIMO one by one, on both 2.4 GHz and 5 GHz
bands. We use iPerf to measure the downlink throughput
by generating a saturated UDP traffic at a relatively clean
Wi-Fi channel. Each throughput result comes from a 60s
measurement.

To quantify the spatial diversity gain, we define a metric

tpGain =
max∀i throughput

median∀i throughput
− 1, i = 1, 2, ..., 64 (1)

where tpGain and i indicate throughput gain and the
index of AntComb, respectively. That is, tpGain indicates
the extra portion of maximum throughput compared with
the median across 64 AntCombs at a given location, im-
plying the throughput gain to exploit compared with the
legacy fixed antenna case. The median throughput is used
to represent the performance of the legacy fixed antenna
systems because the different antenna combinations may
lead to highly varied throughput which does not represent
the overall performance. According to our measurement,
the distribution of the median throughput measured with
different clients’ locations locates at the middle of the dis-
tribution of the throughput provided by different fixed an-
tenna combinations, and therefore, the median throughput
is representative.

3.2 Potential Gain of Antenna Augmentation
We show the throughput results across different AntCombs
without beamforming. Fig. 2(a) shows the offered through-
puts of different AntComb on 2.4 GHz and 5 GHz, respec-
tively. The location that gives the highest tpGain is 10 for
both 2.4 GHz and 5 GHz. Specifically, the tpGain values
at the two frequencies are 0.90 (maximum: AntComb 64,
median: AntComb 25), and 0.65 (maximum: AntComb 26,
median: AntComb 9), respectively, meaning that 90% and
65% throughput improvement could be achieved in these
cases by augmenting the antennas. Fig. 2(b) plots the tpGain
distribution across all the 16 locations on 2.4 GHz and 5 GHz
bands, respectively. As the figure suggests, the tpGain
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Fig. 3. The potential of throughput improvement.

varies across different locations due to the different diversity
of the multipath signals, and the average tpGains are 0.40
(2.4 GHz) and 0.35 (5 GHz), across the 16 locations.

Fig. 3 summarizes the throughput distribution across the
16 locations in the case of adapting to the best AntComb at
each location (Oracle), in comparison with those of top 10
fixed AntCombs. Fig. 3(a) and Fig. 3(b) show the empirical
cumulative distribution function (CDF) of the results on
2.4 GHz and 5 GHz, respectively. In both cases, we see
that the CDF curves of Oracle are confined within a narrow
range, i.e., 97–116 Mbps on 2.4 GHz and 90–125 Mbps on
5 GHz, while with a fixed AntComb, even the best one, the
CDF curves show relatively flat shapes, indicating the fluc-
tuation of the throughput across different locations in both
cases. On average there is a gap of 30 Mbps between the
Oracle throughput and those of the top 10 AntCombs. This
implies the significance of an intelligent AntComb selection
and adaptation, which is the target of WINAS.

Impact of varied AP-client locations. The above results
are obtained when deploying the AP at the corner of the
room as shown in Fig. 1(b). To validate the throughput
gain with different AP-client locations, we re-deploy the AP
at the center of the room (near location 6 ), and repeat
the throughput measurement with different client locations.
We observe similar gaps of throughput improvement by
as much as 40Mbps. As a matter of fact, due to channel
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reciprocity varying the locations of the AP leads to equiva-
lent antenna diversity gains as varying the locations of the
clients.

3.3 Antenna Augmentation with Beamforming
We conduct further investigation to study whether the
throughput gain brought by antenna augmentation overlaps
with that exploited by beamforming. To this end, we mea-
sure the throughput with and without beamforming, with
different AntCombs and at different locations.

Figs. 4(a) and 4(b) show the throughput results mea-
sured at locations 1 and 9 , corresponding to the lo-
cations yielding the highest and the lowest beamforming
gain (throughput gap with/without beamforming enabled),
respectively. In both results, the red and black lines represent
the achieved throughputs from all 64 AntCombs with and
without beamforming, respectively. We observe that, even
with beamforming, the throughputs from all 64 AntCombs
are highly diverse, demonstrating that the adoption of
beamforming itself cannot fully absorb the gain introduced
by antenna augmentation.

In a detailed study, Fig. 5 gives a comparison in terms of
the potential gains brought by beamforming, antenna aug-
mentation, and employing both schemes simultaneously,
based on the throughput trace that we collect from location

1 . The black line indicates the gain of beamforming,
which is defined to the ratio of the throughput gap between
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those with and without beamforming. The blue line indi-
cates the potential gain of antenna augmentation, defined
by the portion of the throughput gap compared between the
best AntComb and each present AntComb. The red line indi-
cates the improvement introduced by employing both an-
tenna augmentation and beamforming. We see that the gain
brought by antenna augmentation is substantial compared
with that of beamforming, and more importantly, it is very
close to that of employing both schemes simultaneously.
This implies that the potential gain of antenna augmentation
does not overlap with that brought from beamforming,
specifically, it can provide further improvement atop beam-
forming by a factor of 1.2x in 802.11ac.
The rationale of the gain. Wi-Fi derives the beamforming
weights with Singular Value Decomposition (SVD), which
separates the concurrent spatial streams that are entangled
with wireless channel, and maximizes the effective SNR
for the derived parallel, independent sub-channels [43]. The
upper bound of the maximization is decided by the spatial
correlation between the signals received at the multiple
radio chains. The design of antenna augmentation further
gains on top of beamforming because it provides more
potential channels with lower correlation, and therefore
produces higher effective SNR for the beamformed channel.

