
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING 1

DX: Latency-Based Congestion Control
for Datacenters

Changhyun Lee, Chunjong Park, Keon Jang, Sue Moon, and Dongsu Han, Member, IEEE

Abstract— Since the advent of datacenter networking,
achieving low latency within the network has been a primary
goal. Many congestion control schemes have been proposed
in recent years to meet the datacenters’ unique performance
requirement. The nature of congestion feedback largely governs
the behavior of congestion control. In datacenter networks, where
round trip times are in hundreds of microseconds, accurate feed-
back is crucial to achieve both high utilization and low queueing
delay. Proposals for datacenter congestion control predominantly
leverage explicit congestion notification (ECN) or even explicit in-
network feedback to minimize the queuing delay. In this paper,
we explore latency-based feedback as an alternative and show
its advantages over ECN. Against the common belief that such
implicit feedback is noisy and inaccurate, we demonstrate that
latency-based implicit feedback is accurate enough to signal a sin-
gle packet’s queuing delay in 10 Gb/s networks. Such high accu-
racy enables us to design a new congestion control algorithm, DX,
that performs fine-grained control to adjust the congestion
window just enough to achieve very low queuing delay while
attaining full utilization. Our extensive evaluation shows that:
1) the latency measurement accurately reflects the one-way
queuing delay in single packet level; 2) the latency feedback can
be used to perform practical and fine-grained congestion control
in high-speed datacenter networks; and 3) DX outperforms
DCTCP with 5.33 times smaller median queueing delay at 1 Gb/s
and 1.57 times at 10 Gb/s.

Index Terms— Datacenter networks, congestion control, TCP,
low latency.

I. INTRODUCTION

THE QUALITY of network congestion control fundamen-
tally depends on the accuracy and granularity of con-

gestion feedback. For the most part, the history of congestion

Manuscript received June 5, 2015; revised April 20, 2016; accepted
May 31, 2016. This work was supported in part by the Institute for Information
and communications Technology Promotion within the Ministry of Science,
ICT and Future Planning (MSIP) through the Program titled Development
of an NFV-Inspired Networked Switch and an Operating System for
Multi-Middlebox Services (B0101-15-1368) and through the Program titled
Creation of PEP based on automatic protocol behavior analysis and Resource
management for hyper connected for IoT Services (B0126-15-1078) and
in part by the National Research Foundation of Korea within MSIP under
Grant 2014007580. This paper is an extended version of a previous conference
publication [1].

C. Lee is with the National Security Research Institute, Daejeon 34044,
South Korea (e-mail: changhnlee@gmail.com).

C. Park and S. Moon are with the School of Computing, Korea Advanced
Institute of Science and Technology, Daejeon 34141, South Korea (e-mail:
cjpark87@gmail.com; sbmoon@kaist.edu).

K. Jang was with Intel Labs, Santa Clara, CA 95054 USA. He is now with
Google, Mountain View, CA 94043 USA (e-mail: gunjang11@gmail.com).

D. Han is with the School of Electrical Engineering, Korea Advanced
Institute of Science Technology, Daejeon 34141, South Korea (e-mail:
dongsu.han@gmail.com).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNET.2016.2587286

control has largely been about identifying the “right” form of
congestion feedback. From packet loss and explicit congestion
notification (ECN) to explicit in-network feedback [2], [3],
the pursuit for accurate and fine-grained feedback has been
central tenet in designing new congestion control algorithms.
Novel forms of congestion feedback have enabled innovative
congestion control behaviors that formed the basis of a number
of flexible and efficient congestion control algorithms [4], [5],
as the requirements for congestion control diversified [6].

With the advent of datacenter networking, identifying
and leveraging more accurate and fine-grained feedback
mechanisms have become even more crucial [7]. Round trip
times (RTTs), which represent the interval of the control loop,
are few hundreds of microseconds, where as TCP is designed
to work in the wide area network (WAN) with hundreds of
milliseconds of RTTs. Prevalence of latency-sensitive flows
in datacenters (e.g., Partition/Aggregate workloads) requires
low latency while the end-to-end latency is dominated by
in-network queuing delay [7]. As a result, proposals for
datacenter congestion control predominantly leverage ECN
(e.g., DCTCP [7] and HULL [8]) or explicit in-network
feedback (e.g., RCP-type feedback [3]), to minimize the
queuing delay and the flow completion times.

This paper takes a relatively unexplored path of identifying a
better form of feedback for datacenter networks. In particular,
this paper explores the prospect of using network latency
as congestion feedback in the datacenter environment.
We believe latency can be a good form of congestion feedback
in datacenters for a number of reasons: (i) by definition,
it includes all queuing delay throughout the network, and
hence is a good indicator for congestion; (ii) a datacenter
is typically owned by a single entity who can enforce all
end hosts to use the same latency-based protocol, effectively
removing potential source of errors originating from uncon-
trolled traffic; and (iii) finally, latency-based feedback does
not require any switch hardware modifications.

Although latency-based feedback has been previously
explored in WAN [9], [10], the datacenter environment is
very different, posing unique requirements that are difficult to
address. Datacenters have much higher bandwidth (10 Gbps
to even 40 Gbps) at the end host and very low latency
(few hundreds of microseconds) in the network. This makes
it difficult to measure the queuing delay of individual
packets for a number of reasons: (i) I/O batching at the
end host, which is essential for high throughput, introduces
large measurement error (§III). (ii) Measuring queuing
delay requires high precision because a single MSS packet
introduces only 0.3 (1.2) microseconds of queuing delay

1063-6692 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE/ACM TRANSACTIONS ON NETWORKING

in 40 GbE (10 GbE) networks. As a result, the common
belief is that latency measurement might be too noisy to
serve as reliable congestion feedback [7], [11].

On the contrary, we argue that it is possible to accurately
measure the queuing delay at the end-host, so that even a single
packet queuing delay is detectable. Realizing this requires
solving several design and implementation challenges. First,
even with very accurate hardware measurement, bursty I/O
(e.g., DMA bursts) leads to inaccurate delay measurements.
Second, ACK packets on the reverse path may be queued
behind data packets and add noise to the latency measurement.
To address these issues, we leverage a combination of recent
advances in software low latency packet processing [12], [13]
and hardware technology [14] that allows us to measure
queuing delay accurately.

Such accurate delay measurements enable a more fine-
grained control loop for datacenter congestion control.
In particular, we envision a fine-grained feedback control loop
achieves near zero-queuing with high utilization. Translating
latency into feedback control to achieve high utilization and
low queuing is non-trivial. We present DX, a latency based
congestion control that addresses these challenges. DX per-
forms window adaptation to achieve low queuing delay (as low
as that of HULL [8] and 6.6 times smaller than DCTCP), while
achieving 99.9% utilization. Moreover it provides advantages
over recent works in that it does not require any switch
modifications.

To summarize, our contributions in this paper are the
followings: (i) thorough evaluation of ECN-based congestion
feedback in comparison to latency feedback; (ii) novel tech-
niques to accurately measure in-network queuing delay based
on end-to-end latency measurements; (iii) a congestion control
logic that exploits latency-based feedback to achieve just a few
packets of queuing delay and high utilization without any form
of in-network support; and (iv) a prototype that demonstrates
the feasibility and its benefits in our testbed.

II. COMPARISON OF CONGESTION FEEDBACK

As congestion control in datacenters needs to react within
RTTs orders of magnitude smaller than in WAN, most pro-
posals for datacenter congestion control leverage ECN or
explicit in-network feedback [7], [8], [15]–[17]. We describe
and compare them with latency-based feedback.
Explicit Congestion Notification: DCTCP [7] and many
other proposals [8], [15], [16] use ECN to detect congestion
before the queue actually overflows. Typically, congestion
level is measured by calculating the fraction of ECN-marked
ACK packets out of the total ACK packets in each window.
To absorb instant fluctuations in queue occupancy, DCTCP
takes the moving average of the sample fractions over multiple
windows and estimates the probability with which the queue
length is higher than the marking threshold. After detecting
congestion, it decreases the window size in proportion to the
congestion level. This allows DCTCP to maintain the average
queuing delay small, near the marking threshold, K .
Explicit in-network feedback provides multi-bit conges-
tion indicator that is much more accurate and fine-grained
than ECN and has been used in several proposals for

datacenter networking [2], [4], [6], [18], [19]. The key
difference is that it also notifies how much the network
is under-utilized, in addition to signaling congestion. Such
feedback enables multiplicative-increase and multiplicative-
decrease (MIMD), which results in high utilization and fast
convergence [2], [3], [6]. However, this “idealized” feedback
requires in-network support. Currently, we are unaware of any
commodity switches that are capable of generating explicit
in-network feedback [7].
Latency feedback: TCP Vegas [9] has introduced latency
congestion feedback in wide-area network. If latency can be
accurately measured to reflect the network congestion, it has
more benefits than other types of feedback. First, it is implicit
feedback that does not require any in-network support. Second,
it can take on a much larger range of values than ECN or
QCN [17], [20], offering a finer-grained form of feedback. The
difference from in-network feedback of RCP [3] or XCP [2]
is that latency feedback cannot signal the remaining network
capacity when the network is not being fully utilized, but only
notifies when and how congested the network is. Our proposal
in this paper is using latency feedback in datacenter networks.
In Section III, we show that our measurement methodology
effectively captures the network queueing delay in datacenter
environment.