3.4 Summary
Our empirical study shows the potential gain of antenna
augmentation by considering two aspects: 1) When com-
pared with legacy fixed antenna MIMO, up to 1.90x and
1.65x higher throughput can be offered on 2.4 GHz and
5 GHz, respectively. 2) The gain of antenna augmentation
does not fully overlap with that of beamforming, and hence,
adds to beamforming by a factor of 1.2x. These results
cement the rationale of designing WINAS for Wi-Fi antenna
augmentation.

4 SYSTEM DESIGN

4.1 Overview
WINAS is implemented at AP, which is supposed to serve
normal Wi-Fi clients. That is, WINAS targets at improving
the downlink1 Wi-Fi throughput, by controlling AntComb at
AP side in real-time. Clients being served can be WINAS-
agnostic normal Wi-Fi devices, e.g., smartphone, without
any modification to their hardware or software.

The hardware architecture adopted by this work consists
of a commodity Wi-Fi AP augmented by an external 12-
antenna array as illustrated in Fig. 6. To ensure that the Wi-
Fi AP can select AntComb on demand in a fast and reliable
way, we build our hardware architecture primarily on top
of SWAN [32], with extra hardware efforts for further im-
proved hardware efficiency and reliability (see Section 4.2).

WINAS serves the associated client with an AntComb
that is most likely to achieve the highest downlink through-
put among all possible AntCombs. WINAS operates alter-
nately in two working states, namely, searching and serving.
In searching state, an efficient sounding operation is con-
ducted to promptly identify the best AntComb (finished in

1. The design of WINAS focuses on downlink traffic which takes over
80% of the total Wi-Fi traffic [44].

SWITCH

AP
GPIO SMA

S1 S2 S3

ANTENNA GROUP 1 ANTENNA GROUP 2 ANTENNA GROUP 3

Fig. 6. WINAS hardware architecture.

milliseconds), while in serving state, normal Wi-Fi service is
provided with the identified AntComb.

The design of WINAS addresses the following three
technical challenges. 1) It is essential to promptly estimate
the expected throughputs of all possible AntCombs so the
searching state can be minimized. WINAS employs a CSI-
based throughput estimation scheme to promptly identify
the best AntComb and switch to it (Section 4.3). 2) AntComb
needs accurate timing in alternating between searching and
serving to achieve the best efficiency, and that requires
adapting to the trend of channel variation. A machine
learning model is developed to derive the right moment
for triggering searching state (Section 4.4). 3) Change of
AntComb may be followed by an abrupt improvement of
channel quality, but the legacy PHY-rate control algorithm,
e.g., Minstrel [45], [46], lacks fast adaptation to that. WINAS
incorporates a light-weight modification to Minstrel that
enables fast PHY-rate follow-up (Section 4.5).

4.2 Prerequisite

Hardware architecture. As Fig. 6 illustrates, in current
prototype, a single-pole-four-throw RF switch (Peregrine
PE42442) is used to connect each radio chain of the AP
to four external antennas through coaxial cable (RG 50).
We use three RF switches to form a 12-antenna array. As
such, at each moment, each RF switch can relay the signal
between one of the four candidate antennas and a radio
chain. The AP controls the output ports of the three RF
switches directly, through the GPIO pins on its board by
sending a two-bit command to each of them. The control
delay is much shorter than that of SWAN, where the AP
controls RF switches indirectly via an Arduino [32]. In order
to further reduce the control delay, we embed the control
command into the Linux kernel. By that, we reduce the
switching delay from 29µs of SWAN [32] to below 4.5µs.

Prerequisites for AP. To adopt WINAS, there are following
prerequisites. 1) The AP needs to support CSI manipu-
lation. This is available to industrial manufacturers who
possess full access to the PHY of Wi-Fi, and has been
recently made available to research community on many
commodity AP models thanks to previous work on CSI
extraction on 802.11n [47] or 802.11ac [48]. 2) AP’s user and
kernel space functions are programmable. Most commod-
ity APs operate with open source linux distributions (e.g.
OpenWRT, asusWRT), and meet such a requirement. 3)
The AP’s board should support output signaling through
interfaces like GPIO (adopted in this work), Ethernet [32],
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or USB, and equip detachable antennas, which is prevalent
for commodity APs. Many off-the-shelf APs fulfil the above
requirements, e.g., TP-Link WDR4310, Compex WPJ563,
Asus RT-ac86u, etc. [49].

To facilitate the delivery of our core idea, in the follow-
ing, we take a single Wi-Fi client case to elaborate WINAS.
In our current prototype, 802.11n/ac AP is used due to the
readily available CSI extraction function for 802.11n/ac [47].
We provide detailed discussion on multi-user support and
the potential integration with latest 802.11ax standard in
Section 6.

4.3 AntComb Selection
In identifying the best AntComb that yields the highest Wi-Fi
throughput, it is essential to promptly estimate the expected
throughput of each AntComb, whereby the best one can be
selected. Intuitively, it may be achieved by probing with
adequate Wi-Fi packets, and analyzing the packet delivery
statistics. Such an approach, however, incurs substantial
probing overhead and, consequently, results in considerable
probing delay ([23] uses probing period of 5 sec), which
is unacceptable in WINAS since AntComb selection must
be completed in minimized searching state and otherwise
impair normal data traffic.

For that reason, WINAS takes a different approach.
WINAS uses CSI and applies a model driven approach to
quickly estimate the throughput. For a given AntComb, all
necessary CSI can be obtained with a single probing packet,
thus avoiding cumbersome lengthy data collection.

CSI-based throughput estimation. CSI, in essential, tells the
quality of the incoming signal resulted from the wireless
channel, which in turn can link us to the expected through-
put. Mathematically, throughput can be expressed as

TP =
PL× PSR

E[DUR]
, (2)

where PSR and DUR denote packet success rate and the
time interval between the preamble of two consecutive
packets, respectively. PL denotes packet length, which is
decided before transmission. PSR is equal to (1−BER)PL,
where BER represents the bit error rate of the packet. DUR
and BER are illustrated as follows.

DUR = DIFS+E[BO]+Dur(DATA)+SIFS+Dur(ACK),
(3)

Eq. 3 is defined based on the operation of CSMA/CA [50].
In Eq. 3, DIFS/SIFS and Dur(ACK) use fixed values of
frame spacing and ACK duration, which are defined with
CSMA/CA protocol. Dur(DATA) denotes the duration of
data frame and is known to the transmitter. E[BO] rep-
resents the expected transmission back off time, which is

AP

STA
Searching

...

Serving Searching

...

NSR NS Normal data

...

...

Fig. 8. Searching and serving states in WINAS.

determined by the MAC channel contention, and is obtained
by averaging the number of back offs measured during a
previous time window.

Based on the relationship between BER and SNR in
AWGN channel [51], we have

BER = α × Q (β × eSNR), (4)

where α and β depend on the modulation scheme [52]. We
use the concept of eSNR (effective SNR) [53] in Eq. 4, a
more comprehensive metric than SNR that takes the impact
of spatial correlation and frequency selective fading into
consideration in assessing MIMO-OFDM link quality. To
compute eSNR, in addition to follow the method pro-
posed in [54] that simulates the effect of MIMO processing
gain (MMSE for multiplexing and MRC for diversity [51]),
we also consider the impact of FEC coding on standardized
coding rate by applying NIST error rate model [55], [52].

Previous illustration is based on using a specific PHY-
rate. In practice, Wi-Fi defines different PHY-rates denoted
by different modulation and coding scheme (MCS) indices,2

to adapt to different signal qualities. Different PHY-rate
results in different throughput estimation due to different
PSR (caused by different BER) and DUR (caused by dif-
ferent Dur(DATA)) in Eq. 2. The final expected throughput
can thus be selected from all TP estimations based on the 24
different MCS choices:

TPf = max
i

(TPi), i = 0, 1, 2, ..., 23 (5)

where TPi indicates the estimated throughput with MCS i.
We perform trace driven analysis to compare the esti-

mated PSR and the measured PSR. Fig. 7 depicts the results
from four different traces (of different eSNRs) that cover
MCS index 16–23. The results suggest high accuracy of
PSR estimation (denoted as ‘e’) from a single packet in
comparison with measured empirical statistics (denoted as
‘m’) based on 1000 probing packets.

Searching and serving. WINAS entails a searching state,
which is triggered intermittently on demand during Wi-Fi
serving state. Specifically, in searching state, a Wi-Fi client
sends N short probing packets, namely, null data sound-
ing (NS) packets, sequentially, triggered by an NS Request
(NSR) packet sent by Wi-Fi AP. The Wi-Fi AP iterates over
the N different antennas connected to each of its radio
chains, to receive each of the probing packets, where N
is set as the total number of candidate antennas of each
radio chain, i.e., 4 in current prototype. As a result, after
receiving N NS packets, the CSI regarding all the external
antennas has been collected for throughput estimation. In

2. In 802.11n, there are 24 different MCS choices and the MCS index
ranges from 0 to 23 [1].
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Fig. 9. Delay measurement in searching operations.