The rest of this section provides a quantitative comparison
of the feedback. Note that we only try to evaluate the feedback
itself, not the congestion control algorithm using the feedback.

A. Accuracy of ECN-Based Feedback

We quantify the accuracy of DCTCP’s ECN feedback with
respect to an ideal form of explicit in-network feedback that
accurately reflects the congestion level, such as that of RCP or
XCP. To do this, we take the queue size as the ground truth
congestion level and plot the measured feedback using ns-2
simulation.

We use a simple dumbbell topology of 40 DCTCP senders
and receivers with 10 Gbps link capacity. The RTT between
nodes is 200 µs, the ECN marking threshold is set to
K = 35 [7], and the queue capacity on the bottleneck link
is set to 100 packets; the queue does not overflow during the
simulation. Each sender starts a DCTCP flow and records the
congestion level given by the fraction of ECN marked packets
for each congestion window. We take the average switch queue
occupancy during the window as the ground-truth congestion
level.

Figure 1 shows the percentage of ECN marked packets and
its moving average as used by DCTCP. The x-axis represents
the ground-truth, and the y-axis indicates the measured level of
congestion (percentage of ECN marked packets). Along with
the ECN congestion feedback, we plot a line for the ideal
congestion feedback that informs the exact number of packets
in the queue. The ideal congestion feedback models a form of
explicit in-network feedback similar to that of RCP [3]. For
example, the ideal feedback at 100% congestion, with respect
to the maximum queue size, should be 100 queued packets,
which is the amount to reduce in the next round to achieve
zero queuing delay.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LEE et al.: DX: LATENCY-BASED CONGESTION CONTROL FOR DATACENTERS 3

Fig. 1. Congestion level vs. ECN fraction and its moving average.

From this simple experiment, we make the following three
key observations:

Accuracy is low. The fraction of ECN-marked packets is
not a good indicator of the congestion level. About 50% of
feedback is either 0 or 100; 16% (33%) of the times, the
measured congestion level was 0 (100). Values other than
0 and 100 do not reflect the level of congestion accurately
either. A wide range of switch queue occupancy shares
the same feedback. For example, both the queue lengths,
28 and 64 can result in the feedback of 80%. As a result, the
Pearson correlation coefficient between the actual congestion
and measured feedback was only 0.6924 (compared to 0.9998
for latency feedback presented later); 1.0 is the highest corre-
lation and 0.0 means no correlation. The RMSE (root mean
square error) with respect to the ideal feedback was 33.79
(compared to 1.05 of latency feedback).

Granularity is too coarse. The congestion feedback in
Figure 1 is very coarse grained. The fundamental reason is its
dependency on the window size. For example, five is the most
frequently appearing window size in our simulation. In this
case, the feedback (i.e., ECN-marked fraction) can only take
on six values from 0%, 20%, 40%, 60%, 80%, to 100%,
while the actual congestion level is between 9 and 69 packets
(61 different levels).

Taking the moving average does not help and even degrades
the accuracy as the measured congestion level stays the same
for a wide range of queue lengths (Figure 1). We observe in
Figure 1 that the moving average smoothes out the extreme
congestion level values of 0s and 1s. However, very little
correlation exists between the ECN-based congestion feedback
and the actual queue lengths. The measured congestion level
(i.e., the moving average) always resides between
0.475 and 0.755, while the actual queue occupancy (the
ground-truth congestion level) varies between 7 and
70 packets. As a result, the correlation coefficient drops to
0.1790, and the RMSE with respect to the ideal feedback is
relatively high at 24.63.

B. Accuracy of Latency-Based Feedback

In the face of the above disparity between the actual queue-
ing and ECN-based feedback, we have turned to latency feed-
back as an alternative. As both senders and receivers are under
the same administrative domain in datacenter networks, we
assume that we could instrument both ends, and high-precision
latency measurements are feasible. Later in Section III, we

Fig. 2. Congestion level vs. measured latency.

introduce our detailed techniques for accurate latency mea-
surement. Assuming that latency can be measured accurately
for now, we verify that latency measurements accurately reflect
the ground-truth congestion level, using ns-2 simulation.

The congestion level is measured once for every conges-
tion window in the following way. The sender measures
the RTT for every data packet and sets its minimum as the
base RTT without queueing delay. The difference between the
base RTT and a sample RTT represents the queueing delay,
which is the congestion level.

Figure 2 shows the actual congestion level versus latency
based congestion-level measurement. For ease of comparison,
we consider the maximum possible queueing delay as the
congestion level 100% and translate the measured latency into
congestion level accordingly. Latency feedback (i.e., queuing
delay) naturally reflects the average queue lengths. The corre-
lation coefficient is as high as 0.9998, and the RMSE against
the ideal feedback is only 1.05, which is 32 times smaller than
the raw ECN fraction feedback, and 23 times smaller than the
moving average.

Now the next section discusses how to achieve accurate
latency measurement to capture the congestion level in the
real network.

III. ACCURATE QUEUING DELAY MEASUREMENT

Latency measurement can be inaccurate for many reasons
including variability in end-host stack latency, NIC queuing
delay, and I/O batching. In this section, we describe several
techniques to eliminate such sources of errors. Our goal is to
achieve a level of accuracy that can distinguish even a single
MSS packet queuing at 10 Gbps, which is 1.2 µs. This is
necessary to target near zero queuing as congestion control
should be able to back off even when a single packet is queued.

Before we introduce our solutions to each source of error,
we first show how noisy the latency measurement is without
any care. Figure 3 shows the round trip time measured by
the sender’s kernel when saturating a 10 Gbps link; we
generate TCP traffic using iperf [21] on Linux kernel. the
sender and the receiver are connected back to back, so no
queueing is expected in the network. Our measurement shows
that the round-trip time varies from 23 µs to 733 µs, which
potentially gives up to 591 packets of error. The middle 50%
of RTT samples still exhibit wide range of errors of 111 µs
that corresponds to 93 packets. These errors are an order of
magnitude larger than our target latency error, 1.2 µs.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 3. Round-trip time measured in kernel.

TABLE I

SOURCES OF ERRORS IN LATENCY MEASUREMENT
AND OUR TECHNIQUES FOR MITIGATION

Fig. 4. Timeline of timestamp measurement points.

Table I shows four sources of measurement errors and their
magnitude. We eliminate each of them to achieve our target
accuracy (∼1 µsec).
Removing host stack delay: End-host network stack latency
variation is over an order of magnitude larger than our target
accuracy. Our measurement shows about 80 µs standard
deviation, when the RTT is measured in the Linux kernel’s
TCP stack. Thus, it is crucial to eliminate the host processing
delay in both a sender and a receiver.

For software timestamping, our implementation choice
eliminates the end host stack delay at the sender as we
timestamp packets right before the TX, and right after the
RX on top of DPDK [13]. Hardware timestamping innately
removes such delay.

Now, we need to deal with the end-host stack delay at the
receiver. Figure 4 shows how DX timestamps packets when a
host sends one data packet and receives back an ACK packet.
To remove the end host stack delay from the receiver, we
simply subtract the t3− t2 from t4− t1. The timestamp values
are stored and delivered in the option fields of the TCP header.
Burst reduction: TCP stack is known to transmit packets in a

Fig. 5. Example delay calibration for bursty packet reception.

burst. The amount of burst is affected by the window size and
TCP Segmentation Offloading (TSO), and ranges up to 64 KB.
Burst packets affect timestamping because all packets in a TX
burst get the almost the same timestamp, and yet they are
received by one by one at the receiver. This results in an error
as large as 50 µs.

To eliminate packet bursts, we use a software token bucket
to pace the traffic at the link capacity. The token bucket is a
packet queue and drained by polling in SoftNIC [22].