serving state, Wi-Fi AP provides normal Wi-Fi service with
the AntComb selected as the best one by the throughput es-
timation model. Fig. 8 illustrates the above operations. The
NSR and NR packets can be embedded into some existing
protocol flows, e.g., Wi-Fi beamforming (see Section 6), TCP
synchronization, or QUIC control messages [56]. We experi-
mentally study the time delay imposed by above operations
in searching state and plot the results in Fig. 9. As the results
suggest, the channel sounding operations take an average
of 4ms in total which defines the searching state and brings
minimum impairment to normal data traffic. The eSNR
computation and throughput estimation takes an average
of 41ms, which is the lag before WINAS switches to the
best AntComb. Nevertheless, in the meantime of throughput
estimation (4ms–41ms) WINAS has already entered serving
state and started data traffic (with the previous non-optimal
AntComb). The searching operation (as well as the timing
design we will introduce in Section 4.4) runs in parallel
to Linux networking stack, so any searching delay does
not harm to normal packet flows but only delays the gain
of serving with the best AntComb, which our experiment
results verify in Section 5.2. In summary, at the end of the
searching state, the expected throughputs of all AntCombs
are derived, among which the AntComb with the highest
throughput is selected to serve the data traffic until the
next searching state. Detailed experimental study of the
throughput estimation and AntComb selection performance
is provided in Section 5.1.

4.4 Timing the searching

In WINAS operation flow, if searching state is triggered
excessively, sounding overhead will impair the throughput
gain delivered by the better AntComb, while if searching state
is not triggered in time, the AP will miss opportunities
in adapting the selected AntComb to the channel variation,
which essentially limits the diversity gain we can exploit.

In addressing the above challenge, we need to first
establish a criteria to assess the benefit of triggering a
searching state. To this end, we compare loss—the through-
put loss caused by sounding overhead during searching
state—and gain—the throughput gain ascribed to adopt a
better AntComb after triggering a searching state. The loss
calculates as

loss =

∫ t1

t0

TPc(τ)dτ (6)

where t0, t1 denote the start and end of the searching state,
respectively, and TPc(τ) denotes the expected throughput
of current AntComb at time τ , indicating the amount of
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Fig. 10. LSTM based neural network for predicting the throughput gains.
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Fig. 11. Predicted throughput gain v.s. measured present throughput.

traffic loss due to AntComb search between t0 and t1. The
gain calculates as

gain =

∫ t2

t1

TPb(τ)− TPc(τ)dτ (7)

where t2 indicates the end of the coherence time starting
from t0, and TPb(τ) indicates the expected throughput of
the best AntComb at time τ . Apparently, if the gain out-
weighs the loss, triggering a searching state at t0 is beneficial.
We add a conservative margin γ (empirically set to 45 Mbits)
to avoid ping-pong effect, i.e., the condition for triggering
searching state is ∆ > γ, where ∆ equals gain − loss, and
quantifies the throughput improvement due to the selected
antenna combination from time t1 to t2, in compensation to
the overhead of channel sounding from time t0 to t1.

To employ the above strategy, WINAS needs to predict
∆ in real time. A Long Short-Term Memory (LSTM) based
neural network model is applied to make the prediction.
LSTM has been widely adopted for time series prediction
due to its capability of memorizing past information, and
based on which to make future prediction. In the case of Wi-
Fi throughput gain prediction, since it varies continuously
due to the temporal correlation of wireless channel [57],
[58], LSTM is a proper choice in incorporating the correlated
throughput gain variation.

Fig. 10 gives the detailed structure of the neural network.
The model contains two LSTM layers and three fully con-
nected layers. The output length of the first LSTM layer is
32, the output length of the second LSTM layer is 16, and
the last softmax layer contains one normal neural node.

WINAS keeps deriving the eSNRs of every data packet
during serving state, and feed the eSNR samples from the
most recently received 20 packets to the model as the input
vector. The output is ∆. In serving state, on receiving every
new data packet, WINAS derives a new ∆ and compare
with γ to make a decision on whether triggering the search-
ing state or not.

To train the model, we collect eSNR samples from
packets received by Wi-Fi AP with a 30-minute real world
measurement conducted under a controlled environment

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3195453

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on October 26,2022 at 05:34:06 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS OF MOBILE COMPUTING 8

occupying an area of about 200m2. During the measure-
ments, we move a client along a random path at a speed
of about 1 m/s which continuously transmits about 1000
packet/s to the AP. The preprocessing of the collected
dataset includes 1) re-sampling the eSNR with a sampling
rate of one kHz to make it evenly distributed in time, and
2) segmenting the output of the re-sampling with a moving
window of size 20, which constructs ∼1.8 million samples
with the smallest moving stride. The label of each training
sample is provided by applying Eq. 6 and Eq. 7, where
the TPb(τ) curve is derived from measurement results of
intermittently conducted searching states using interpola-
tion, as TPb does not vary much over time. We perform a
trace driven analysis to show the effectiveness of the model
in predicting ∆. Fig. 11 presents the predicted ∆ (in red)
along with the time and compares it with the measured
throughput TPc (in black) of one AntComb. we can see clear
trend of ∆ oppositely related to the trend of TPc in time,
implying timely suggestion from our model for triggering
the searching state.

The machine learning model adopted in WINAS is light
weight. The implementation of the machine learning model
contains two LSTM layers and three fully connected layers.
The total number of parameters contained in the model is
8645, and the total size of the model is only 121 kB. During
run time, the memory consumption of the model inference
is 33 kB, which consumes only 0.03% of the system memory
of our prototyped device (Atheros WPJ558 with 128 MB
DDR2).

The model does not need to be re-trained as long as the
physical channel varies in a continuous way. The reason is
that, the LSTM model is designed to learn the trending of
variations, specifically the physical wireless channel vari-
ation in WINAS. The model is thus able to capture the
continuity of the variation, based on which it infers the
futural channel condition with time-series prediction. Note
that the continuity of the wireless channel variation has
been validated by many existing works [58], [59], and is not
affected by sporadic update of the environment (e.g., new
furniture installed in the environment).

4.5 Rate Adaptation

While WINAS is able to identify and switch to the AntComb
that provides the best channel, the actual throughput im-
provement relies on a quick adaptation of the PHY-rate
to exploit the improved channel quality. WINAS can work
seamlessly with legacy 802.11n PHY-rate control algorithm,
which is able to adapt the PHY-rate to the current channel
quality based on historical packet statistics.

Default 802.11 rate control algorithm, e.g., Minstrel, how-
ever, lacks fast adaptation due to its statistics based nature,
which is unfavorable in exploiting the sudden channel
improvement brought by the change of AntComb. WINAS
optimizes the interactiveness between AntComb and PHY-
rate adaptation to further improve throughput.

The core idea is to confine the range of the candidate
PHY-rates and put more weights on more likely candidates
based on the knowledge that WINAS has learnt about
the channel, thus reducing the convergence time. Instead
of enforcing an optimal rate based on instantaneous CSI

Sent with the rates on MRR until success

minstrel_ht_get_rate

rate_control_fill_sta_table

get_sample_rate

minstrel_ht_tx_status

minstrel_ht_update_stats

minstrel_ht_update_rates

ieee80211_sta_rates

sample_table

minstrel_rate_stats

minstrel_ht_sta

Probing

mac80211

Every
100ms

MPDU ACK

MSDU

: WiFi frame : function              : data structure             : modified block

Wi-Fi Driver

Fig. 12. WINAS modification to the conventional Minstrel rate adaptation
algorithm.

readings, our choice of conforming with Minstrel allows
compatibility and inherits its resilience with channel jitters.

Specifically, conventional Minstrel infers the optimal
PHY-rate, based on historical PSR statistics. During each
100ms interval, Minstrel probes all the MCS indices within
a randomly initialized MCS table and at the end of each
interval, the PSR of each MCS is updated with a weighted
moving average, i.e.,

pR(t+∆t) = (1− w)pR(t) + w
SR

TR
(8)

where pR(t+∆t) denotes the PSR of PHY-rate R at time t+
∆t, and SR, TR denote the numbers of successfully received
and transmitted packets (probing and/or normal data) with
PHY-rate R during the most recent 100 ms, respectively. A
typical value of the weight w is 0.96.

To confine the candidate PHY-rates, at the end of each
searching state, WINAS modifies the MCS table used for
probing to only contain indices greater than the previous
optimal PHY-rate, which is based on the fact that the optimal
PHY-rate after an AntComb selection will always be greater
than the previous one, thus removing unnecessary probing
and its negative effect on PHY-rate convergence. Also, the
previous PSR value, i.e., pR(t) in Eq. 8, is set to 0 for the
MCS indices within the range of probing. By doing so, the
impact of the historical statistics associated with the previ-
ous AntComb is removed, thus achieving a more aggressive
PHY-rate adaptation to the newly selected AntComb. The
implementation of WINAS modifications are embedded into
the 802.11 driver in Linux kernel that contains Minstrel as
shown in Fig. 12 (with the relevant functions and structures
highlighted in black).

5 EVALUATION

We evaluate WINAS by firstly demonstrating the effective-
ness of the three building blocks, i.e., accuracy of AntComb
selection, efficiency in triggering the searching state, and rate
adaptation, followed by end-to-end system evaluation with
various different real world scenarios.

5.1 AntComb Selection
The accuracy of AntComb selection relies on the accuracy of
throughput estimation. In the following, we start with the
evaluation on throughput estimation of WINAS.
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Fig. 14. Accuracy of AntComb selection.

The experiment takes place in the lab space with the
environment as shown in Fig. 1(b), where a WINAS-enabled
Wi-Fi AP is deployed at the location highlighted in rectan-
gle, and we select 16 locations denoted in circled numbers
to deploy the Wi-Fi client. For each location, we measure the
downlink throughput with each of the 64 AntCombs for 60s.

Throughput estimation. Fig. 13 plots an experiment trace
showing the accuracy of throughput estimation, by com-
paring the estimated results with the measured on corre-
sponding AntCombs. The estimation correctly predicts the
peak (e.g., AntCombs with index 20, 36, 54) and valley (e.g.,
AntCombs with index 11, 31). For most of the cases, the
estimation errors are under 10 Mbps, and they never lead
to fatal mistakes on choosing a “good” AntComb, because
rather than the precise value of any single estimation, it is
the relative value of throughput estimations over AntCombs
that decides the correctness of antenna selection.