At each poll, the number of packets drained is calculated
based on the link rate and the elapsed time from the last
poll. The upper bound is 10 packets, which is enough to
saturate 99.99% of the link capacity even in 10 Gbps networks.
We note that our token bucket is different from TCP pacing or
the pacer in HULL [8] where each and every packet is paced
at the target rate; our token bucket is simply implemented with
very small overhead. In addition, we keep a separate queue for
each flow to prevent the latency increase from other flows’
queue build-ups.
Error calibration: Even after the burst reduction, packets
can be still batched for TX as well as RX. Interestingly,
we find that even hardware timestamping is subject to the
noise introduced by packet bursts due to its implementation.
To quantify such noise, we run a simple experiment where
a sender is connected to a receiver back to back and sends
traffic at near line rate of 9.5 Gbps. Ideally, all packets should
be spaced with 1.23 µs interval, but the result shows that
68% of the packet gaps for TX and 32% for RX fall below
1.23 µs. The detailed error distribution can be found in our
previous paper [1]. The packet gaps of TX are more variable
than that of RX, as it is directly affected by I/O batching,
while RX DMA is triggered when a packet is received by the
NIC. The noise in the H/W is caused by the fact that the NIC
timestamps packets when it completes the DMA, rather than
timestamping them when the packets are sent or received on
the wire. We believe this is not a fundamental problem, and
H/W timestamping accuracy can be further improved by minor
changes in implementation.

In this paper, we employ simple heuristics to reduce the
noise by accounting for burst transmission in software. Sup-
pose two packets are received or transmitted in the same batch
as in Figure 5. If the packets are spaced with timestamps
whose interval is smaller than what the link capacity allows,
we correct the timestamp of the latter packet to be at least
transmission delay away from the former packet’s timestamp.
One-way queuing delay: So far, we have described tech-
niques to accurately measure RTT. However, RTT includes the
delay on the reverse path, which is another source of noise for
determining queuing on the forward path. A simple solution
to this is measuring one-way delay which requires clock



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LEE et al.: DX: LATENCY-BASED CONGESTION CONTROL FOR DATACENTERS 5

Fig. 6. One-way queuing delay without time synchronization.

synchronization between two hosts. PTP (Precision Time Pro-
tocol) enables clock synchronization with sub-microseconds
[23]. However it requires hardware support and possibly
switch support to remove errors from queuing delay. It also
requires periodic synchronization to compensate clock drifts.
Since we are targeting a microsecond level of accuracy, even a
short term drift could affect the queuing delay measurement.
For these reasons, we choose not to rely on clock synchro-
nization.

Our intuition is that unlike one-way delay, queuing delay
can be measured simply by subtracting the baseline delay
(skewed one-way delay with zero queuing) from the sample
one-way delay even if the clocks are not synchronized. For
example, suppose a clock difference of 5 seconds, as depicted
in Figure 6. When we measure one-way delay from A to B,
which takes one second propagation delay (no queuing), the
one-way delay measured would be −4 seconds instead of
one second. When we measure another sample where it takes
2 seconds due to queuing delay, it would result in −3 seconds.
By subtracting −4 from −3, we get one second queuing delay.

Now, there are two remaining issues. First is obtaining
accurate baseline delay, and second is dealing with clock drifts.
The base line can be obtained by picking the minimum among
many samples. The frequency of zero queuing being measured
depends on the congestion control algorithm behavior. Since
we target near zero-queuing, we observe this every few RTTs.
Handling clock drift: A standard clock drifts only 40 nsecs
per msec [24]. This means that the relative error between two
measurements (e.g., base one-way delay and sample one-way
delay) taken from two clocks during a millisecond can only
contain tens of nanoseconds of error. Thus, we make sure that
base one-way delay is updated frequently (every few round trip
times). One last caveat with updating base one-way delay is
that clock drift differences can cause one-way delay measure-
ments to continuously increase or decrease. If we simply take
minimum base one-way delay, it causes one side to update its
base one-way delay continuously, while the other side never
updates the base delay because its measurement continuously
increases. As a workaround, we update the base one-way
delay when the RTT measurement hits the new minimum or
re-observe the current minimum; RTT measurements are not
affected by clock drift, and minimum RTT implies no queueing
in the network. This event happens frequently enough in DX,
and it ensures that clock drifts do not cause problems.

IV. DX: LATENCY-BASED CONGESTION CONTROL

A. Limitations of Existing Algorithms

Our latency measurement serves as much more accu-
rate congestion feedback than previous kernel-based latency

Fig. 7. Queue length with the increasing number of TCP Vegas flows.

measurement, so existing latency-based congestion control
algorithms can also benefit from it. In this subsection, we study
whether existing latency-based algorithms can be used in dat-
acenter networks to meet the low queueing delay requirement.
The first latency-based algorithm proposed in wide-area net-
works is TCP Vegas [9], and other later proposed algorithms
share the same core idea with TCP Vegas. Therefore we focus
on TCP Vegas and analyze its performance in datacenter net-
works. If TCP Vegas turns out to work well, then we will not
need to develop another algorithm and just re-use TCP Vegas.
If not, we need to figure out why TCP Vegas does not work
and use the lessons learned to design a new algorithm.

We conduct ns-2 simulation in a dumbbell topology to test
if TCP Vegas achieves low queueing delay. We have ten idle
senders in the beginning, and we activate each sender with
0.5 second interval so that we have ten active flows in the end.
Figure 7 shows the queueing delay evolution as the number of
flows is increased. We notice that the queueing delay increases
with the number of flows in the bottleneck link; each flow adds
up its own share of queueing to existing queueing. The queue
length is consistently as high as 42 packets from 4.5 s to 5.0 s
where ten flows are sharing the link. As datacenter workloads
are very dynamic and the number of flows is not bounded,
TCP Vegas cannot always guarantee low queueing delay.

We observe another drawback of TCP Vegas in the
fairness among flows. According to the TCP Vegas algorithm,
a sender determines the congestion level from (measured
RTT - base RTT). This approach can provide fairness only
when all the senders maintain the same base RTT value. The
simulation result, however, tells us otherwise. The first flow
has 205 µs for base RTT and the last flow has 238 µs; later
flows in the network get larger base RTT. In this case, the
last flow under-estimates the congestion level and tries to
send faster than it is supposed to.

From the above simulation, we learn two lessons to be
used in designing a new congestion control algorithm for
datacenters: i) the algorithm should be able to drop the queue
length down to zero quickly as soon as it observes congestion;
ii) the algorithm should take into account the number of flows
in the network when decreasing window size. We explain how
we reflect these lessons in our algorithm in the next subsection.

B. DX Algorithm Details

We present a congestion control algorithm for datacen-
ters that targets near zero queueing delay based on implicit
feedback, without any form of in-network support. Because
latency feedback signals the amount of excessive packets in the



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

network, it allows senders to calculate the maximum number
of packets to drain from the network while achieving full
utilization. This section presents the basic mechanisms and
design of our new congestion control algorithm, DX. Our
target deployment environment is datacenters, and we assume
that all traffic congestion is controlled by DX, similar to the
previous work [4], [6]–[8], [11].

DX is a window-based congestion control algorithm, and
its congestion avoidance follows the popular AIMD (Additive
Increase Multiplicative Decrease) rule. The key difference
from TCP (e.g., TCP Reno) is its congestion avoidance
algorithm. DX uses the queueing delay to make a decision
on whether to increase or decrease congestion window in the
next round at every RTT. Zero queueing delay indicates that
there is still more room for packets in the network, so the
window size is increased by one at a time. On the other hand,
any positive queueing delay means that a sender must decrease
the window.

DX updates the window size once in a round-trip using the
formula below:

new CWND =

{
CWND + 1, if Q = 0

CWND × (1 − Q

V
), if Q > 0,

(1)

where Q represents the latency feedback, that is, the average
queueing delay in the current round-trip, and V is a self-
updated coefficient of which role is critical in our congestion
control.

When Q > 0, DX decreases the window proportional to the
current queueing delay. The amount to decrease should be just
enough to drain the currently queued packets not to affect uti-
lization. An aggressive decrease in the congestion window will
cause the network utilization to drop below 100%. For DX,
the exact amount depends on the number of flows sharing the
bottleneck because the aggregate sending rate of these flows
should decrease to drain the queue. V is the coefficient that
accounts for the number of competing flows. We drive the
value of V using the analysis below.