AntComb selection. We evaluate the accuracy of AntComb
selection, by identifying the ground truth ranking of the se-
lected AntComb by WINAS. For comprehensive assessment,
we summarize the results measured from all 16 locations.
Fig. 14(a) shows the CDF of the ground truth ranking of the
selected AntComb. For over 50% of the measurements, the
selected AntComb provides the best performance, it stays in
top three for near 80% of the cases, and within top six for all
measurements, which suggests high accuracy of AntComb
selection considering the selection is conducted among 64
AntCombs. Fig. 14(b) shows the CDF of the throughput
produced by selected AntCombs at the 16 locations (solid
line), and compares that with the optimal case, i.e., the
set of the highest measured throughput of corresponding
locations (thick dotted line), and that of the best fixed3

AntComb (thin dotted line). On one hand, the CDF curve
of WINAS selected AntComb is very close to that of the
optimal, with a gap of below 20 Mbps in the worst case.

3. Best fixed AntComb is a fixed set of antennas that offers the highest
averaged throughput over all locations.
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Fig. 16. 30 minute measurement study within a 200 m2 area.

On the other hand, the CDF curve of WINAS outperforms
that of the fixed AntComb by over 40 Mbps in the worst case.

5.2 Efficiency of Timed Searching

WINAS predicts the throughput gain and based on that trig-
gers the searching state. We show the efficiency of WINAS’s
timed searching by comparing that with a baseline scheme,
i.e., the AP enters searching state periodically.

During the experiment, we walked the client randomly
in a move-and-sojourn method, to mimic practical Wi-
Fi usage patterns. A number of locations within the lab
space were selected where the client sojourns during the
walk. The transitions between the locations were randomly
decided, and the duration of the sojourn at each location
followed a Gaussian distribution with the average of 30s.
This experiment is repeated three times - one with WINAS
and the other two with baseline schemes having different
searching intervals, i.e., 5s and 25s, representing different
level of channel variation.

Fig. 15 depicts a three-minute trace of measured
throughputs of the three schemes. For comparison, we also
put the throughput trace measured with legacy scheme on
a fixed AntComb. As expected the throughput of WINAS
shows the skyline, which remains at over 100 Mbps for
∼85% of the time. To show a more comprehensive com-
parison, we extend the same methodology to a larger space
occupying the entire area of about 200m2 in the lab space
and conduct the experiment for a duration of 30 min-
utes. Fig. 16(a) plots the CDF of the averaged through-
puts of different schemes. Comparing with the periodic
timing schemes using long (25s) and short (5s) intervals,
the throughput gain of WINAS’s adaptive timing scheme
is 1.38x and 1.12x, respectively. When compared with the
legacy scheme using fixed antennas, WINAS achieves 2.09x
throughput gain. Specifically, the throughput provided by
WINAS stays at high level, i.e., within 100 Mbps to
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Fig. 17. Example trace of rate adaptation after antenna selection.

115 Mbps. To provide more details, Fig. 16(b) shows the CDF
of the time intervals between consecutive searching states in
WINAS. The figure shows that the time intervals are mainly
distributed in two clusters around 2s and 30s, respectively,
which is in line with our move-and-sojourn pattern with
mean sojourn time of 30s, demonstrating the efficiency of
WINAS in adapting to channel variations.

5.3 Rate Adaptation
In this section, we compare WINAS with conventional Min-
strel adopted in Wi-Fi and identifies the effecacy of the fast
PHY-rate follow-up after a searching state.

Figs. 17(a) and 17(b) depict snippets of MCS index traces
with conventional Minstrel and WINAS modified Minstrel,
respectively. In both traces, a searching state is triggered at
the packet of index 5000. We can clearly see that the original
Minstrel starts to probe packets with various PHY-rates
and converges to the optimal PHY rate slow, while, with
WINAS, the PHY-rate promptly converges to the optimal
value. Fig. 18 presents the statistics on WINAS improvement
on rate adaptation delay as well as on its delivered data vol-
ume. Fig. 18(a) shows the CDF of the reduced convergence
time by WINAS. In more than 50% cases, the reduction is
greater than one sec., demonstrating the effectiveness of
WINAS on fast PHY-rate adaptation. The extra data volume
delivery due to the fast convergence of WINAS is derived by
integrating the PHY-rate difference during the convergence
period. Fig. 18(b) shows the CDF of the extra data volume
delivery, which shows, in more than 50%, 7 Mbits extra data
can be additionally provided for each switch.

5.4 End-to-End System Evaluation
To evaluate the end-to-end system performance of WINAS
in practice, we first experimentally examine three major
factors: 1) mobility, 2) environment, 3) multi-client, and
then conduct experiments based on the real usage patterns
of different Wi-Fi users, to reflect the performance in real
world.
Different mobility. To reflect different mobility, we intro-
duce Motion Ratio (MR), defined as the ratio of movement
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Fig. 18. Improvement of WINAS modified Minstrel.
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Fig. 19. Throughput improvement with different MR, environment, and
number of mobile clients.

time over the entire Wi-Fi usage time. We measure the
throughput improvement achieved by WINAS with four
different levels of mobility, with MR increasing from 0.1
to 0.7 with the step of 0.2. Figure 19(a) shows the CDF
of the improved throughput by WINAS over legacy Wi-Fi.
When MR is 0.1, the throughput improvement is greater
than 25 Mbps in 80% of the cases. With the increase of
MR, the throughput gain decreases, due to the fact that
the convergence speed of the rate adaptation cannot follows
channel variation, especially, in indoor environment with
MIMO. Even that, WINAS can still make improvement of
greater than 10 Mbps with 60% test cases when MR equals
to 0.7.
Different environment. We consider three different types
of environment, i.e., a lab space with few environment
dynamics (as shown in Fig. 1), crowded office (as shown
in Fig. 20) during working hours, and an outdoor corridor.
For each environment, we measure throughput at each of
15 selected locations with and without WINAS enabled.
For the static lab space, the throughput is improved by
more than 30 Mbps in 80% cases, as Fig. 19(b) indicates.
The improvement with a crowded office is slightly lower
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Fig. 20. The methodology and environment of the real-world experiment.

but still with more than 25 Mbps improvement achieved in
80% cases. In the outdoor environment, the improvement is
more than 5 Mbps in 80% cases, which is much lower when
compared with the indoor experiment due to the reduced
diversity in open space.
Multiple clients. We measure the throughput improvement
for multi-client scenario where the number of associated
clients increases from one to four. The improvement is
quantified as the aggregation of throughput gains over all
clients. Fig. 19(c) depicts the results. Overall, for over 80%
of the measurements, the averaged improvement over the
four cases is ∼30 Mbps. The throughput improvement gets
narrower with the increasing number of clients mainly due
to the higher overhead of packet switching control. It is
still able to achieve 31 Mbps throughput improvement in
median with four clients. Another observation is that the
improvement becomes steadier with increased number of
mobile clients, probably because when the mobile clients
scatter in space, the overall diversity gain gets steadier.
Real-world Evaluation. To reflect the real-world perfor-
mance of WINAS, we conduct experiments based on the
real usage patterns of different Wi-Fi users. To do so, we
firstly collected the traces of four volunteers when they
use Wi-Fi for Internet in typical office environment. Two of
them contributed their traces of smartphone usage profiles,
and the other two contributed their laptop usage profiles.
Fig. 20(a) provides an example of the trace recorded by
smartphone user 1. As the figure depicts, the user used Wi-
Fi from 12:30 to 12:43 at location A1, moved to location A2
from 12:43 to 12:44 (during which kept using Wi-Fi), and
then used Wi-Fi from 12:44 to 13:04 at location A2. The
user also moved to location A3 and A4 with continuous
Wi-Fi usage. In fig. 20(b), we plot the floor plan of the test
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Fig. 21. Throughput improvement measured with real world use cases
from four volunteers.

office. We indicate the locations where the prototype AP is
deployed, and the representative locations where the users
actively use Wi-Fi.

After obtaining the Wi-Fi usage profiles of the four users,
we mobilize an Atheros Wi-Fi router (for extracting the CSI
with the Atheros CSI tool) to repeat the recorded Wi-Fi us-
age trace for each of the four users. The MIMO configuration
is fixed to be the same as used in each of the user devices
to exactly emulate the Wi-Fi usage profiles. With all four
users simultaneously associated with the prototype AP, we
measure each individual’s throughput gain, and plot the
result in Fig. 21. We observe that firstly, the measurements
of throughput improvement are all positive, which indicate
that WINAS always provides better throughput than legacy
scheme for all four Wi-Fi users at all time. Secondly, the
improvements of the two smartphone users are slightly
lower than those of laptop users because they normally use
less antennas and experience higher mobility. The averaged
throughput gain among all four users is 1.45x for half of the
measurements. Even in the case with lowest improvement,
i.e., for smartphone user 1, WINAS still provides 1.25x (from
16 Mbps to 20 Mbps) throughput improvement for 50%
of the time. In the case of user 3, WINAS improves the
throughput by 1.6x (from 15 Mbps to 24 Mbps) for 50% of
the time. On average, the throughputs of the four users are
improved by 1.37x, 1.43x, 1.53x, and 1.56x, respectively. We
also plot the aggregated throughput improvement among
the four users to show the overall performance. As illus-
trated with the red curve, WINAS 1.44x (from 64 Mbps to
92 Mbps) gain of the aggregated throughput in median.

6 DISCUSSION

Supporting multiple clients. Concurrent support for mul-
tiple clients is desirable for practical Wi-Fi usage. The
searching-serving design of WINAS can be easily extended
to multi-client support. The AP may maintain a configu-
ration profile for each client device. During runtime, the
profile records the time varying CSI structure and keeps
updating the best AntComb for the downlink channel of
each client. With the client customized profile, the AP
makes timing decision and conducts AntComb switching.
A one-for-all AntComb is used for all uplink transmissions
over different clients, and the AntComb is selected based
on maximum average uplink throughput from all clients.
Fig. 22 illustrates this design. The maintenance and update
of each client profile runs in parallel thread to avoid latency.
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Fig. 22. WINAS multiple clients support.