We denote the link capacity (packets / sec) as C, the base
RTT as R, single-packet transmission delay as D, the number
of flows as N , and the window size and the queueing delay
of flow k at time t as Wk

(t) and Qk
(t), respectively. Without

loss of generality, we assume at time t the bottleneck link
fully utilized and the queue size is zero. We also assume
that their behaviors are synchronized to derive a closed-form
analysis and verify the results using simulations and testbed
experiments. At time t, because the link is fully utilized and
the queuing delay is zero, the sum of the window size equals
to the bandwidth delay product C · R:

N∑
k=1

Wk
(t) = C · R (2)

Since none of the N flows experiences congestion, they all
increase their window size by one at time t + 1:

N∑
k=1

Wk
(t+1) = C · R + N (3)

Now all the senders observe a positive queueing delay,
and they respond by decreasing the window size using the
multiplicative factor, 1 − Q/V , as in (1). As a result, at time
t + 2, we expect fewer packets in the network; we want just
enough packets to fully saturate the link and achieve zero
queuing delay in the next round. We calculate the total number
of packets in the network (in both the link and the queues) at
time t + 2 from the sum of window size of all the flows.

N∑
k=1

Wk
(t+2) =

N∑
k=1

Wk
(t+1)(1 − Qk

(t+1)

V
) (4)

Assuming every flow experiences maximum queueing delay
N · D in the worst case, we get:

N∑
k=1

Wk
(t+2) =

N∑
k=1

Wk
(t+1)(1 − N · D

V
)

= (C · R + N)(1 − N · D
V

) (5)

We want total number of in-flight packets at time t + 2 to
equal to the bandwidth delay product:

(C · R + N)(1 − N · D
V

) = C · R (6)

Solving for V results in:

V =
N · D

(1 − C·R
C·R+N )

(7)

Among the variables required to calculate V, the only
unknown is N , which is the number of concurrent flows.
The number of flows can be estimated from the sender’s own
window size because DX achieves fair-share throughput at
a steady state; DX is an AIMD algorithm, and a previous
work [25] has shown that AIMD algorithms converge to fair-
ness. For notational convenience, we denote Wk

(t+1) as W ∗

and rewrite (3) as:

N∑
k=1

Wk
(t+1) = N × W ∗ = C · R + N ⇔ N =

C · R
W ∗ − 1

Using (5) and replacing D, single-packet transmission delay,
with (1/C), we get:

V =
R · W ∗

W ∗ − 1
(8)

In calculating V, the sender only needs to know the base
RTT, R, and the previous window size W ∗. No additional
measurement is required. We do not need to rely on exter-
nal configuration or parameter settings either, unlike the
ECN-based approaches. Even if the link capacity in the net-
work varies across links, it does not affect our calculation of V .

So far we have explained how DX handles the event of
positive queueing delay. Although DX does not experience
packet loss by queue overflows, a timeout event can still occur
due to physical level failures. In traditional TCP algorithms,
these timeout events are considered as congestion alarms
and dealt by window size decrement. In DX, however, such
timeout events are not caused by congestion confirmed by
measured queueing delay, so the window size can remain the



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LEE et al.: DX: LATENCY-BASED CONGESTION CONTROL FOR DATACENTERS 7

Fig. 8. Steady-state CWND comparison.

same and keep utilizing the network link fully. Being able to
identify the source of packet loss is one of the DX’s strengths;
retransmitting lost packets and updating timeout value can be
done in the same manner as TCP.

C. Steady-State Analysis

Here we provide a simple analysis on the steady-state
behavior of DX. Our interest is in how close DX is to the ideal
congestion control algorithm with completely zero queueing.

In our analysis, we compare the three kinds of window size:
ideal, theoretical, and simulational. The ideal window size
is easily computed by the bandwidth-delay product divided
by the number of flows; 100% link utilization with zero
queueing. The theoretical value is computed using the worst
case queue length in our algorithm. DX increases the window
size only when the queue length is zero, so the worst case
happens when all the flows see zero queue length and decide
to increase their window by one simultaneously. Then we can
have as much as n queued packets where n is the number
of flows. The theoretical window size can be now calculated
from (bandwidth-delay product + n) divided by n. Finally,
the simulational value is the result from ns-2 simulation. We
use 10 Gbps link capacity and 200 µs RTT for this analysis.

We present the result in Figure 8. To test various scenarios,
we increase the number of flows from two to ten and plot
the results. We observe that the ideal value, which is the
lower bound, is very close to theoretical value of DX. The
simulation result is also close to the theoretical value as the
maximum difference is 2.69 packets at n = 2. The disparity
between the theoretical and simulation results come from the
assumption used in the theoretical computation that all flows
are synchronized.

Next we observe the convergence behavior of DX in com-
parison to DCTCP. For this observation, we use the same
convergence analysis methodology from a previous AIMD
analysis work [25]. In our analysis scenario, a flow (denoted
as flow #1) is occupying the total link bandwidth in the
beginning. Then the second flow (denoted as flow #2) comes
into the network, and after a certain amount of time, both flows
converge to the fair share throughput and reach steady-state.

We plot the change in each flow’s window size in Figure 9.
The x-axis is the window size of flow #1, and y-axis is
the window size of flow #2. The fairness line represents the
condition where two flows have the same window size, hence
fair throughput. The efficiency line represents the condition
where the sum of the window size of two flows is exactly same

Fig. 9. Convergence of two flows with DX and DCTCP.

as the bandwidth-delay product; the right side of efficiency line
means over-utilization (i.e., queueing) and the left side means
under-utilization. Starting from the bottom-right corner, both
DCTCP and DX converge near the fairness line, but DX takes
a more direct path than DCTCP. At steady-state, DX is much
closer to the efficiency line than DCTCP so it minimizes the
unnecessary queuieng in the network.

V. IMPLEMENTATION

We have implemented DX in two parts: latency measure-
ment in DPDK-based NIC driver and latency-based congestion
control in the Linux’s TCP stack. This separation provides
a few advantages: (i) it measures latency more accurately
than doing so in the Linux Kernel; (ii) legacy applications
can take advantage of DX without modification; and (iii) it
separates the latency measurement from the TCP stack, and
hides the differences between hardware implementations, such
as timestamp clock frequencies or timestamping mechanisms.
We present the implementation of software- and hardware-
based latency measurements and modifications to the kernel
TCP stack to support latency feedback.

A. Timestamping and Delay Calculation

We measure four timestamp values as shown in section III
Figure 4: t1 and t2 are the transmission and reception time of
a data packet, and t3 and t4 are the transmission and reception
time of a corresponding ACK packet.
Software timestamping: To eliminate host processing delay,
we perform TX timestamping right before pushing packets
to the NIC, and RX timestamping right after the packets are
received, at the DPDK-based device driver. We use rdtsc
to get CPU cycles and transform this into nanoseconds
timescales. We correct timestamps using techniques described
in §III. All four timestamps must be delivered to the sender to
calculate the one-way delay and the base RTT. We use TCP’s
option fields to relay t1, t2, and t3 (§V-B).

To calculate one-way delay, the DX receiver stores a map-
ping from expected ACK number to t1 and t2 when it receives
a data packet. It then puts them in the corresponding ACK
along with the ACK’s transmission time (t3). The memory



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

overhead is proportional to the arrived data of which the
corresponding ACK has not been sent yet. The memory
overhead is negligible as it requires store 8 bytes per in-flight
packet. In the presence of delayed ACK, not all timestamps are
delivered back to the sender, and some of them are discarded.
Hardware timestamping: We have implemented hardware-
based timestamping on Mellanox ConnectX-3 using a DPDK-
ported driver. Although the hardware supports RX/TX
timestamping for all packets, its driver did not support TX
timestaming. We have modified the driver to timestamp all
RX/TX packets.

The NIC hardware delivers timestamps to the driver by
putting the timestamps in the ring descriptor when it completes
DMA. This causes an issue with the previous logic to carry t1
in the original data packet. To resolve this, we store mapping
of expected ACK number to the t1 at the sender, and retrieve
this when ACK is received.
LRO handling: Large Receive Offload (LRO) is a widely used
technique for reducing CPU overhead on the receiver side.
It aggregates received TCP data packets into a large single
TCP packet and passes to the kernel. It is crucial to achieve
10 Gbps or beyond in today’s Linux TCP stack. This affects
DX in two ways. First, it makes the TCP receiver generate
fewer number of ACKs, which in turn reduces the number
of t3 and t4 samples. Second, even though t1 and t2 are
acquired before LRO bundling at the driver, we cannot deliver
all of them back to the kernel TCP stack due to limited space
in the TCP option header. To work around the problem, for
each ACK that is processed, we scan through the previous
t1 and t2 samples, and deliver average one-way delay with
the sample count. In fact, instead of passing all timestamps to
the TCP layer, we only passes one-way delay t2 - t1 and RTT
((t4 − t1) − (t3 − t2)).
Burst mitigation: As shown in § III, burstiness from I/O
batching incurs timestamping errors. To control burstiness, we
implement a simple token bucket with burst size of MTU and
rate set to link capacity. SoftNIC [22] does polling on the token
bucket to draw packets and passes them to the timestamping
module or the NIC. If the polling loop takes longer than the
transmission time of a packet, the token bucket emits more
than one packet, but limits the number of packets to keep up
with link capacity.

B. Congestion Control

We implement DX congestion control algorithm in the
Linux 3.13.11 kernel. We add DX as a new TCP option that
consumes 14 bytes of additional TCP header. The first 2 bytes
are for the option number and the option length required by
the TCP option parser. The remaining 12 bytes are divided into
three 4 byte spaces and used for storing timestamps and/or an
ACK number.

Most of modifications are made in the tcp_ack() function
in TCP stack. This is triggered when an ACK packet is
received. An ACK packet carries one-way delay and RTT in
the header that are pre-calculated by the DPDK-based device
driver. For each round trip time, the received delay samples are
averaged and used for new CWND calculation. The current

implementation takes the average one-way delay observed
during the last round trip.
Practical considerations: In real-world networks, a transient
increase in queueing delay Q does not always mean network
congestion. Reacting to wrong congestion signals results in
low link utilization. There are two sources of error: mea-
surement noise and instant queueing due to packet bursts.
Although we have shown that our latency measurement has
a low standard deviation up to about a microsecond, it can
still trigger undesirable window reduction as DX reacts to
a positive queueing delay whether large or small. On the
other hand, instant queueing can happen with even very small
number of packets. For example, if two packets arrive at the
switch at the exactly same moment, one of them will be
served after the first packet’s transmission delay, hence positive
queueing delay.

To tackle such practical issues, we come up with two simple
techniques. First, to be robust against latency measurement
noise, we use headroom when determining congestion; DX
does not decrease window size when Q < headroom. The
size of the headroom is determined by the level of mea-
surement noise. For example, if each latency measurement
has 10 µs error at maximum, the headroom should be set
to 10 µs because any measurements smaller than 10 µs can
be a false congestion alarm.

Second, to be robust against transient increase in delay
measurements, we use the average queueing delay during
an RTT period. In an ideal network without packet bursts,
the maximum queueing delay is a good indication of excess
packets. In real networks, however, taking the maximum is
easily affected by instant queueing. Taking the minimum
removes the burstiness most effectively, but it detects con-
gestion only when all the packets in the window experience
positive queueing delay. Hence we choose the average to
balance them out.

Note that DCTCP, a previous ECN-based solution, also
suffers from bursty instant queueing and requires higher ECN
threshold in practice than theoretic calculation [7].

VI. EVALUATION

Throughout the evaluation, We answer three main questions:
• Can DX obtain the accuracy of a single packet’s queuing

delay in high-speed networks?
• Can DX achieve minimal queuing delay while achieving

high utilization?
• How does DX perform in large scale networks with

realistic workloads?
By using testbed experiments, we show that our noise

reduction techniques are effective and queuing delay can be
measured with an accuracy of a single MSS packet at 10 Gbps.
We evaluate DX against DCTCP and verify that it reduces
queuing in the switch up to five times.

Next, we use ns-2 packet level simulation to conduct more
detailed analysis and evaluate DX in large-scale with realistic
workload. First, we verify the DX’s effectiveness by looking
at queuing delay, utilization and fairness. We then quantify the
impact of measurement errors on DX to evaluate its robustness.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LEE et al.: DX: LATENCY-BASED CONGESTION CONTROL FOR DATACENTERS 9

Fig. 10. Improvements with noise reduction techniques.

Fig. 11. Improvement on RTT measurement error compared to kernel’s.

Finally, we perform large-scale evaluation to compare DX’s
overall performance against the state of the art: DCTCP [7]
and HULL [8].

A. Accuracy of Queuing Delay in Testbed

For testbed experiments, we use Intel 1 GbE/10 GbE NICs
for software timestamping and Mellanox ConnectX-3 40 GbE
NIC for hardware timestamping; the Mellanox NIC is used
in 10 Gbps mode due to the lack of 40 GbE switches.
Effectiveness of noise reduction techniques: To quantify
the benefit of each technique, we apply the techniques one
by one and measure RTT using both software and hardware.
Two machines are connected back to back, and we conduct
RTT measurement at 10 Gbps link. We plot the standard devi-
ation in Figure 10. Ideally, the RTT should remain unchanged
since there is no network queueing delay. In software-based
solution, we reduce the measurement error (presented as
standard deviation) down to 1.98 µs by timestamping at
DPDK and applying burst control and calibration. Among the
techniques, burst control is the most effective, cutting down the
error by 23.8 times. In hardware solution, simply timestamping
at NIC achieves comparable noise with all techniques applied
in the software solution. After inter-packet interval calibration,
the noise drops further down to 0.53 µs, less than half of a
single packet’s queueing delay at 10 Gbps, which is within
our target accuracy.
Calibration of H/W timestamping: We look further into how
calibration affects the accuracy of hardware timestamping. The
calibration effectively removes the inter packet gap samples
smaller than link transmission delay which originally took up
68% for TX and 32% for RX. The figures for this evaluation
can be found in our previous paper [1].
Overall RTT measurement accuracy improvement: Now,
we look at how much overall improvements we made on

Fig. 12. Accuracy of queuing delay measurement. (a) 1 Gbps with software
timestamping. (b) 10 Gbps with hardware timestamping.

the accuracy of RTT measurement. We plot the CDF of
RTT measurement for our technique using hardware and RTT
measured in the Kernel in Figure 11. The total range of RTT
has decreased by 62 times, from 710 µs to 11.38 µs. The
standard deviation is improved from 80.7 µs to 0.53 µs by two
orders of magnitude, and falls below a single packet queuing
at 10 Gbps.
Verification of queuing delay: Now that we can measure
RTT accurately, the remaining question is whether it leads to
accurate queuing delay estimation. We conduct a controlled
experiment where we have a full control over the queuing
level. To create such a scenario, we saturate a port in a switch
by generating full throttle traffic from one host, and inject a
MTU-sized ICMP packet to the same port at fixed interval
from another host. This way, we increase the queuing by a
packet at fixed interval, and we measure the queuing statistics
from the switch to verify our queuing delay measurement.

Figure 12 shows the time series of queuing delay measured
by DX along with the ground truth queue occupancy measured
at the switch (marked as red squares). We use software and
hardware timestamping for 1 Gbps and 10 Gbps, respectively.
Every time a new ping packet enters the network, the queueing
delay increases by one MTU packet transmission delay: 12 µs
at 1 Gbps and 1.2 µs at 10 Gbps. The queue length retrieved
from the switch also matches our measurement result. The
result at 10 Gbps seems noisier than at 1 Gbps due to the
smaller transmission delay; note that the scale of y-axis is
different in two graphs.

B. DX Congestion Control in Testbed

Using the accurate queueing delay measurements, we run
our DX prototype with three servers in our testbed; two nodes
are senders and the other is a receiver. We use iperf [21] to
generate TCP flows for 15 seconds. For comparison, we run
DCTCP in the same environment. The ECN marking threshold



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 13. Queue length comparison of DX against DCTCP in Testbed.
(a) 1 Gbps bottleneck. (b) 10 Gbps bottleneck.

for DCTCP is set to the recommended value of 20 at 1 Gbps
and 65 at 10 Gbps [7]. During the experiment, the switch
queue length is measured every 20 ms by reading the register
values from the switch chipset; the queue length is measured
in bytes and converted into time.

We first present the result at the 1 Gbps bottleneck link in
Figure 13. Here we focus on the queue length of each protocol
as the throughput does not exhibit much difference; both
protocols successfully saturate the bottleneck link during the
experiment, and each flow achieves the fair-share throughput
of 500 Mbps in the 1 Gbps link and 5 Gbps in the 10 Gbps link.

We observe that DX consistently reduces the switch queue
length compared to that of DCTCP. The average queueing
delay of DX, 37.8 µs, is 4.85 times smaller than that of
DCTCP, 183.4 µs. DX shows 5.33x improvement in median
queue length over DCTCP (3 packets for DX and 16 packets
for DCTCP). DCTCP’s maximum queue length goes up to
24 packets, while DX peaks at 8 packets.

We run the same experiment with 10 Gbps bottle-
neck. For 10 Gbps, we additionally run DX with hard-
ware timestamp using Mellanox ConnectX-3 NIC. Figure 13
shows the result. DX (HW) denotes hardware timestamping,
and DX (SW) denotes software timestamping. DX (HW)
decreases the average queue length by 1.67 times compared to
DCTCP, from 43.4 µs to 26.0 µs. DX (SW) achieves 31.8 µs
of average queuing delay. The result also shows that DX
effectively reduces the 99th-percentile queue length by a factor
of 2 with hardware timestamping; DX (HW) and DX (SW)
achieve 52 packets and 38 packets respectively while DCTCP
achieves 78 packets.