In such design, the client specific uplink traffics that AP
uses for channel sampling are mixed in time and across
clients. We find that the scheme complies with Wi-Fi Air
Time Fairness (ATF) [60], which is a standard scheme to
maintain fairness among associated clients, and operates
to serves each client during an allocated time slot. We
adapt our scheme to ATF by embedding fast searching into
the dedicated time slot of each client, in order to isolate
the channel samplings from different clients. Note that
all WINAS operations are based on general Wi-Fi frames
and thus follow standard Wi-Fi medium access procedures.
Communication with multiple clients does not compromise
the execution flow of WINAS. We evaluate WINAS perfor-
mance with multi-client scenario in Section 5.4.

Embedded into beamforming. We have tested WINAS
performance with 802.11n and believe it can be applied to
802.11ac with access to the CSI. Beamforming is a manda-
tory operation required for all 802.11ac compatible APs,
and WINAS can be perfectly embedded into beamforming
operational flows. The Null Data Packet (NDP) sounding
is the sole beamforming method offered in the standard,
in which the AP as the beamformer sends NDP sound-
ing packet and requests for explicit feedback matrix from
beamformee every time before starting normal data traffic.
WINAS searching state can be embedded into NDP sounding
without introducing extra protocol overhead. As the NDP
sounding is a MAC layer operation, embedding WINAS into
beamforming makes it transparent to upper layers.

Potential integration with 802.11ax. As described in Sec-
tion 4.2, the current implementation of WINAS is based
on 802.11n hardware mainly due to the constraint on the
accessibility to CSI extraction and kernel programming with
802.11ax devices. When integrated with 802.11ax, we believe
that WINAS would still benefit the COTS devices, and could
create additional design space for further improvement.
Specifically, we expect that: 1) The throughput gain pro-
vided by antenna augmentation would remain or even in-
crease for 802.11ax. The reason is, 802.11ax adopts the higher
modulation rate of 1024 QAM. The denser constellation of
the high modulation rate needs to be supported by higher
SNR of the physical channel, which may greatly benefit from
the spatial diversity gain from WINAS. 2) The proposed
antenna augmentation can be organically combined with the
main technical advances (e.g., OFDMA, spatial frequency
reuse) of 802.11ax to provide better performance. For exam-
ple, OFDMA segregates the spectrum into time-frequency

resource units (RUs), which would be allocated by the
network coordinator (i.e., the AP) to its associated stations
to achieve concurrent packet transmission or reception. An-
tenna augmentation, when combined with such a technique,
may enrich the content of resource unit by introducing
another dimension of antenna space to the original time-
frequency block, and thus leads to higher degree of freedom
for resource allocation. In general, antenna augmentation
complies with 802.11ax aspiration of resource reusing well.

To make the proposed system better adaptable to
802.11ax standard, some technical designs may be slightly
adjusted. In order to implement the network function-
ing (e.g., uplink MU-MIMO, Target Wake Time) that relies
on centralized network management, the hybrid coordi-
nation function is integrated with the MAC layer design
of 802.11ax [61]. Therefore, the CSMA/CA based through-
put estimation model must be extended to support pro-
tocols (e.g., EDCA TXOP) defined with hybrid coordina-
tion. 802.11ax AP is usually equipped with high-end CPU
to support the increased complexity of baseband signal
processing. This provides an opportunity for WINAS to
parallelize the throughput estimation, which may lead to
accelerated antenna searching time by 64× reduction.
Mutual coupling. The mutual coupling effect happens due
to the mutual excitation of overlapped radiation field be-
tween adjacent antennas, and would result in high signal
correlation. To investigate how mutual coupling may impact
the throughput gained in WINAS, we conduct an exper-
iment by increasing the space between adjacent antennas
from 1cm to 30cm. The results indicate that the maximum
throughput provided by the extended antenna array in-
creases from 88 Mbps to 110 Mbps with the antenna spacing
increases from 1cm to 7cm (half of the carrier wave wave-
length), and does not increase when we further separate
from 7cm to 30cm. The results conform with the theory that
the mutual coupling effect can be avoided with antenna
separation larger than half of the signal wavelength. The
experimental setting follows our observation and sets the
antenna spacing to 7cm.

7 CONCLUSION

WINAS is a general antenna augmentation system for com-
mercial Wi-Fi APs to exploit spatial diversity gain, which
is in addition to existing efforts of MIMO or beamforming.
The design of WINAS addresses fundamental challenges on
antenna scalability, adaptability to channel variation, and
protocol compatibility, and thus makes it a general solution
to standard 802.11n/ac devices. The performance of WINAS
is corroborated with separate evaluation on the three main
design blocks, and our real world experiments reveals up to
1.56x throughput improvement under multi-client scenario.
Future works include embedding WINAS into 802.11ac
beamforming operations once the CSI extraction is enabled.
It will also be interesting to study how 802.11ac MU-MIMO
MAC design can be adapted with slight modifications to
best exploiting the performance of WINAS.
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