To summarize, latency feedback is more effective in main-
taining low queue occupancy than ECN feedback. DX achieves
4.85 times smaller average queue size at 1 Gbps and 1.67 times

at 10 Gbps compared to DCTCP. DX reacts to congestion
much earlier than DCTCP and reduces the congestion window
to the right amount to minimize the queue length while
achieving full utilization. DX achieves the lowest queueing
delay among existing end-to-end congestion controls with
implicit feedback that do not require any switch modifications,

In the next section, we also show that DX is even compara-
ble to HULL, a solution that requires in-network support and
switch modification.

C. Large-Scale Simulation

1) Dumbbell Topology With More Senders: In this section,
we evaluate DX, DCTCP, and HULL in simulation to observe
the performance in larger-scale environment. We run ns-2 sim-
ulator using a dumbbell network topology with 10 Gbps link
capacity. The latency measurement in simulation is accurate
without any noise.

For scalability test, we vary the number of simultaneous
flows from 10 to 30 as queuing delay and utilization are
correlated with it; the number of senders has a direct impact
on queueing delay as shown in DCTCP [7]. We measure the
queuing delay and utilization, and summarize the findings
below. The graphs can be found in our previous paper [1].
Queueing delay: Many distributed applications with short
flows are sensitive to the tail latency as the slowest flow
that belongs to a task determines the completion time of
the task [26]. Hence, we look at the 99th percentile queuing
delay as well as the average queueing delay. On average,
DX achieves 6.6x smaller queueing delay than DCTCP with
ten senders, and slightly higher queuing delay than HULL.
At 99th percentile, DX even outperforms HULL by
1.6x to 2.2x. The reason that DX achieves such low queuing
is because of the immediate reaction to the queuing whereas
both DCTCP and HULL uses weighted averaging for reducing
congestion window size that takes multiple round trip times.
Utilization: DX achieves 99.9% of utilization which is com-
parable to DCTCP, but with much smaller queuing. HULL
sacrifices utilization to reduce the queuing delay achieving
about 90% of the bottleneck link capacity. We note that low
queueing delay of DX does not sacrifice the utilization.
Fairness and throughput stability: To evaluate the through-
put fairness, we generate 5 identical flows in the 10 Gbps link
one by one with 1 second interval and stop each flow after
5 seconds of transfer. In Figure 14, we see that both protocols
offer fair throughput to exiting flows at each moment. One
interesting observation is that DX flows have more stable
throughput than DCTCP flows. This implies that DX provides
higher fairness than DCTCP in small time scale. We compute
the standard deviation of throughput to quantify the stability;
268 Mbps for DCTCP and 122 Mbps for DX.
Impact of latency noise: We evaluate the impact of latency
noise to the headroom size and average queue length in
DX. We generate latency noise using normal distribution
with varying standard deviation. The noise level is multiples
of 1.2 µs, single packet’s transmission delay. As the simulated
noise level increases, we need more headroom for full link
utilization. Figure 15 shows the required headroom for full
link utilization and the resulting queue length in average.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LEE et al.: DX: LATENCY-BASED CONGESTION CONTROL FOR DATACENTERS 11

Fig. 14. Fairness of five flows with DCTCP and DX. (a) DCTCP. (b) DX.

Fig. 15. Impact of latency noise to headroom and queue length.

Fig. 16. Multi-bottleneck scenario.

We observe that even if the noise becomes as large as 6 µs,
DX can sustain noise error by simply increasing headroom
size followed by the same amount of increase in queue length.
Note that the standard deviation of our hardware timestamping
is only 0.53 µs.

2) Multi-Bottleneck Scenario: We evaluate the performance
of DX in a multi-bottleneck scenario. We use the same network
topology used in DCTCP evaluation [7] as shown in Figure 16.
In this topology, there are three sender groups (i.e., SG1, SG2,
and SG3) and two receiver groups (i.e., RG1 and RG2). When
the simulation begins, SG1 sends best-effort traffic to RG1,
and SG2 sends traffic to RG2. At the same time, RG2 also
receives traffic from SG3. When all the senders and receivers
are active, the 10 Gbps network link between Switch 1 and
Switch 2 becomes a bottleneck link for SG1 and SG2, and the
1 Gbps link between Switch 3 and RG1 becomes a bottleneck
link for SG1 and SG3. Therefore the traffic from SG1 to RG1
passes through two bottleneck links. In this scenario, the ideal
fair throughput is 50 Mbps for SG1 and SG3, and 475 Mbps
for SG2. When we run DX, SG1 gets 51.5 Mbps, SG2 gets
477.7 Mbps, and SG3 gets 48.5 Mbps. For comparison, we

Fig. 17. Reaction to incast workload with DX and DCTCP. (a) Instant queue
buildup. (b) CWND evolution.

Fig. 18. 99th-percentile FCT of small flows under large background flows.

also run DCTCP with the same setting, and we get 46 Mbps
for SG1, 475 Mbps for SG2, 54 Mbps for SG3. We conclude
that DX provides fair enough and comparable throughput to
DCTCP even with multi-bottleneck network scenario.

3) Synthetic Datacenter Workload: In this section, we focus
on specific traffic patterns that are common in data center
networks and show the performance benefit of DX.
Incast traffic: Although DX does not originally aim at solving
the incast problem [27] by design, maintaining small queue
and quick responsiveness to the congestion give advantages to
certain type of incast traffic.

When a node in datacenters sends queries to multiple
different nodes, the responses to the query can arrive back
at the sender simultaneously within a short period of time.
To simulate such response traffic in data centers, we generate
40 flows to a single receiver at varying flow generation rate
and observe the queue length at the bottleneck switch. Each
flow is 2 MB size in our simulation.

Figure 17 shows the peak queue length at the time of
flow arrival. DCTCP suffers from instant queue buildup of
hundred packets throughout all the flow generation rates, even
at 10 flows per microsecond. On the other hand, DX has
lower queue buildup. To examine the difference in handling
incast traffic, we show the behavior of congestion window
size. Figure 17 shows the congestion window size when the
incast happens at 40 flows per 100 µs. The result shows that
DX reacts to the congestion much earlier than DCTCP does
reducing excess packets in the network.
Small flows with large background flows: Small flows often
co-exist with large bulk transfer in datacenters. In this case, the
flow completion time (FCT) of small flows suffers due to the
increased queuing delay. To simulate DX’s behavior in such
scenario, we produce small flows with large background flows
in the network. The large flow has infinite size starting at the
beginning of the simulation, and we increase the number of



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

large flow senders from 10 to 30. We then generate a thousand
1 KB flows according to a Possion arrival process. Figure 18
shows 99th percentile FCT for DCTCP, HULL, and DX. The
base RTT between a sender and a receiver is 200 µs. Note
that the y-axis begins from the base RTT.

DX achieves the minimum 99th percentile FCT among
the three. DX performs 18% and 2% better than DCTCP
and HULL respectively with 10 background flows. As the
number of background flows increases, the 99% FCT of DX
does not increase as much compared to DCTCP and HULL;
10 additional senders increase only 3-4 µs in FCT. This
behavior originates from DX’s zero queue targeting. Even
when many large flows are present at the bottleneck switch,
the queue length frequently falls down to a small value close
to zero.

4) Empirical Datacenter Workload: To understand the per-
formance of DX in a large-scale data center environment,
we perform simulations with realistic topology and traffic
workload. The network consists of 192 servers and 56 switches
that are connected as a 3-tier fat tree; there are 8 core switches,
16 aggregation switches, and 32 top-of-rack switches. All
network links have 10 Gbps bandwidth, and the path selection
is done by ECMP routing. The network topology we use
is similar to that of HULL [8]. Once the simulation starts,
the flow generator module selects a sender and a receiver
randomly and starts a new flow. Each new flow is generated
following a Poisson process to produce 15% load at the
edge. We run simulation until we have 100,000 flows started
and finished. To test realistic workload, we choose flow size
according to empirical workload reported from real-world data
centers. We use two workload data: web search [7] and data
mining [28].
Web search workload: The web search workload mostly
contains small and medium-sized flows from a few KB to
tens of MB; more than 95% of total bytes come from the flow
smaller than 20 MB, and the average flow size is 654 KB [29].
In Figure 19, we present the flow completion time (FCT)
in four flow-size groups: (0 KB,10 KB), [10 KB,100 KB),
[100 KB,10 MB), and [10 MB,∞).

For the flows smaller than 10 KB, DX significantly reduces
the 99th percentile FCT; it is 4.9x smaller than DCTCP and
1.9x smaller than HULL. DX also achieves minimal flow
completion time in the [10 KB-100 KB) group.

In larger flow size group, the performance of DX falls
between DCTCP and HULL. DX achieves 7.7% lower average
flow completion time compared to HULL and 20.9% higher
than DCTCP for flows of size 10 MB and greater. This is
because when ACK packets from other flows share the same
bottleneck link, the queuing delay increases slightly. As a
result, DX senders respond to the increased queuing delay.
This is a side effect of targeting zero queueing. Because ACK
packets are small and often piggy-backed on data packets we
believe this is not a serious problem, but leave this as future
work.
Data mining workload: The data mining workload is com-
prised of tiny and large-sized flows from hundreds of bytes to
1 GB. The flow size is highly skewed that 80% of flows are
smaller than 10 KB [29] so 95% of bytes come from flows

larger than 30 MB; the average flow size is 7,452 KB. The
flow completion time of data mining workload is presented in
Figure 20.

The performance improvement of DX is more outstanding
for data minining workload than for search workload. In the
three flow groups up to 10 MB, DX flows finish early in every
case. The biggest benefit comes from the smallest flow group
as tail FCT is 6.0x smaller than DCTCP and 1.9x than HULL.
For the largest flow group, DX suffers the same problem from
the search workload but still shows shorter completion time
than HULL’s.

VII. DISCUSSION

NIC support for latency measurements: Current
commodity NICs’ support for timestamping is primarily for
IEEE 1588 PTP, a hardware-based time synchronization proto-
col, designed to achieve sub-microsecond accuracy. While we
leverage this functionality in DX, it is not perfectly suitable for
our network latency measurements as explained in §III. In par-
ticular, it timestamps TX packets after completing DMA, and it
does not support recording the TX time directly on the packets
at the time of transmission. Although, our implementation
works around these issues in software to reduce measurement
errors, we believe changes in hardware will be more effective,
especially for 10G/40G networks. If the hardware timestamps
packets as it sends them out in the wire, the errors from NIC
queueing and DMA bursts would be eliminated. Also, if it
allows us to directly write timestamps on the packet header,
this can shorten the feedback loop of DX by an RTT.
Deployment and co-existence with TCP: DX strictly targets
datacenter networks for deployment. Datacenter environment
favors DX deployment in that 1) it belongs to a single
administration domain that can readily adopt a new protocol,
and 2) network structure is more homogeneous and static than
WAN, which helps latency measurement stability. As DX does
not require any changes to the existing network switches, we
can deploy DX with only end-host modification. Software-
based solution can be deployed on existing machines, and
hardware-based solution requires timestamping-enabled NICs.
IEEE 1588 PTP-enabled NICs are already popular [30], and
we envision timestamping-enabled NICs become more popular
in the near future.

DX is specifically designed for handling only internal
datacenter traffic, not external traffic to WAN. Separation
between internal and external traffic is attainable by using load
balancers and application proxies in existing datacenters [7].
We do not claim that DX can operate with conventional
TCP sharing the same queue at network switches; a single
TCP flow can cause a switch queue to overflow, which is
directly against DX’s goal. Our best resort to co-existing with
TCP flows is to exploit priority queues at the switch and
separate DX traffic from other TCP traffic. Such techniques
to segregate latency-sensitive traffic from bulk transfer traffic
have been widely discussed in the literature [31]–[33] and
some previous low latency transport protocols have been
successfully deployed where they co-exist with TCP [34], [35]
with only minor switch reconfiguration. DX can adopt the



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LEE et al.: DX: LATENCY-BASED CONGESTION CONTROL FOR DATACENTERS 13

Fig. 19. Flow completion time of search workload. (a) (0 KB, 10 KB). (b) [10 KB, 100 KB). (c) [100 KB, 10 MB). (d) [10 MB, ∞).

Fig. 20. Flow completion time of data mining workload. (a) (0 KB, 10 KB). (b) [10 KB, 100 KB). (c) [100 KB, 10 MB). (d) [10 MB, ∞).

same isolation technique in the need for co-exiting with other
TCP algorithms.

VIII. RELATED WORK

Latency-based feedback in wide area network: There have
been numerous proposals for network congestion control since
the advent of the Internet. Although the majority of proposals
use packet loss to detect network congestion, a large body
of work has studied latency feedback. Latency-based TCP all
agree on latency being more informative source of measuring
congestion level, but the purpose and control mechanism is
different in each protocol. TCP Vegas [9] is one of the earliest
work and aims at achieving high throughput by avoiding loss.
FAST TCP [10] is designed to quickly reach the fair-share
throughput and uses latency for an equation parameter. TCP
Nice [36] and TCP-LP [37] operate in low priority minimizing
interference with other flows. Using latency feedback for
datacenters was first proposed by our previous conference
paper [1], and recently TIMELY [38] independently explored
latency feedback in datacenters using hardware-based mea-
surements and RTT gradients.
ECN-based feedback in datacenter networks: Monitoring
congestion level at the switch can help controlling the rate
of TCP to minimize queuing. ECN marking in the TCP
header has received much attention recently. DCTCP [7] uses a
predefined threshold, and end-nodes then count the number of
ECN marked packets to determine the degree of congestion
and decrease the window size accordingly. HULL [8] is a
similar to DCTCP, but sacrifices a small portion of the link
capacity with phantom queue implemented at switches to
detect congestion early and to achieve lower queueing delay
than DCTCP. D2TCP [15] also follows the same line of idea
as DCTCP, and it uses gamma correction function to take
into account each flow’s deadline when adjusting the window
size. As another variant of DCTCP, L2DCT [16] considers
flows’ priority when reducing window size, and the priority
is determined by the scheduling policy used in the network.
ECN* [39] proposes dequeue marking for ECN to work

effectively in datacenters. The aforementioned ECN marking
approaches require modification of the TCP stack in end-node
OS as well as minor parameter tunings at switches.
In-network feedback in datacenter networks: A few
approaches have proposed to modify network switches in a
way that TCP senders or middle switches can learn con-
gestion status more quickly and accurately. D3 [4] employs
similar mechanism to RCP so that it can control flow rates
to implement deadline based scheduling. DeTail [40] has
implemented a new cross-layer network stack so that flows can
avoid congested paths in the network, and PDQ [41] proposes
distributed scheduling of flows that posses different priorities.
These solutions are much harder to deploy than end-to-end
solutions.

IX. CONCLUSION

In this paper, we explore latency feedback for congestion
control in data center networks. To acquire reliable latency
measurements, we develop both software and hardware level
solutions to measure only the network-side latency. Our mea-
surement results show that we can achieve sub-microseconds
level of accuracy. Based on the accurate latency feedback, we
develop DX that achieves high utilization and low queueing
delay in datacenter networks. DX outperforms DCTCP [7]
with 5.33x smaller queueing delay at 1 Gbps and 1.57x at
10 Gbps in testbed experiment. The queueing delay reduction
is comparable or better than HULL [8] in simulation. Our
prototype implementation shows that DX has much potential
to be a practical solution in the real-world datacenters.

REFERENCES

[1] C. Lee, C. Park, K. Jang, D. Han, and S. Moon, “Accurate latency-
based congestion feedback for datacenters,” in Proc. USENIX ATC,
2015, pp. 403–415.

[2] D. Katabi, M. Handley, and C. Rohrs, “Congestion control for high
bandwidth-delay product networks,” in Proc. ACM SIGCOMM, 2002,
pp. 89–102.

[3] N. Dukkipati, M. Kobayashi, R. Zhang-Shen, and N. Mckeown, “Proces-
sor sharing flows in the Internet,” in Proc. 13th Int. Workshop Quality
Service (IWQoS), 2005, pp. 271–285.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE/ACM TRANSACTIONS ON NETWORKING

[4] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron, “Better never
than late: Meeting deadlines in datacenter networks,” in Proc. ACM
SIGCOMM, 2011, pp. 50–61.

[5] A. Shieh, S. Kandula, A. Greenberg, C. Kim, and B. Saha, “Sharing the
data center network,” in Proc. USENIX NSDI, 2011, pp. 309–322.

[6] D. Han, R. Grandl, A. Akella, and S. Seshan, “FCP: A flexible transport
framework for accommodating diversity,” in Proc. ACM SIGCOMM,
2013, pp. 135–146.

[7] M. Alizadeh et al., “Data center TCP (DCTCP),” in Proc. ACM
SIGCOMM, 2010, pp. 63–74.

[8] M. Alizadeh et al., “Less is more: Trading a little bandwidth for ultra-
low latency in the data center,” in Proc. USENIX NSDI, 2012, p. 19.

[9] L. S. Brakmo and L. L. Peterson, “TCP Vegas: End to end congestion
avoidance on a global Internet,” IEEE J. Sel. Areas Commun., vol. 13,
no. 8, pp. 1465–1480, Sep. 1995.

[10] D. X. Wei, C. Jin, S. H. Low, and S. Hegde, “FAST TCP: Motivation,
architecture, algorithms, performance,” IEEE/ACM Trans. Netw., vol. 14,
no. 6, pp. 1246–1259, Dec. 2006.

[11] H. Wu, Z. Feng, C. Guo, and Y. Zhang, “ICTCP: Incast congestion
control for TCP in data center networks,” in Proc. ACM CoNEXT, 2010,
Art. no. 13.

[12] M. Flajslik and M. Rosenblum, “Network interface design for low
latency request-response protocols,” in Proc. USENIX ATC, 2013,
pp. 333–346.

[13] Intel DPDK: Data Plane Development Kit. [Online]. Available:
http://dpdk.org/

[14] Highly Accurate Time Synchronization With ConnectX-3 and
TimeKeeper, Mellanox, Yokne’am Illit, Israel, 2013.

[15] B. Vamanan, J. Hasan, and T. N. Vijaykumar, “Deadline-aware datacen-
ter TCP (D2TCP),” in Proc. ACM SIGCOMM, 2012, pp. 115–126.

[16] A. Munir et al., “Minimizing flow completion times in data centers,” in
Proc. IEEE INFOCOM, Apr. 2013, pp. 2157–2165.

[17] R. Pan, B. Prabhakar, and A. Laxmikantha. (2007). QCN: Quantized
Congestion Notification. [Online]. Available: http://www.ieee802.org/1/
files/public/docs2007/au-prabhakar-qcn-description.pdf

[18] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards
predictable datacenter networks,” in Proc. ACM SIGCOMM, 2011,
pp. 242–253.

[19] F. R. Dogar, T. Karagiannis, H. Ballani, and A. Rowstron, “Decentral-
ized task-aware scheduling for data center networks,” in Proc. ACM
SIGCOMM, 2014, pp. 431–442.

[20] A. Kabbani, M. Alizadeh, M. Yasuda, R. Pan, and B. Prabhakar,
“AF-QCN: Approximate fairness with quantized congestion notifica-
tion for multi-tenanted data centers,” in Proc. 18th IEEE Symp. High
Perform. Interconnects, Aug. 2010, pp. 58–65.

[21] iPerf—The TCP/UDP Bandwidth Measurement Tool. [Online].
Available: http://iperf.fr/

[22] S. Han et al., “SoftNIC: A software NIC to augment hardware,”
Dept. EECS, Univ. California, Berkeley, Berkeley, CA, USA,
Tech. Rep. UCB/EECS-2015-155, 2015.

[23] (2009). IEEE 1588 Standard for a Precision Clock Synchronization
Protocol for Networked Measurement and Control Systems. [Online]
Available: http://www.nist.gov/el/isd/iee e/ieee1588.cfm

[24] C. Lenzen, P. Sommer, and R. Wattenhofer, “Optimal clock synchro-
nization in networks,” in Proc. ACM SenSys, 2009, pp. 225–238.

[25] D.-M. Chiu and R. Jain, “Analysis of the increase and decrease algo-
rithms for congestion avoidance in computer networks,” Comput. Netw.
ISDN Syst., vol. 17, no. 1, pp. 1–14, Jun. 1989.

[26] M. Chowdhury and I. Stoica, “Coflow: A networking abstraction for
cluster applications,” in Proc. ACM HotNets, 2012, pp. 31–36.

[27] V. Vasudevan et al., “Safe and effective fine-grained TCP retransmis-
sions for datacenter communication,” in Proc. ACM SIGCOMM, 2009,
pp. 303–314.

[28] A. Greenberg et al., “VL2: A scalable and flexible data center network,”
in Proc. ACM SIGCOMM, 2009, pp. 51–62.

[29] M. Alizadeh et al., “pFabric: Minimal near-optimal datacenter transport,”
in Proc. ACM SIGCOMM, 2013, pp. 435–446.

[30] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal,
“Fastpass: A centralized ‘zero-queue’ datacenter network,” in Proc. ACM
SIGCOMM, 2014, pp. 307–318.

[31] S. Bensley, L. Eggert, D. Thaler, P. Balasubramanian, and G. Judd,
Datacenter TCP (DCTCP): TCP Congestion Control for Datacenters,
document draft-ietf-tcpm-dctcp-01, IETF Draft, 2015.

[32] K. De Schepper, B. Briscoe, O. Bondarenko, and I. Tsang, DualQ
Coupled AQM for Low Latency, Low Loss and Scalable Throughput,
document draft-briscoe-aqm-dualq-coupled-00, IETF Draft, 2015.

[33] S. M. Irteza, A. Ahmed, S. Farrukh, B. N. Memon, and I. A. Qazi, “On
the coexistence of transport protocols in data centers,” in Proc. IEEE
ICC, Jun. 2014, pp. 3203–3208.

[34] G. Judd, “Attaining the promise and avoiding the pitfalls of TCP in the
datacenter,” in Proc. USENIX NSDI, 2015, pp. 145–157.

[35] Y. Zhu et al., “Congestion control for large-scale RDMA deployments,”
in Proc. ACM SIGCOMM, 2015, pp. 523–536.

[36] A. Venkataramani, R. Kokku, and M. Dahlin, “TCP Nice: A mechanism
for background transfers,” in Proc. USENIX OSDI, 2002, pp. 329–343.

[37] A. Kuzmanovic and E. W. Knightly, “TCP-LP: A distributed algo-
rithm for low priority data transfer,” in Proc. IEEE INFOCOM,
Mar./Apr. 2003, pp. 1691–1701.

[38] R. Mittal et al., “TIMELY: RTT-based congestion control for the
datacenter,” in Proc. ACM SIGCOMM, 2015, pp. 537–550.

[39] H. Wu et al., “Tuning ECN for data center networks,” in Proc. ACM
CoNEXT, 2012, pp. 25–36.

[40] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz, “DeTail: Reducing
the flow completion time tail in datacenter networks,” in Proc. ACM
SIGCOMM, 2012, pp. 139–150.

[41] C.-Y. Hong, M. Caesar, and P. B. Godfrey, “Finishing flows quickly with
preemptive scheduling,” in Proc. ACM SIGCOMM, 2012, pp. 127–138.

Changhyun Lee received the B.S. and Ph.D. degrees in computer science
from the Korea Advanced Institute of Science and Technology (KAIST)
in 2007 and 2015, respectively. He is currently a Researcher with the
National Security Research Institute, South Korea. His research interests
include datacenter networking, congestion control, and network performance
measurement/analysis.

Chunjong Park received the B.S. degree in computer science from the
Korea Advanced Institute of Science and Technology (KAIST) in 2015, where
he is currently pursuing the master’s degree in computer science under the
supervision Dr. S.-J. Lee. His research interests are primarily in networking
and mobile systems.

Keon Jang received the Ph.D. and B.S. degrees in computer science from
Korea Advanced Institute of Science and Technology (KAIST) in 2012 and
2006, respectively. From 2012 to 2014, he was with Microsoft Research,
Cambridge, U.K., as a Post-Doctoral Researcher. From 2014 to 2015, he was
a Research Scientist with Intel Labs and a Visiting Scholar with UC Berkeley.
He is currently a Software Engineer with Google.

Sue Moon received the B.S. and M.S. degrees from Seoul National University,
Seoul, South Korea, in 1988 and 1990, respectively, and the Ph.D. degree
from the University of Massachusetts at Amherst in 2000, all in computer
science. She is currently a Full Professor with the School of Computing,
KAIST. From 1999 to 2003, she was with the IPMON project, Sprint ATL,
Burlingame, CA, USA. Her main research topics are high-speed networking
platforms and online social media. She has been active in technical program
committees and received many awards for technical achievements. She has
served as a TPC Co-Chair for ACM Multimedia 2004, the APSys 2011, and
the WWW 2013. She served as a General Chair for PAM 2009 and APSys
2012, and as a Vice Organization Chair for WWW 2014. She is a recipient
of the 16th Young Engineer’s Award by National Academy of Engineering of
Korea, and KAIST Chair Professorship from 2011 to 2014.

Dongsu Han (M’16) received the B.S. degree in computer science from the
Korea Advanced Institute of Science (KAIST) in 2003, and the Ph.D. degree in
computer science from Carnegie Mellon University in 2012. He is currently
an Assistant Professor with the School of Electrical Engineering, Graduate
School of Information Security, KAIST. He is interested in networking,
distributed systems, and network/system security.


